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In this note, we investigate the accumulation of stretching rays on the parabolic
arc Per;(1) for the family of real cubic polynomials. We know that stretching rays
with irrational Bottcher vectors do not land at any point on Per;(1). That is, their
accumulation sets are non-trivial arcs. Here we characterize the accumulation set of
each stretching ray in terms of the Bottcher vector map. As a corollary, it follows
that any point on Per;(1) belongs to the accumulation set of some stretching ray.

1 Stretching rays : general settings

Let P; be the family of monic centered polynomials of degree d > 2. For P € Py,
let .op be its Bottcher coordinate defined in a neighborhood of oco. It satisfies
¢p(P(z)) = pp(z)? and tangent to identity at co. Let hp(2) = log, |pp(z)| be the
Green function for P, which is continued continuously to the whole plane by the
functional equation hp(P(2)) = dhp(z) and is harmonic in C — K(P), the comple-
ment of the filled-in Julia set. Put G(P) = max{hp(w);w is a critical point of P}.
Then ¢p can be continued analytically to Up = {z; hp(z) > G(P)}. For a complex
number u € H, = {u = s+ it € C,s > 0}, put f,(z) = z|z|*"! and we define a
P-invariant almost complex structure o, by -

0. = | (fucpp) oo on Up,
Lo ao on K(P).

Then, by the Measurable Riemann Mapping Theorem, o, is integrated by a qc-map
F, such that P, = F, 0 Po F;! € P;. Since the same theorem says F, depends
holomorphically on u, so does P,. Thus we define a holomorphic map Wp : H, — Py
by Wp(u) = P,. The Bottcher coordinate p, of P, is equal to f, o pp o F;!. This
operation is called wringing. Since P, is hybrid equivalent to P, it holds P, = P
for P € Cg4, the connectedness locus. For P € &4, the escape locus, we define the
stretching ray through P by

R(P)=Wp(R,) = {P;s € Ry}

For example, in case d = 2, stretching rays coincide with the external rays for the
Mandelbrot set.
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2 Stretching rays : special case of real cubic
polynomials

We consider the family of real cubic polynomials in the first quadrant:
P(z) = Pyp(2) = 2° — 342+ VB; A, B > 0.
We investigate the accumulation sets of stretching rays above the parabolic arc :
Peri(1): B=4(A+1/3)}0< A<1/9.

For Q € Per (1), Q has a parabolic fixed point 8y = /A + 1/3 with multiplier 1
and both critical points escape to oo above Per;(1).

We set (p(z) = l_ogll_(;gg_gc;:o(z) and define, for P € £2 (the real shift locus, i.e. the

locus where both critical points escape), the Béttcher vector n(P) by

_ loghp(—V/A) —log hp(VA)

n(P) log 3

= (p(P(—VA)) - (p(P(VA)).

Lemma 2.1 On the stretching ray R(P) through P € E2, n(P,) is invariant.

Thus each stretching ray in the shift locus &7 is a level curve n(P) = n of the
Bottcher vector map P +— n(P), which we denote by R(n). Thus we have an explicit
description of stretching rays in our family and we can draw their pictures.

3 Preliminaries from parabolic implosion

In this section, we introduce some notions from parabolic implosion. For Q €
Per((1), the immediate basin Bg of the parabolic fixed point §g contains both
critical points +v/A and J(Q) = 0B is a Jordan curve. Let ¢g_ and ¢¢g + be the
attracting and repelling Fatou coordinates respectively. They satisfy ¢g + 0 Q(z) =
#¢.+(2z) + 1 in the attracting and repelling petals respectively. Thus, there is an
ambiguity of additive constant. Appropriately normalized, they are assumed to be
symmetric with respect to the real axis. We define the Fatou vector 7(Q) of Q by

7(Q) = da.-(—VA) = do-(VA).
Note that this definition does not depend on the choice of Fatou coordinates. -

Lemma 3.1 The Fatou vector gives a real analytic parametrization of Per;(1),0 <



Let ¢p 4+ be the Fatou coordinates of P € £ above Per;(1) normalized in the
same way. They are continuous up to Per;(1). After perturbation, the gate is
open and the incoming Fatou coordinate ¢p_ can be regarded also as an outgoing
Fatou coordinate and vice versa. Thus ¢p and ¢p_ differ only by an additive
constant. We call this difference 6(P) = ¢p+(2) — ¢p,—(2) the lifted phase and
its class o(P) = {6(P)} = (P) — [6(P)] in C/Z the phase of P. Since all the
mappings are symmetric with respect to the real axis, the lifted phase is always
real. Roughly speaking, minus the lifted phase is the time needed for the orbits of
P to pass through the gate between two fixed points G%.

Lemma 3.2 The lifted phase 6(P,) tends to —oo as s — 0 on a stretching ray.

We also define, for & € C, the Lavaurs map g : Bg — C of lifted phase & by
96 = ¢5,1+ o T5 o ¢g,—, where Tz(w) = w + 6.

Lemma 3.3 Suppose P, — Q € Peri(1) and o(P,) — o € C/Z. Let 6 be any
lift of o. If we take N, — oo satisfying N, + 6(P,) — &, then PN — g5 locally
uniformly on Byg.

Since, in our case, K(Q) is symmetric with respect to the real axis, connected and
locally connected, its image in the repelling Fatou coordinate does not intersect the
real axis. Then it follows gs(£v'A) € C — K(Q). Hence we can define the Béttcher

vector 7(Q, o) with phase o also for @ € Per;(1) :
n(Q.0) = Galgs(—VA)) — Calgs(VA)).

It depends only on the phase and not on the choice of lifted phase. Note that
this definition depends on the choice of Fatou coordinates. In fact, if we add some
constants to them, this changes the phase. This causes some difficulty in the next
section. We define the o-impression I,,(o) of R(n) by the set of points Q € Per (1)
such that there exists P, € R(n) satisfying P, — Q and o(P,) — 0. Apparently
the accumulation set I(n) = R(n) — R(n) of R(n) is the union of all I,(c),0 € R/Z.
By Lemma 3.3, it easily follows:

Lemma 3.4 Under the same assumptions as in Lemma 3.3, n(P,) — n(Q,0).
Consequently, we have I,(c) C {Q € Per,1(1);n(Q,0) = n}.

We will show that the inclusion above actually is an identity.

4 Accumulation sets of stretching rays
In the last conference, we have shown the following.

Theorem 4.1 Suppose 1 is irrational. Then the stretching ray R(n) does not land
on Per,(1). Hence its accumulation set I(n) is a non-trivial arc on Per;(1).

28



Figure 1: Non-landing stretching rays

In this section, we will characterize the sets I,(0) and I(n) in terms of the
Béttcher vector map n(Q, o). Note that the map 7(Q, o) and the set I,(0) depend
on the choice of Fatou coordinates. ' :

Proposition 4.1 I,(c) = {Q € Peri(1);n(Q, o) = n}.
As a corollary, we have

Corollary 4.1 R(n) accumulates at Q if and only if n € n(Q,R/Z). Consequently,
for any Q € Per\(1), there exist at least one stretching rays accumulating at Q.

John Milnor drew pictures of non-landing stretching rays, found that their oscil-
lation is extremely regular and suggested the problems whether the set I,,(o) consists
of a single point and whether it depends continuously on 7 and o. See Figure 1.
Counsidering Proposition 4.1, these are true if and only if the map Q — 7(Q, o) is
monotone increasing for any o.

The proof of Proposition 4.1 relies on the following.

Lemma 4.1 Fiz o and suppose Qg € I, a connected component of Pery(1)—7"Y(Z),
satisfics N(Qo, o) = mo. Then there exists a normalization of Fatou coordinates such
that the map Q +— 7(Q.0) in these new Fatou coordinates is monotone increasing
on I and 77(Qo,0) = 1.

The proof of Lemma 4.1 is done by qc-deformation of the Bottcher vectors just
as for the proof of Lemma 3.1. But the conclusion is somewhat different: we have to
lose the freedom of additive constant for Fatou coordinates, since Bottcher vectors
depend on the choice of Fatou coordinates. In Lemma 4.1, the normalization of
Fatou coordinates depends on ¢. So we have not solved above problems yet.

proof. Suppose 19 € (k,k + 1) for some k € Z. Let R = ¢q,(900.0(1/AQo))
and, on the annulus R < |z| < R? in the Bottcher coordinate, we take a gc-map
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¢ = ¢, such that it changes only radial coordinates, maps 7o to 7 mod Z in the (-
coordinate for any n € (k,k + 1) and is identity on the boundary. We can extend
it to the complement of the closed unit disk so that it commutes with z +— 2°.
Then o, = ¢g,0* 00 is Qo-invariant in the complement of K (Qo). Pulling it back
by gg,.0, We extend it also inside K(Qo). Actually it extends to the complement of
K(Qo,0) = J(Qo,0), the set of points which do not escape by Qo and G, ., and
J(Qo, o) has measure 0. Let x = x, be the qc-map integrating o, so that Q, =

x©oQoox! € Per,(1). Its Bottcher coordinate is expiessed by ¢q, = €0 g, o XL

We normalize the attracting Fatou coordinate by ¢g_(y/Ag) = 0, which is

preserved under qc-deformation and repelling Fatou coordinates by ¢3Q‘+(¢51(R)) =

o. Then qga‘l*_(a) = cp{?l(R) is preserved under the above qc-deformation since R is
fixed by €. If n = o, Q,, = Qo and we have

B0+ (PE (R) = B0t (9000 (y/A0)) = To(beo—(y/Aqn)) = T»(0) = 0.

Hence the original Fatou coordinate ¢¢g, + for Qo coincides with CISQO,+-

We show 7j(Q, o) = n. In order that, we have only to show g = x © gg,.c © X~
is equal to the Lavaurs map gq, o of Q.

Since o, is, by definition, gg,c-invariant, g is holomorphic. Then T = J)QU& o
go q§a11'_ is a holomorphic map from attracting petal to the repelling petal. It
easily follows that T commutes with 7;. Then T induces a cylinder isomorphism
from the attracting cylinder onto the repelling one, hence is a translation. Next we
show T = T,, which completes the proof. The critical point VA is preserved by
qc-map x and takes 0 in the attracting Fatou coordinate. On the other hand, the
value q~55}+(0) is preserved by x. When n = n9, T = T, maps 0 = 60— (\/Ag,) to
o= $Q0,+(<p5;(R)). Hence, this is true also for any n and we have T' = T, for any
n. O

The proof of Proposition 4.1 is now easy. We have only to show {Q € Per,(1);
n(Q,0) = n} C L,(o). Suppose n(Qo,0) = no. We apply Lemma 4.1. Then the
map Q — 7(Q, o) for the new Fatou coordinates is monotone increasing. Let P, be
a sequence on R(np) satisfying P, — @, and o(P,) — o with respect to the new
Fatou coordinates. Then 7(Q,, ) = no. Since @ — 7(Q, o) is monotone, this implies
Q1 = Qo and we have I,,,(¢) = {Qo}. Since the repelling Fatou coordinates coincide
at Qo in both normalization, it follows, by the following Lemma 4.2, Qo € Iy, (o) in
the original normalization. This completes the proof of Proposition 4.1. O

Take two Fatou coordinates ¢}, and ¢% . for P. They differs only by constants
: ¢% . (2) — ¢b1(2) = dp+ depending on P. Hence their lifted phases satisfy

1

G2(P) = ¢3’.+(Z) - ‘ﬁ%—(z) = 51(P) + 6p+ — Op,—.
And, if P, — @ and o,(P,) — 0,, we have

02(P,) = 01(P,) + 6p, + = Op, - = 02 =01+ 0g+ —bg- (mod Z).
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Lemma 4.2 Denote the corresponding impressions by I}(01) and I3(02). If Q €
I}(01), then Q € I%(02). Especially, if 5+ = 0, then a3 = 01 and Q € I3(0y) if
and only if Q € I(ay). -
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