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0. Why q-difference equations:

Analytically the beautiful and now so classical transcendence results of Hermite,
Lindemann and Weierstrafi on the exponential function depend heavily on the s0-
called formulae of Hermite. And behind these is essentially the simple differential
equation $Df=f$ of $\mathrm{e}\mathrm{x}\mathrm{p}$ .
As it is well-known, all analytic transcendence methods apply to special entire,
meromorphic and locally holomorphic functions $f$ satisfying certain types of
functional equations, often an algebraic differential equation

(1) $F(z, f(z),$ $Df(z)$ , \ldots , $D^{m}f(z))=0$ ,

$F$ being apolynomial in $m+2$ variables. The situation for algebraic indepen-
dence or even only for irrationality or linear independence is quite similar to
that of transcendence.

Having all these facts in mind it is plausible that one shall encounter new arith-
metical problems as follows. Replace the differential operator $D$ in (1) by the
$q$-difference operator $\Delta_{q}$ , introduced by Jadcson in 1908 and defined by

$\Delta_{q}f(z)$ $:= \frac{f(qz)-f(z)}{(q-1)z}$

for complex $q\neq 1$ . Then the differential equation (1) changes into an algebraic
$q$-difference equation

(2) $\phi(z, f(z),$ $f(qz)$ , \ldots , $f(q^{m}z))=0$

where, after clearing denominators, $\phi$ is again apolynomial. Prom the analytical
point of view, the linear case of (2), i.e.

(3) $f(q^{m}z)=R(z)f(q^{m-1}z)+\ldots+R_{m-1}(z)f(z)+R_{m}(z)$

with polynomials $R_{0}$ , \ldots ,
$R_{m}$ has been studied intensively since 1890 by Poincare’

and others. Clearly, the special case m $=1$ of (3), i.e.

(4) $f(qz)=R_{0}(z)f(z)+R_{1}(z)$

is understood even better, compare [22]
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1. Irrationality

We now proceed to ask arithmetical questions concerning functions satisfying
$q$-difference equations of type (2), (3) or (4). According to our above remarks we
may start with a $q$-analogue of the exponential function. To do so we consider

$\Delta_{q}f(z)=f(z)\Leftrightarrow f(z)=(1+\frac{(q-1)z}{q})f(\frac{z}{q})$

with the additional condition $f(0)=1$ .

Supposing $|q|>1$ for the whole paper,

this initial value problem is solved exactly by the product $\Pi_{j\geq 1}(1+(q-1)q^{-j}z)$ ,
which we finally normalize to

$E_{q}(z):= \prod_{j=1}^{\infty}(1+\frac{z}{q^{j}})$ .

This is an entire transcendental function satisfying $E_{q}(qz)=(1+z)E_{q}(z)$ and
therefore has Taylor series 1

(5)
$E_{q}(z)= \sum_{n=0}^{\infty}\frac{z^{n}}{\prod_{\nu=1}^{n}(q^{\nu}-1)}$

about the origin. Historically, this was the second example of asolution of a
Poincare equation of type (4) which was studied arithmetically, by Lototsky [16]
in 1943, compare our Corollary 2below.

The first such example was

(6) $T_{q}(z)$ $:= \sum_{n=0}^{\infty}z^{n}q^{-n(n-1)/2}$

satisfying $T_{q}(qz)=qzT_{q}(z)+1$ . Here, using Hermite’s method of Pade type
approximations of the first kind, Tschakaloff [23] got, in 1921, irrationality and
linear independence results, compare Corollary 1and Theorem 4below. Clearly,
the interest in the function $T_{q}$ stems from its close connection with the “right
half” of Jacobi’s theta series $\Sigma_{n\in \mathrm{Z}}z^{n}q^{-n^{2}}$ which equals $T_{q^{2}}(z/q)$ .

The first result we quote precisely is the following Schneider-Lang type criterion.

1 Empty products are always defined to be 1.
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Theorem 1[4]. Let $K$ be either $\mathrm{Q}$ or an imaginary quadratic number field,
and let $q\in O_{K}$ , the ring of integers of K. Let $f(z)=\Sigma_{n=0}^{\infty}b_{n}z^{n}$ be an entire
transcendental function such that there $e$$\dot{m}t$

(i) a sequence $(B_{n})_{n=0,1},\ldots$ in $K^{\mathrm{x}}with|B_{n}|\leq|q|^{\beta n^{2}+o(n^{2})}$ for some fixed real
$\beta\geq 0$ such that $B_{n}b_{\nu}\in O_{K}$ for $\nu=0$ , $\ldots$ , $n$ ,

(ii) an $\alpha\in K^{\mathrm{x}}$ such that $f(\alpha q^{-m})\in K$ for any $m\in \mathrm{N}_{0}:=\{0,1, \ldots\}$ ,

(iii) a sequence $(C_{m})_{m\in \mathrm{N}_{\mathrm{O}}}$ in $K^{\mathrm{x}}$ with $|C_{m}|\leq|q|^{\gamma m^{2}+o(m^{2})}$ for some fied
real $\gamma\geq 0$ such that $C_{m}f(\alpha q^{-\mu})\in O_{K}$ for $\mu=0$ , $\ldots$ , $m$ .

Then the inequality

$\rho^{*}(f):=\lim_{farrow}\sup_{\infty}\frac{1\mathrm{o}\mathrm{g}|f|_{r}}{(\log r)^{2}}\geq$ $( \frac{1}{\beta}+\frac{1}{\gamma})\frac{\mathrm{l}}{41\mathrm{o}\mathrm{g}|q|}$

holds, where $|f|_{r}$ denotes the maimum $of|f(z)|$ on $|z|=r$ .
As an easy consequence one deduces essentialy Tschakaloff’s irrationality result
[23 I]:

Corollary 1. If $K$ and $q$ are as in Theorem 1, then $T_{q}(\alpha)\not\in K$ holds for any
$\alpha\in K^{\mathrm{x}}$ .

Remark. $\mathrm{B}6\mathrm{z}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{n}$ $[2]$ proved recently for $q\in \mathrm{Z}$ that $\alpha\neq 0$ and $T_{q}(\alpha)$ cannot
both belong to aquadratic number field, and this remains true for certain $q=$
$q_{1}/q_{2}\in \mathrm{Q}$ with sufficiently small value of $(\log|q_{2}|)/(\log|q_{1}|)$ .

Corollary 2. If $K$ and $q$ are as in Theorem 1, then $E_{q}(\alpha)\not\in K$ for any
$\alpha\in K^{\mathrm{x}}\backslash \{-q, -q^{2}, \ldots\}$ .
This is essentially Lototsky’s [16] result for which we sketch aproof Prom (5)
we see that $B_{n}=\Pi_{\nu=1}^{n}(q^{\nu}-1)$ and thus $\beta$ $=1/2$ is agood choice in (i) of
Theorem 1. We assume $E_{q}(\alpha)\in K,=S/T$ say, and we write $\alpha=s/t$ with
$S,T$, $s,t\in O_{K}$ , $Tt\neq 0$ . The functional equation of $E_{q}$ leads to

$E_{q}( \frac{\alpha}{q^{m}})=E_{q}(\alpha)\prod_{j=1}^{m}(1+\frac{\alpha}{q^{j}})^{-1}=\frac{St^{m}q^{m(m+1)/2}}{T\prod_{j=1}^{m}(tq^{j}+s)}$

such that we may take $C_{m}=T\Pi_{j=1}^{m}(tq^{j}+s)$ and thus $7=1/2$ in (iii) of
Theorem 1. Therefore we get $\rho^{*}(E_{q})\geq 1/(\log|q|)$ contradicting the well-known
fact $\rho^{*}(E_{q})=1/(2\log|q|)$ , compare [4] or [22].

Remarks. 1) The “huge” final contradiction in the proof of Corollary 2can be
used to get the following quantitative refinement
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Theorem 2. Under the hypotheses of Corollary 2, and for arbitrary $\epsilon\in \mathbb{R}$

one has
$|E_{q}( \alpha)-\frac{P}{Q}|\gg_{\Xi}|Q|^{-\S-\epsilon}$

for any $P$, $Q\in O_{K}$ , $Q\neq 0$ .

This was first proved in [4], and later, with adifferent method by Popov [19]
who replaced the $\epsilon$ in the exponent by $O((\log|Q|)^{-1/2})$ . In the case $\alpha=1$ (and
thus $\alpha=q^{r}$ for any $r\in \mathrm{Z}$) the present author could very recently replace 7/3
by 13/6.

2) Euler’s formula from 1748, namely

(7) $\frac{1}{E_{q}(-1)}=\prod_{j=1}^{\infty}(1-q^{-j})^{-1}=1+\sum_{n=1}^{\infty}p(n)q^{-n}$,

$p$ denoting the partition function, allows to deduce arithmetical informations on
the series in (7) from those on the $E_{q}$ function.

Of course, one may also consider infinite products of the shape

$F_{q}(z):= \prod_{j=1}^{\infty}(1+\frac{z}{q^{j}}+c_{2}\frac{z^{2}}{q^{2j}}+\cdots+c\ell\frac{z^{\ell}}{q^{\ell j}})$

generalizing $E_{q}$ , with $c_{2}$ , $\ldots$ , $c\ell\in K$, $c\ell$ $\neq 0$ . Clearly, $F_{q}$ satisfies the functional
equation

$F_{q}(qz)=(1+z+c_{2}z^{2}+\cdots+c_{\ell}z^{\ell})F_{q}(z)$

of type (4). In the case $\ell=2$ , $c_{2}\in K^{\mathrm{x}}$ , first considered by Zhou and Lubinsky
[25], we have

Theorem 3[5]. Let $K$ and $q$ be as in Theorem 1, and let ot $\in K^{\mathrm{x}}$ satisfy
1 $\pm\alpha q^{-j}+c_{2}\alpha^{2}q^{-2j}\neq 0$ for any $j\in \mathrm{I}\mathrm{N}$ $:=\{1$ , 2, $\ldots$

$\}$ . Then $F_{q}(\alpha)$ and
$F_{q}(-\alpha)$ cannot both belong to $K$, and moreover

$\max_{\nu=0,1}|F_{q}((-1)^{\nu}\alpha)-\frac{P_{\nu}}{Q}|\gg|Q|^{-7-\epsilon}$ .

Zhou and Lubinsky, using explicit formulae for multivariate Pade approximants,
could only treat the qualitative case of $q$ , $c_{2}$ , $\alpha\in \mathrm{Q}_{+}$ . The following Conjecture
is proved only if $|q|$ is large in terms of $c_{2}$ and $\alpha$ , compare [5].

Conjecture. $F_{q}(\alpha)\not\in K$ should be tme under the hypotheses of Theorem 3, but
without any assumption on $1-\alpha q^{-j}+c_{2}\alpha^{2}q^{-2j}$ .
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The case $\ell\geq 3$ was considered only very recently by V\"a\"an\"anen and the present
author [9]. Unfortunately, we have no result at all for $\ell\geq 4$ , and even if $\ell=3$ we
need very special C2, $c_{3}$ , we must restrict $K$ to $\mathrm{Q}$ or the Gaussian field $\mathrm{Q}(i)$ , and
we can only say that for $\alpha\in K^{\mathrm{x}}$ (plus some natural non-vanishing condition)
at least one of the $F_{q}(i^{\nu}\alpha)$ , $\nu=0,1,2,3$ , doesn’t belong to $K$ and furthermore

$\max_{\nu=0,1,2,3}|F_{q}(i^{\nu}\alpha)-\frac{P_{\nu}}{Q}|\gg|Q|^{-25-e}$ .

2. Linear independence

Using Hermite’s analytic method, i.e. Pad\’e approximations of the first kind and
anon-vanishing argument for acertain determinant, Tschakaloff $[23 \mathrm{I}\mathrm{I}]$ proved
in 1921 the qualitative part of

Theorem 4[6]. Let $K$ and $q$ be as in Theorem 1, and let $\alpha_{1}$ , $\ldots$ , $\alpha_{\ell}\in K^{\mathrm{x}}$

satisfy $\alpha:/\alpha_{j}\not\in q^{\mathrm{Z}}$ for $i\neq j$ (if $\ell>1$). Then, for $arb$ irrary $\epsilon\in \mathbb{R}_{+}$ , the
inequality

(8) $|h_{0}+h_{1}T_{q}(\alpha_{1})+\cdots+h_{\ell}T_{q}(\alpha\ell)|\gg_{\epsilon}H^{-(2\ell-1+(4\ell^{2}+1)^{1/2})/2-e}$

holds for any $\underline{h}=$ $(h_{0}, \ldots, h\ell)\in O_{K}^{\ell+1}\backslash \{\underline{0}\}$ with $|h_{\lambda}|\leq H$ for $\lambda=1$ , $\ldots$ , $\ell$ .

Remarks. 1) In (8), the estimate |\ldots | $\gg H^{-\ell}$ would be best possible; the
actual exponent there is essentially $2\ell$ for large $\ell$ .
2) By the same method as in [6], Katsurada [15] generalized (8) to

(9) $|h_{0}+ \sum_{\lambda=1}^{\ell}\sum_{\mu=0}^{m}h_{\lambda\mu}T_{q}^{(\mu)}(\alpha_{\lambda})|\gg_{C}H^{-\mathrm{c}(\ell,m)-e}$

with some explicit constant $c(\ell, m)$ .
3) For $q\in \mathrm{N}$ and $\alpha_{1}$ , $\ldots,\alpha\ell\in \mathrm{Q}^{\mathrm{x}}$ , $\alpha:/\alpha_{\mathrm{j}}\not\in q^{\mathrm{Z}}$ for $i\neq j$ , the pure linear
independence of 1and the $T_{q}^{(\mu)}(\alpha\lambda)$ over $\mathrm{Q}$ was yet shown by Skolem [20] in
1949. He used Hilbert’s method, as devised in 1893 for the transcendence of $e$

and $\pi$ , which is very arithmetic in nature and based on divisibility considerations.

Both above-mentioned methods, Hermite’s and Hilbert-Skolem’s, depend on di-
rect constructions of appropriate diophantine approximations. In contrast to
this, B\’ezivin [1] developed in the late $1980’ \mathrm{s}$ amore function-theoretic method
for linear independence of values of certain entire functions generalizing $T_{q}$ . Key
point in his argument is acriterion Ala Kronecker or Borel-Dwork for the rati0-
nality of asuitable auxiliary function. But, at least until now, no quantitative
version of B\’ezivin’s linear independence method became available
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Using anumber field version of Hilbert-Skolem’s reasoning Wallisser and the
author [12] proved recently the following quantitative linear independence result
$\ovalbox{\tt\small REJECT}$ la Bezivin.

Theorem 5. Let the subsequent hypotheses be satisfied.
(i) $q_{1}$ , ..., $q_{r}\in\overline{\mathrm{Q}}^{\mathrm{x}}$ are one or several sets of conjugates of integers, multiplica-

tively independent, and one dominating in absolute value;

(ii) there is a prime ideal $p\subset O_{K}$ , where $K:=\mathrm{Q}(q_{1}$ , . . . ’
$q_{r})$ , which divides

all principal ideals $(q_{1})$ , $\ldots$ , $(q_{r})$ ;

(iii) with $\beta_{1}$ , $\ldots$ , $\beta_{r}\in \mathrm{Q}^{\mathrm{x}}$ let $A(\nu):=\beta_{1}q_{1}^{\nu}+\cdots+\beta_{r}q_{r}^{\nu}\neq 0$ for $\nu\in \mathrm{N}$;

(iv) for $\alpha_{1}$ , $\ldots$ , $\alpha_{\ell}\in K^{\mathrm{x}}$ no quotient $\alpha_{i}/\alpha_{\mathrm{j}}$ with $i\neq j$ (if $\ell>1$) belongs to
the subgroup $\langle q_{1}$ , . . ., $q_{r}\rangle$ of $K^{\mathrm{x}}$ generated by $q_{1}$ , $\ldots$ , $q_{r}j$

(v) $\alpha_{i}/A(\nu)\in \mathrm{Q}$ for any $i=1$ , $\ldots$ , $\ell$ and $\nu\in \mathrm{N}$ .

Tften, $/or$ the entire transcendental function

$f(z):= \sum\infty\frac{z^{n}}{n}$

$n=0 \prod_{\nu=1}A(\nu)$

the following estimate holds

(10) $\log|h_{0}+h_{1}f(\alpha_{1})+\cdots+h_{l}f(\alpha_{\ell})|\gg-(\log H)^{2r/(r+1)}$ .

Remarks. 1) If $r=1$ , then $q:=q_{1}\in \mathbb{Z}$;choosing $\beta:=\beta_{1}=1/q$ we get
$A(\nu)=q^{\nu-1}$ , thus $\Pi_{\nu=1}^{n}A(\nu)=q^{n(n-1)/2}$ , and therefore our $f$ reduces to the
Tschakaloff function $T_{q}$ ffom (6). Since the exponent $2r/(r+1)$ is 1, we get
back essentially the linear independence measure (8) of Theorem 4, of course
now with an unspecified exponent of $H$ .
2) We could include derivatives of $f$ , too, as Bezivin [1] did as well as Katsurada,
compare (9).

3) It should be pointed out that we could prove very recently $[12 \mathrm{I}\mathrm{I}]$ Theorem
5, with $2(r+1)/(r+2)$ as new exponent of $\log H$ in (10), replacing condition
(iii) by the following more general one.
$(\mathrm{i}\mathrm{i}\mathrm{i}’)$ with $R_{j}\in K[X]\backslash \{0\}$ for $j=1$ , $\ldots$ , $r$ let $A(\nu):=R_{1}(\nu)q_{1}^{\nu}+\cdots+$

$R_{r}(\nu)q_{r}^{\nu}$ I0for $\nu\in \mathrm{N}$;

4) Concerning applications, mainly to functions $f$ where $A(.)$ is connected with
s0-called $\mathrm{P}\mathrm{V}$-numbers, the reader is referred to [12], $[12 \mathrm{I}\mathrm{I}]$ .
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Since the case $A(\nu)=q^{\nu}-1$ is covered by Bezivin’s results [1], but not by
Theorem 5, we cannot apply this quantitative result to $f=Eq$ . But using Pade
approximations of the second kind and some Siegel-Shidlovsky type arguments,
V\"a\"an\"anen [24] found very recently quite general linear independence measures
which we quote here only for the function $E_{q}$ and for $K$ and $q$ as in Theorem 1.

Theorem 6. If $\alpha_{1}$ , $\ldots$ , $\alpha\ell\in K^{\mathrm{x}}\backslash \{-q, -q^{2}, \ldots\}$ satisfy $\alpha:/\alpha_{j}\not\in q^{\mathrm{Z}}$ for $i\neq j$ ,
then 1, $E_{q}(\alpha_{1})$ , $\ldots$ , $E_{q}(\alpha\ell)$ are linearly independent over $K$ , and moreover the
inequality

(11) $|h_{0}+h_{1}E_{q}(\alpha_{1})+\cdots+h_{\ell}E_{q}(\alpha_{\ell})|\gg_{\epsilon}H^{-\mathrm{c}-\epsilon}$

holds with an explicitly computed constant c $>0$ .
Remark. Here $c$ is asymptotically $c_{1}\ell^{3}$ for large $\ell$ , where $c_{1}>0$ doesn’t depend
on $\ell$ . It should be pointed out that $\mathrm{V}\dot{\mathrm{a}}\dot{\mathrm{m}}$ \"anen and the author [10], using explicit
approximations, got very recently aresult which, in the particular case of the
function $E_{q}$ , reads as follows

$|h_{0}+h_{1}E_{q}(\alpha)+h_{2}E_{q}(-\alpha)|\gg_{\epsilon}H^{-8-e}$ ,

if $K=\mathrm{Q}$ and $\alpha\in \mathrm{Q}^{\mathrm{x}}\backslash \{-q, -q^{2}, \ldots\}$ .

3. Dimension estimates

Here the main problem is as follows. Given $\underline{\omega}=(\omega_{1}, \ldots,\omega_{m})\in \mathrm{R}^{m}\backslash \{\underline{0}\}$ with
$m\geq 2$ , find conditions for non-trivial lower bounds for

$D_{\mathrm{Q}}(\underline{\omega}):=\dim_{\mathrm{Q}}\mathrm{Q}\omega_{1}+\cdots+\mathrm{Q}\omega_{m}$.

Clearly, $D\mathrm{Q}(\underline{\omega})=m$ holds if and only if $\omega_{1}$ , $\ldots,\omega_{m}$ are linearly independent
over Q.

With Topfer, we [7] found an axiomatization of amethod of Nesterenko [17] to
estimate $D_{\mathrm{Q}}(\underline{\omega})$ from below, based on linear elimination theory. But whereas
Nesterenko’s result leads only to qualitative statements, our generalization gives
quantitative results, too. As one handy consequence of our (rather cumbersome)
main assertion we get back Nesterenko’s

Theorem 7. Suppose $k_{0}\in \mathrm{N}$ and $\tau_{1},\tau_{2}\in \mathrm{R}_{+}$ . Let $\phi$ : IN $arrow \mathrm{R}_{+}$ be
monotonically increasing and unbounded, and let $(\Lambda_{k}(\underline{X}):=\lambda_{k1}X_{1}+\cdots+$

$\lambda_{km}X_{m})_{k=k_{0},k_{0}+1},\ldots$ be a sequence of linear forms over $\mathbb{Z}$ satisfying

(i) $\lim_{karrow}\sup_{\infty}\phi(k+1)/\phi(k)\leq 1$ ,
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and for $k\in \mathrm{N}$ , $k\geq k_{0}$

(ii) $\frac{1}{2}\log(\lambda_{k1}^{2}+\cdots+\lambda_{km}^{2})\leq\phi(k)$ ,

(iii) $-\tau_{1}\phi(k)\leq\log|\Lambda_{k}(\underline{\omega})|\leq-\tau_{2}\phi(k)$ .

Then $D_{\mathrm{Q}}(\underline{\omega})\geq(1+\tau_{1})/(1+\tau_{1}-\tau_{2})$ .

Remark. It should be noted that T\"opfer [21] generalized our joint results in [7]
from $\mathrm{Q}$ to arbitrary algebraic number fields.

Prom Theorem 7we deduced with V\"a\"an\"anen [8] the following result concerning
the function $E_{q}$ .

Theorem 8. If $q\in \mathbb{Z}$ and $\alpha\in \mathrm{Q}^{\mathrm{x}}\backslash \{-q, -q^{2}, \ldots\}$ , then the inequality

$D_{\mathrm{Q}}(E_{q}(\alpha), E_{q}’(\alpha)$ , $\ldots$ , $E_{q}^{(m-1)}( \alpha))\geq\frac{m(m+1)}{2m+6\pi^{-2}(m-1)}$

holds for $m=1,2,3$ , and a similar estimate is $tme$ for any $m\geq 4$ . In particu-
lar, $E_{q}’(\alpha)/E_{q}(\mathrm{z})$ is irrational.

Our $pro\mathrm{o}/$ uses (a bit more than) integrals of the shape

(12)
$\frac{1}{2\pi i}\int_{|z|=r}\prod_{\kappa=0}^{k}(z-\alpha q^{\kappa})^{m}E_{q}(z)dz=\sum_{\mu=0}^{m-1}R_{\mu}(\alpha, q;k)E_{q}^{(\mu)}(\alpha)$

with, by the residue theorem, explicit $R_{\mu}\in \mathrm{Q}(\alpha, q)$ to get an approximation
sequence $(\Lambda_{k})$ as needed for Theorem 7. Note that the integrals (12) can be
asymptotically evaluated, using Popov’s procedure from [19].
The particular case $m=2$ of Theorem 8can be restated as follows. Consider
the meromorphic function

$L_{q}(z):= \frac{E_{q}’(z)}{E_{q}(z)}=\sum_{j=1}^{\infty}\frac{1}{q^{j}+z}$

which can be regarded as a $q$-analogue of the logarithm since $(q-1)zL_{q}(z)$ ,
tending to $\log(1+z)$ as $qarrow 1$ , solves the initial value problem $\Delta_{q}f(z)$ $=$

$1/(1+z)$ , $f(0)=0$ .

Corollary 3. For $q$ and cr as in Theorem 8, $L_{q}(\alpha)$ is irrational.

Originally, this was proved by Borwein [3] in 1991. Much earlier, in 1948
Erdos [14] settled the particular case $\alpha=-1$ , $q\in \mathrm{I}\mathrm{N}$ using the representa-
tion $L_{q}(-1)$ $=\Sigma_{n\geq 1}d(n)q^{-n}$ , $d(.)$ denoting the divisor function

117



Our main result with Topfer [7] was general enough to deduce here even quite
good irrationality measures as

$|h_{0}+h_{1}L_{q}(\alpha)|\gg H^{-3.310}$ and $|h_{0}+h_{1}L_{q}(-1)|>>H^{-1.508}.$ .

4. Transcendence

It is not difficult to ask (open) transcendence questions in the domain under
consideration. Suppose $q$ , $\alpha\in\overline{\mathrm{Q}}^{\mathrm{x}}$ . Is it true that $T_{q}(\alpha)$ is transcendental? Are
$E_{q}(\alpha)$ , $L_{q}(\alpha)$ transcendental if $\alpha\neq-q,$ $-q^{2}$ , $\ldots$

?

Certainly, one would first try classical analytic transcendence methods as Gel’-
fond’s or Schneider’s. The results, so far obtainable by these two methods
concerning entire transcendental solutions of (4), are described in [11]. But they
axe rather weak and, having transcendence in mind, not promising at all.
With Mahler’s method the state of affairs could seem slightly more favorable. To
explain why, we describe the main hypotheses of this method very roughly, and
show its connection with the above conjecture concerning $T_{q}(\alpha)$ , for instance.
If $\Omega=(\omega_{\dot{|}j})\in \mathrm{M}\mathrm{a}\mathrm{t}(t\cross t;\mathrm{N}_{0})$ and $\underline{z}=(z_{1}, \ldots, z_{t})\in \mathbb{C}^{t}$ we denote

$\Omega\underline{z}:=$ ($\prod_{j=1}^{t}z_{j}^{\omega_{1j}}$ , $\ldots,\prod_{j=1}^{t}z_{j}^{\omega_{t\mathrm{j}}}$).
We suppose that $f$ is acomplex-valued function, holomorphic in some neigh-
borhood $B(\underline{0})$ of the origin in $\mathbb{C}^{t}$ , with Taylor coefficients about $\underline{0}$ in some fixed
algebraic number field, and satisfying afunctional equation

$f( \Omega\underline{z})=(\sum_{\mu=0}^{m}a_{\mu}(\underline{z})f(\underline{z})^{\mu})/(\sum_{\mu=0}^{m}b_{\mu}(\underline{z})f(\underline{z})^{\mu})$

with all aM, $b_{\mu}$ in $\mathbb{C}[\underline{z}]$ , $a_{m}$ , $b_{m}$ not both 0, and with

(13) $1\leq m<r(\Omega)$ .

Here $r(\Omega)$ denotes the spectral radius of the matrix $\Omega$ , and if Ais an eigenvalue of
0of absolute value $r(\Omega)$ , then A $=r(\Omega)$ must hold. Under these assumptions,
$f(\underline{\alpha})$ is transcendental for any $\underline{\alpha}\in B(\underline{0})\cap(\overline{\mathrm{Q}}^{\mathrm{x}})^{t}$ (plus afurther, but harmless
condition).

Let us look at $f(z_{1}, z_{2}):=\Sigma_{n=0}^{\infty}z_{1}^{n}z_{2}^{n(n-1)/2}$ in $\mathbb{C}\mathrm{x}$ $U=:B(\underline{0})$ , $U$ denoting
the unit circle. Obviously, we have $z_{1}f(z_{1}z_{2}, z_{2})=f(z_{1},z_{2})-1$ , and therefore
our $f$ satisfies

(13) $f( \Omega\underline{z})=\frac{f(\underline{z})-1}{z_{1}}$ with $\Omega=$ $(\begin{array}{ll}1 10 1\end{array})$ .
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Prom $f(\alpha, q^{-1})=T_{q}(\alpha)$ we could conclude the above conjecture if inequality
(13) would not barely missed since (14) implies $1=m=r(\Omega)$ .
In aletter exchange on the $T_{q}(\alpha)$ problem in the early $1980’ \mathrm{s}$ with Kurt Mahler,
he wrote (in German): “In spite of many investigations, the transcendence of
theta functions remains unsolved, and thus every partial result is of great inter-
est... and Iguess that the transcendence of $T_{q}(\alpha)$ will not be solved before the
next century.”

Nevertheless, a very big progress in this area was made recently by Nesterenko
[18] who proved even algebraic independence results for certain numbers related
to modular functions. It is interesting to note that no classical transcendence
method comes nearer to Nesterenko’s reasoning than Mahler’s method does.
Shortly later, Duverney, the two Nishiokas and Shiokawa [13] deduced from
Nesterenko’s results the transcendence of some particular values of the functions
$T_{q}$ and $E_{q}$ , namely, for instance, of $T_{q}(1)$ , $T_{q^{2}}(1/q)$ , $E_{q}(\pm 1)$ and $\Sigma_{n=1}^{\infty}p(n)q^{-n}$

for any $q\in\overline{Q}$ with $|q|>1$ .

References

[1] Bezivin, J.-R, Independance lineaire des valeurs des solutions transcen-
dantes de certaines equations fonctionnelles. I:Manuscripta Math. 61
(1988), 103-129. II:Acta Arith. 55 (1990), 233-240.

[2] –Sur les proprietes arithmetiques d’une fonction entiere. Math. Nachr.
190 (1998), 31-42.

[3] Borwein, P.B., On the irrationality of $\Sigma(1/(q^{n}+r))$ . J. Number Theory
37 (1991), 253-259.

[4] Bundschuh, P., Ein Satz iiber ganze Funktionen und Irrationalit\"atsaus-
sagen. Invent, math. 9(1970), 175-184.

[5] –Again on the irrationality of acertain infinite product. Analysis 19
(1999), 93-101.

[6] –, Shiokawa, I., Ameasure for the linear independence of certain numbers.
Result. Math. 7(1984), 130-144.

[7] -, Topfer, T., U.ber lineare Unabhangigkeit. Monatsh. Math. 117 (1994),
17-32.

[8] -, V\"a\"an\"anen, K., Arithmetical investigations of acertain infinite product.
Compositio Math. 91 (1994), 175-199.

[9] –, –On the simultaneous diophantine approximation of new products.
Analysis (to appear).

[10] –, –Linear independence measures for infinite products. Submitted

119



[11] –, Waldschmidt, M., Irrationality results for theta functions by Gel’fond-
Schneider’s method. Acta Arith. 53 (1989), 289-307. Errata: Acta Arith.
78 (1996), 99.

[12] –, Wallisser, R., Ma&f\"ur die lineare Unabhangigkeit von Werten ganz
transzendenter Losungen gewisser Funktionalgleichungen. Abh. Math.
Sem. Univ. Hamburg 69 (1999), 103-122. II:Submitted.

[13] Duverney, D., Nishioka, Ke., Nishioka, Ku., Shiokawa, I., Transcendence
of Jacobi’s theta series. Proc. Japan Acad. Ser. AMath. Sci. 72 (1996),
202-203.

[14] Erd\"os, P., On arithmetical properties of Lambert series. J. Indian Math.
Soc. (N.S.)12 (1948), 63-66.

[15] Katsurada, M., Linear independence measures for certain numbers. ${\rm Re}$

sult. Math. 14 (1988), 318-329.

[16] Lototsky, A.V., Sur l’irrati0nalit6 d’un produit infini. Mat. Sbornik 12
(54) (1943), 262-271.

[17] Nesterenko, Yu.V., On the linear independence of numbers (Russian).
Vestnik Moskov. Univ., Ser. I, 40 (1985), 46-49. Engl. transl.: Moscow
Univ. Math. Bull. 40 (1985), 69-74.

[18] Modular functions and transcendence questions (Russian). Mat.Sbornik
187 (1996), 65-96. Engl. transl.: Math. USSR Sbornik 187 (1996), 1319-
1348.

[19] Popov, A.Yu., Arithmetical properties of values of some infinite products
(Russian). In: Diophantine Approximations 2, 63-78. Collect.Art., Moskva
1986.

[20] Skolem, T., Some theorems on irrationality and linear independence. In:
Den lite Skand. Math. Kongr. Trondheim (1949), 77-98.

[21] Topfer, T., U.ber lineare Unabhangigkeit in algebraischen Zahlk\"orpern.
Result. Math. 25 (1994), 139-152.

[22] –Arithmetical properties of functions satisfying $q$-difference equations.
Analysis 15 (1995) 25-49.

[23] Tschakaloff, L., Arithmetische Eigenschaften der unendlichen Reihe $\Sigma_{\nu=0}^{\infty}$

$a^{-\nu(\nu-1)/2}x^{\nu}$ . I:Math. Ann. 80 (1921), 62-74. II:Math. Ann. 84 (1921),
100-114.

[24] V\"a\"an\"anen, K., On linear independence of the values of generalized Heine
series. Submitted.

[25] Zhou, P., Lubinsky, D.S., On the irrationality of $\Pi_{\mathrm{j}=0}^{\infty}(1\pm q^{-j}r+q^{-2j}s)$ .
Analysis 17 (1997), 129-153

120



Author’s address:
Mathematisches Institut
Universit\"at zu K\"oh

Weyertal 86-90
50931 K\"oln, Germany
e-mail:pb@math.uni-koeln.de

121


