ON THE CONSTRUCTION OF CONFORMAL MEASURES FOR PIECEWISE C^0 -INVERTIBLE SYSTEMS

MICHIKO YURI

ABSTRACT. We present a new method for the construction of conformal measures ν for infinite to one piecewice C^0 -invertible Markov systems. We direct our attention to potentials ϕ which may fail both summable variations and bounded distortion but satisfy the weak bounded variation. Our results apply to higher-dimensional maps which are not necessarily conformal and admit certain nonhyperbolic periodic orbits.

§0 Introduction

Let $(T, X, Q = \{X_i\}_{i \in I})$ be a piecewise C^0 -invertible system i.e., X is a compact metric space with metric $d, T : X \to X$ is a noninvertible map which is not necessarily continuous, and $Q = \{X_i\}_{i \in I}$ is a countable disjoint partition $Q = \{X_i\}_{i \in I}$ of X such that $\bigcup_{i \in I} int X_i$ is dense in X and satisfy the following properties.

- (01) For each $i \in I$ with $intX_i \neq \emptyset$, $T|_{intX_i} : intX_i \to T(intX_i)$ is a homeomorphism and $(T|_{intX_i})^{-1}$ extends to a homeomorphism v_i on $cl(T(intX_i))$.
- $(02) T(\bigcup_{intX_i=\emptyset} X_i) \subset \bigcup_{intX_i=\emptyset} X_i.$
- (03) $\{X_i\}_{i\in I}$ generates \mathcal{F} , the sigma algebra of Borel subsets of X.

Let $\underline{i} = (i_1 \dots i_n) \in I^n$ satisfy $int(X_{i_1} \cap T^{-1}X_{i_2} \cap \dots T^{-(n-1)}X_{i_n}) \neq \emptyset$. Then we define $X_{\underline{i}} := X_{i_1} \cap T^{-1}X_{i_2} \cap \dots T^{-(n-1)}X_{i_n}$ which is called a cylinder of rank n and write $|\underline{i}| = n$. By (01), $T^n|_{intX_{i_1...i_n}} : intX_{i_1...i_n} \to T^n(int(X_{i_1...i_n}))$ is a homeomorphism and $(T^n|_{intX_{i_1...i_n}})^{-1}$ extends to a homeomorphism $v_{i_1} \circ v_{i_2} \circ \dots \circ v_{i_n} = v_{i_1...i_n} : cl(T^n(intX_{\underline{i}})) \to cl(intX_{\underline{i}})$.

We impose on (T, X, Q) the next condition which gives a nice countable states symbolic dynamics similar to sofic shifts (cf. [5]):

(Finite Range Structure). $\mathcal{U} = \{int(T^n X_{i_1...i_n}) : \forall X_{i_1...i_n}, \forall n > 0\}$ consists of finitely many open subsets $U_1 ... U_N$ of X.

In particular, we say that (T, X, Q) satisfies Bernoulli property if $cl(T(intX_i)) = X(\forall i \in I)$ so that $\mathcal{U} = \{intX\}$ and that (T, X, Q) satisfies Markov property if $int(cl(intX_i) \cap cl(intTX_j)) \neq \emptyset$ implies $cl(intTX_j) \supset cl(intX_i)$. (T, X, Q) satisfying Bernoulli (Markov) property is called a piecewise C^0 -invertible Bernoulli (Markov) system respectively.

¹⁹⁹¹ Mathematics Subject Classification. 28D99, 28D20, 58F11, 58F03, 37A40, 37A30, 37C30, 37D35, 37F10, 37A45.

14

For given a subset A of X, let $R_A:A\to\mathbb{N}\cup\infty$ be the first return function over A and we define $D_n^A=\{x\in A:R_A(x)>n\}$. If we have previously a reasonable measurable dynamics e.g. (T,X,Q,\mathcal{F},ν) , where \mathcal{F} denotes the σ - algebra of Borel subsets of X and ν is a nonsingular ($\nu T^{-1}\sim\nu$) probability measure with $\nu(A)>0$ satisfying

$$(1): \lim_{n\to\infty} \nu(D_n^A) = \nu(\bigcap_{n>0} D_n^A) = 0,$$

then the induced map T_A over A can be defined almost everywhere on A and all iterations $\{T_A^n\}_{n\geq 1}$, too. Furthermore, if we can construct a T_A -invariant ergodic probability measure μ_A absolutely continuous with respect to ν , then the integrability of the first return function with respect to ν (which is equivalent to $(2):\sum_{n\geq 0}\nu(D_n^A)<\infty$ so that (1) is automatically satisfied) is sufficient for the existence of T-invariant ergodic probability measure μ absolutely continuous with respect to ν which is given by the well-known Kac formula as follows: for all $f\in L^1(\nu), \frac{1}{\mu(A)}\int_X f d\mu = \int_A f_A d\mu_A$, where $f_A(x)=\sum_{i=0}^{R_A(x)-1} f T^i(x)$. Those results and a generalized Thermodynamic Formalism for potential ϕ of

weak bounded variation were established in [6] for piecewise C^0 -invertible Bernoulli systems by assuming some regular condition on T_A and on the associated potential ϕ_A . In particular, this approach works satisfactory to establish Thermodynamic formalism for piecewise C^1 - invertible maps with the Bernoulli property admitting certain nonhyperbolic periodic orbits (e.g., indifferent periodic points) and for the natural potential $\phi = -\log |detDT|$. In fact, A can be taken as a hyperbolic region which is away from the nonhyperbolic periodic orbits (see [6] for details) and the absolutely continuous invariant measure μ with respect to the normalized Lebesgue measure ν attains the measure theoretical pressure for $\phi = -\log |detDT|$. On the other hand, when (T, X, Q) does not satisfy the Bernoulli property we have no evidence of the existence of nonsingular reference measure ν even if the Markov property is satisfied. If we restrict our attention to (countable) Markov shifts then we can find some answer to this problem (e.g.,[4]). However, if the systems are not symbolic dynamics the existence problem is still remain open (cf.[1]). In this talk, for infinite to one piecewise C^0 -invertible transitive Markov systems we shall give a partial answer to this problem. For this purpose, we first clarify properties of topological pressure for ϕ and for the associated potential ϕ_A defined on a single cylinder $A \in Q$. Then we introduce Schweiger's jump transformations T^* over cylinders which are mapped onto X under T. We shall see a good relation between the topological pressure for ϕ_A and the topological pressure for ϕ^* associated to T^* . This observation allows one to establish the existence of an eigenvalue 1 of the Perron-Frobenius operator associated to ϕ_A by using a formula of zeta function for ϕ in terms of zeta function for ϕ^* obtained in [5]. Finally we can construct a conformal measure ν by using a result in [1]. We also establish the existence of conformal measures by using jump transformation defined. Again the existence of an eigenvalue 1 of the Perron-Frobenius operator associated to ϕ^* plays an important role for the construction of ν .

REFERENCES

1. M. Denker and M. Yuri, A note on the construction of nonsingular Gibbs measures, Collo-

EQUILIBRIUM STATES FOR PIECEWISE INVERTIBLE SYSTEMS

quium Mathematicum 84/85 (2000), 377-383.

- 2. P.H.Hanus, R.D. Mauldin and M. Urbański, Thermodynamic Formalism and multi-fractal analysis of conformal infinite iterated functional systems, Preprint.
- 3. R.D. Mauldin and M. Urbański, Parabolic iterated functional systems, Preprint.
- 4. Omri Sarig, Thermodynamic Formalism for countable Markov shifts., Ergodic Theory and Dyn. Syst. 19 (1999), 1565-1593.
- 5. M. Yuri, Zeta functions for certain nonhyperbolic systems and topological Markov approximations, Ergodic Theory and Dyn. Syst. 18 (1998), 1589-1612.
- 6. M. Yuri, Thermodynamic formalism for certain nonhyperbolic maps, Ergodic Theory and Dyn. Syst. 19 (1999), 1365-1378.
- 7. M. Yuri, Weak Gibbs measures for certain nonhyperbolic systems, Ergodic Theory and Dyn. Syst. 20 (2000), 1495-1518.
- 8. M. Yuri, Equilibrium states for piecewise invertible systems associated to potentials of weak bounded variation., Preprint.

Yuri: Department of Business Administration, Sapporo University, Nishioka, Toyohira-ku, Sapporo 062, Japan.

E-mail address: yuri@math.sci.hokudai.ac.jp, yuri@mail-ext.sapporo-u.ac.jp