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In this note, we investigate the accumulation of stretching rays on the parabolic
arc $Per_{\mathit{1}}(1)$ for the family of real cubic polynomials. We know that stretching rays
with irrational B\"ottcher vectors do not land at any point on $Per_{1}(1)$ . That is, their
accumulation sets are non-trivial arcs. Here we characterize the accumulation set of
e.arll stretching ray in terms of the Bottcher vector map. As acorollary, it follows
that any point on $Per_{1}(1)$ belongs to the accumulation set of some stretching ray.

1Stretching rays :general settings
Let $P_{d}$ be the family of monic centered polynomials of degree $d\geq 2$ . For $P\in 7_{d}^{\supset}$ ,
$1\mathrm{e}\mathrm{t}.\varphi_{P}$ be its Bottcher coordinate defined in aneighborhood of $\infty$ . It satisfies
$\varphi_{P}(P(z))=\varphi_{P}(z)^{d}$ and tangent to identity at $\infty$ . Let $h_{P}(z)=\log_{+}|\varphi_{P}(\approx)|$ be the
Grien function for $P$ , which is continued continuously to the whole plal\‘ie by the
functional equation $h_{P}(P(z))=dh_{P}(z)$ and is harmonic in $\mathrm{C}-K(P)$ , tllc comple-
ment of the filled-in Julia set. Put $G(P)= \max${ $h_{P}(\omega);\omega$ is acritical point of $P$ }.
Then $\varphi_{P}$ can be continued analytically to $U_{P}=\{z; h_{P}(z)>G(P)\}$ . For acomplex
number $u\in H_{+}=\{u=s+it\in \mathrm{C}, s>0\}$ , put $f_{u}(z)$ $=z|z|^{u-1}$ and we define a
$P$-invariant almost complex structure $\sigma_{u}$ by

$\sigma_{u}=\{$

$(f_{u}\mathrm{o}\varphi_{P})^{*}\sigma_{0}$ on $U_{P}$ ,
$\sigma_{0}$ on $K(P)$ .

Then, by the Measurable Riemann Mapping Theorem, $\sigma_{u}$ is integrated by aqc-map
$F_{u}$ such that $P_{u}=F_{u}\circ P\circ F_{u}^{-1}\in P_{d}$ . Since the same theorem says $F_{u}$ depends
holomorphically on $u$ , so does $P_{u}$ . Thus we define aholomorphic map $W_{P}$ : $H_{+}arrow P_{d}$

by $W_{P}(u)=P_{u}$ . The B\"ottcher coordinate $\varphi_{P_{u}}$ of $P_{u}$ is equal to $f_{u}\circ\varphi_{P}\circ F_{u}^{-1}$ . This
operation is called wringing. Since $P_{u}$ is hybrid equivalent to $P$ , it holds $P_{u}\equiv P$

for $P\in \mathrm{C}_{d}$ , the connectedness locus. For $P\in \mathcal{E}_{d}$ , the escape locus, we define the
stretching ray through $P$ by

$R(P)=W_{P}(\mathrm{R}_{+})=\{P_{s};s\in \mathrm{R}_{+}\}$ .
For example, in case $d=2$ , stretching rays coincide with the external rays for the
Mandelbrot set
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2 Stretching rays :special case of real cubic
polynomials

We consider the family of real cubic polynomials in the first quadrant:

$P(z)=P_{A,B}(z)=z^{3}-3Az+\sqrt{B};A$ , $B>0$ .

We investigate the accumulation sets of stretching rays above the parabolic arc :

$Per_{1}(1)$ : $B=4(A+1/3)^{3};0\leq A\leq 1/9$ .

For $Q\in Per_{1}(1)$ , $Q$ has aparabolic fixed point $\beta_{Q}=\sqrt{A+1/3}$ with multiplier 1
and both critical points escape to $\infty$ above $Per_{1}(1)$ .

We set $\zeta_{P}(z)=\underline{\log\log\varphi_{P}(z)}$ and define, for $P\in \mathcal{E}_{3}^{2}$ (the real shift locus, i.e. the
$\log 3$

locus where both critical points escape), the Bottcher vector $\eta(P)$ by

$\eta(P)=.\frac{\log h_{P}(-\sqrt{A})-\log h_{P}(\sqrt{A})}{1\mathrm{o}\mathrm{g}3}.=\zeta_{P}(P(-\sqrt{A}))-\zeta_{P}(P(\sqrt{A}))$ .

Lemma 2.1 On the stretching ray $R(P)$ through $P\in \mathcal{E}_{3}^{2}$ , $\eta(P_{s})$ is invariant.

Thus each stretching ray in the shift locus $\mathcal{E}_{3}^{2}$ is alevel curve $\eta(P)=\eta$ of the
Bottcher vector map $P\mapsto\eta(P)$ , which we denote by $R(\eta)$ . Thus we have an explicit
description of stretching rays in our family and we can draw their pictures.

3Preliminaries from parabolic implosion
In this section, we introduce some notions from parabolic implosion. For $Q\in$

$Per_{1}(1)$ , the immediate basin $B_{Q}$ of the parabolic fixed point $\beta_{Q}$ contains both
critical points $\pm\sqrt{A}$ and $J(Q)=\partial B_{Q}$ is aJordan curve. Let $\phi_{Q,-}$ and $\phi_{Q,+}$ be the
attracting and repelling Fatou coordinates respectively. They satisfy $\phi_{Q,\pm}\circ Q(z)=$

$\phi_{Q.\pm}(z)+1$ in the attracting and repelling petals respectively. Thus, there is an
ambiguity of additive constant. Appropriately normalized, they are assumed to be
sy mnetric with respect to the real axis. We define the Fatou vector $\tau(Q)$ of $Q$ by

$\tau(Q)=\phi_{Q,-}(-\sqrt{A})-\phi_{Q,-}(\sqrt{A})$ .

Note that this definition does not depend on the choice of Fatou coordinates.

Lemma 3.1 The Fatou vector gives a real analytic parametr ization of $Per_{1}(1)$ , $0<$
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Let $\phi_{P,\pm}$ be the Fatou coordinates of $P\in \mathcal{E}_{3}^{R}$ above $Per_{1}(1)$ normalized in the
same way. They are continuous up to $Per_{1}(1)$ . After perturbation, the gate is
open and the incoming Fatou coordinate $\phi_{P,-}$ can be regarded also as an outgoing
Fatou coordinate and vice versa. Thus $\phi_{P,+}$ and $\phi_{P,-}$ differ only by an additive
constant. We call this difference $\tilde{\sigma}(P)=\phi_{P,+}(z)-\phi_{P,-}(z)$ the lifted phase and
its class $\sigma(P)=\{\tilde{\sigma}(P)\}\equiv\tilde{\sigma}(P)-[\tilde{\sigma}(P)]$ in $\mathrm{C}/\mathrm{Z}$ the phase of $P$ . Since all the
mappings are symmetric with respect to the real axis, the lifted phase is always
real. Roughly speaking, minus the lifted phase is the time needed for the orbits of
$P$ to pass through the gate between two fixed points $\beta_{P}^{\pm}$ .

Lemma 3.2 The lifted phase $\tilde{\sigma}(P_{s})$ tends $to-\infty$ as $sarrow \mathrm{O}$ on a stretching ray.

We also define, for $\tilde{\sigma}\in \mathrm{C}$ , the Lavaurs map ga : $B_{Q}arrow \mathrm{C}$ of lifted phase $\tilde{\sigma}$ by
$g_{\overline{\sigma}}=\phi_{Q,+}^{-1}\circ T_{\overline{\sigma}}\circ\phi_{Q,-}$, where $T_{\overline{\sigma}}(w)=w+\tilde{\sigma}$.

Lemma 3.3 Suppose $P_{n}arrow Q\in Per_{1}(1)$ and $\sigma(P_{n})arrow\sigma\in \mathrm{C}/\mathrm{Z}$ . Let $\tilde{\sigma}$ be any
lift of $\sigma$ . If we take $N_{n}arrow \mathrm{o}\mathrm{o}$ satisfying $N_{n}+\tilde{\sigma}(P_{n})arrow\tilde{\sigma}$, then $P_{n}^{N_{n}}arrow g_{\overline{\sigma}}$ locally
unifomly on $B_{Q}$ .

Since, in our case, $K(Q)$ is symmetric with respect to the real axis, connected and
locally connected, its image in the repelling Fatou coordinate does not intersect tlle
real axis. Then it follows $g_{\overline{\sigma}}(\pm\sqrt{A})\in \mathrm{C}-K(Q)$ . Hence we can define the Bottcher
vector $\eta(Q, \sigma)$ with phase $\sigma$ also for $Q\in Per_{1}(1)$ :

$\eta(Q, \sigma)=\zeta_{Q}(g_{\overline{\sigma}}(-\sqrt{A}))-\zeta_{Q}(g_{\overline{\sigma}}.(\sqrt{A}))$.

It depends only on the phase and not on the choice of lifted phase. Note that
this definition depends on the choice of Fatou coordinates. In fact, if we add some
constants to them, this changes the phase. This causes some difficulty in the next
section. We define the $\sigma$ -impression $I_{\eta}(\sigma)$ of $R(\eta)$ by the set of points $Q\in Per_{1}(1)$

such that there exists $P_{n}\in R(\eta)$ satisfying $P_{n}arrow Q$ and $\sigma(P_{n})arrow\sigma$ . Apparently
the accumulation set $I(\eta)=\overline{R(\eta)}-R(\eta)$ of $R(\eta)$ is the union of all $I_{\eta}(\sigma)$ , $\sigma\in \mathrm{R}/\mathrm{Z}$ .
By Lemma 3.3, it easily follows:

Lemma 3.4 Under the same assumptions as in Lemma 3.3, $\eta(P_{n})arrow\eta(Q, \sigma)$ .
Consequently, we have $I_{\eta}(\sigma)\subset\{Q\in Per_{1}(1);\mathrm{K}(\mathrm{Q})\sigma)=\eta\}$ .

We will show that the inclusion above actually is an identity.

4Accumulation sets of stretching rays
In the last conference, we have shown the following.

Theorem 4.1 Suppose $\eta$ is $i$ rational. Then the stretching ray $R(\eta)$ does not land
on $Per_{1}(1)$ . Hence its accumulation set $I(\eta)$ is a non-trivial arc on $Per_{1}(1)$ .
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Figure 1: Non-landing stretching rays

In this section, we will characterize the sets $I_{\eta}(\sigma)$ and $I(\eta)$ in terms of the
Bottcher vector map $\eta(Q, \sigma)$ . Note that the map $\eta(Q, \sigma)$ and the set $I_{\eta}(\sigma)$ depend
on the choice of Fatou coordinates.

Proposition 4.1 $I_{\eta}(\sigma)=\{Q\in Per_{1}(1);\eta(Q, \sigma)=\eta\}$ .

As acorollary, we have

Corollary 4.1 $R(\eta)$ accumulates at $Q$ if and only if $\eta\in\eta(Q, \mathrm{R}/\mathrm{Z})$ . Consequently,
for any $Q\in Per_{1}(1)$ , there exist at least one stretching rays accumulating at $Q$ .

John Milnor drew pictures of non-landing stretching rays, found that their oscil-
lation is extremely regular and suggested the problems whether the set $I_{\eta}(\sigma)$ consists
of asingle point and whether it depends continuously on $\eta$ and $\sigma$ . See Figure 1.
Considering Proposition 4.1, these are true if and only if the map $Q\mapsto\eta(Q, \sigma)$ is
monotone increasing for any $\sigma$ .

Tlle proof of Proposition 4.1 relies on the following.

Lemma 4.1 Fix aand suppose $Q_{0}\in I$ , a connected component of $Per_{1}(1)-\tau^{-1}(\mathrm{Z})$ ,
satisfies $\eta(Q_{0}, \sigma)=\eta_{0}$ . Then there exists a normalization of Fatou coordinates such
that the map $Q\mapsto\tilde{\eta}(Q, \sigma)$ in these new Fatou coordinates is monotone increasing
on I and $\mathrm{f}\mathrm{j}(\mathrm{Q}0, \sigma)=\eta_{0}$ .

The proof of Lemma 4.1 is done by $\mathrm{q}\mathrm{c}$-deformation of the Bottcher vectors just
as for the proof of Lemma 3.1. But the conclusion is somewhat different: we have to
lose the freedom of additive constant for Fatou coordinates, since B\"ottcher vectors
depend on the choice of Fatou coordinates. In Lemma 4.1, the normalization of
Fatou coordinates depends on $\sigma$ . So we have not solved above problems yet.

proof Suppose $\eta_{0}\in(k, k+1)$ for some $k\in \mathrm{Z}$ . Let $R=\varphi_{Q_{0}}(g_{Q_{0},\sigma}(\sqrt{A_{Q_{0}}}))$

and, $()\mathrm{n}$ the annulus $R\leq|z|\leq R^{3}$ in the B\"ottcher coordinate, we take aqc-ma
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$l=\ell_{\eta}$ such that it changes only radial coordinates, maps $\eta_{0}$ to $\eta$ mod $\mathrm{Z}$ in the (-

coordinate for any $\eta\in(k, k+1)$ and is identity on the boundary. We can extend
it to the complement of the closed unit disk so that it commutes with $z\mapsto z^{3}$ .
Then $\sigma_{\eta}=\varphi_{Q_{0}}^{*}\ell^{*}\sigma_{0}$ is $Q_{0}$-invariant in the complement of $K(Q_{0})$ . Pulling it back
by $g_{Q_{0},\sigma}$ , we extend it also inside $K(Q_{0})$ . Actually it extends to the complement of
$K(Q_{0}, \sigma)=J(Q_{0}, \sigma)$ , the set of points which do not escape by $Q_{0}$ and $G_{Q\mathrm{o},\sigma}$ and
$J(Q_{0}, \sigma)$ has measure 0. Let $\chi=\chi_{\eta}$ be the $\mathrm{q}\mathrm{c}$-map integrating $\sigma_{\eta}$ so that $Q_{\eta}=$

$\chi \mathrm{o}Q_{0}\circ\chi^{-1}\in Per_{1}(1)$ . Its Bottcher coordinate is expressed by $\varphi_{Q_{\eta}}=\ell\circ\varphi_{Q_{0}}\circ\chi^{-1}$ .

We normalize the attracting Fatou coordinate by $\tilde{\phi}_{Q,-}(\sqrt{A_{Q}})=0$ , which is

preserved under $\mathrm{q}\mathrm{c}$-deformation and repelling Fatou coordinates by $\tilde{\phi}Q,+(\varphi_{Q}^{-1}(R))=$

$\sigma$ . Then $\tilde{\phi}_{Q,+}^{-1}(\sigma)=\varphi_{Q}^{-1}(R)$ is preserved under the above $\mathrm{q}\mathrm{c}$-deformation since $R$ is
fixed by $\ell$ . If $\eta=\eta_{0}$ , $Q_{r\mathfrak{p}}=Q_{0}$ and we have

$\tilde{\phi}_{Q\mathrm{o},+}(\varphi_{Q_{0}}^{-1}(R))=\overline{\phi}_{Q_{0\backslash }+}(g_{Q_{0},\sigma}(\sqrt{A_{Q_{0}}}))=T_{\sigma}(\tilde{\phi}_{Q_{0},-}(\sqrt{A_{Q_{0}}}))=T_{\sigma}(0)=\sigma$.

Hence the original Fatou coordinate $\phi_{Q_{0}.+}$ for $Q_{0}$ coincides with $\tilde{\phi}Q_{0}.+\cdot$

We show $\tilde{\eta}(Q_{\eta}, \sigma)=\eta$ . In order that, we have only to show $g=\chi \mathrm{o}gQ_{()_{\backslash }}\sigma\circ\chi^{-1}$

is equal to the Lavaurs nldl) $gQ_{\eta},\sigma$ of $Q_{\eta}$ .
Since $\sigma_{\eta}$ is, by definition, $g_{Q_{0},\sigma}$ -invariant, $g$ is holomorphic. Then $T=\tilde{\phi}_{Q_{1},+}.\circ$

$g\circ\tilde{\phi}_{Q_{1},-}^{-1}$, is aholomorphic 11tap ffom attracting petal to the repelling petal. It
easily follows that $T$ commutes with $T_{1}$ . Then $T$ induces acylinder $\mathrm{i}_{\iota}\mathrm{S}0111\mathrm{o}\mathrm{r}\mathrm{p}11\mathrm{i}\mathrm{s}\mathrm{n}1$

from the attracting cylinder onto the repelling one, hence is atranslation. Next we
show $T=T_{\sigma}$ , which completes the proof. The critical point $\sqrt{A}$ is preserved by
$\mathrm{q}\mathrm{c}$ map $\chi$ and takes 0in the attracting Fatou coordinate. On the other hand, the
value $\overline{\phi}_{Q,+}^{-1}(\sigma^{)}$, is preserved by $\chi$ . When $\eta=\eta_{0}$ , $T=T_{\sigma}$ maps $0=\tilde{\phi}_{Q_{0},-}(\sqrt{A_{Q\mathrm{o}}})$ to
$\sigma=\tilde{\phi}_{Q\mathrm{o},+}(\varphi_{Q_{0}}^{-1}(R))$ . Hence, this is true also for any $\eta$ and we have $T=T_{\sigma}$ for any
$\eta$ . Cl

The proof of Proposition 4.1 is now easy. We have only to show { $Q\in Per_{1}(1)$ ;
$\eta(Q, \sigma)=\eta_{0}\}\subset I_{\eta 0}(\sigma)$ . Suppose $\eta(Q_{0}, \sigma)=\eta_{0}$ . We apply Lemma 4.1. Then the
map $Q\mapsto\tilde{\eta}(Q, \sigma)$ for the new Fatou coordinates is monotone increasing. Let $P_{n}$ be
asequence on $R(\eta_{0})$ satisfying $P_{n}arrow Q_{1}$ and $\sigma(P_{n})arrow\sigma$ with respect to the new
Fatou coordinates. Then $\tilde{\eta}(Q_{1}, \sigma)=\eta_{0}$ . Since $Q\mapsto\tilde{\eta}(Q, \sigma)$ is monotone, this $\mathrm{i}\mathrm{m}\mathrm{l}$ )lies

$Q_{1}=Q_{0}$ and we have $\tilde{I}_{\gamma}(h\sigma)=\{Q_{0}\}$ . Since the repelling Fatou coordinates coincide
at $Q_{0}$ in both normalization, it follows, by the following Lemma 4.2, $Q\mathrm{o}\in I_{m\mathrm{J}}(\sigma)$ in
the original normalization. This completes the proof of Proposition 4.1. $\square$

Take two Fatou coordinates $\phi_{P,\pm}^{1}$ and $\phi_{P,\pm}^{2}$ for $P$ . They differs only by constants
: $\phi_{P,\pm}^{2}(z)-\phi_{P,\pm}^{1}(z)=\delta_{P.\pm}$ depending on $P$ . Hence their lifted phases satisfy

a2 $(P)=\phi_{P,+}^{2}(z)-\phi_{P,-}^{2}(z)=\tilde{\sigma}_{1}(P)+\delta_{P,+}-\delta_{P,-}$ .

And, if $P_{n}arrow Q$ and $\sigma_{1}(P_{n})arrow\sigma_{1}$ , we have

$\sigma_{2}(P_{n})=\sigma_{1}(P_{n})+\delta_{P_{n},+}-\delta_{P_{n},-}arrow\sigma_{2}\equiv\sigma_{1}+\delta_{Q,+}-\delta_{Q,-}$ (mod $\mathrm{Z}$ ).
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Lemma 4.2 Denote the cor responding impressions by
$I_{\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}((7_{\mathrm{t}}^{\ovalbox{\tt\small REJECT}})$, then QE $I\ovalbox{\tt\small REJECT}(\mathrm{a}_{2})$ . Especially, $i\ovalbox{\tt\small REJECT}$ ($5_{Q},.$ $\ovalbox{\tt\small REJECT}$ 0, then

,7

and only $i\ovalbox{\tt\small REJECT}$ Q6 $I_{\ovalbox{\tt\small REJECT}}\mathrm{S}(\mathrm{c}\mathrm{r}_{1})$ .

$I_{\ovalbox{\tt\small REJECT}}:(\mathrm{a}.)$ and $I\ovalbox{\tt\small REJECT} 7(\mathrm{a}_{2})$ . If Q $E$

($\mathrm{r}_{2}\ovalbox{\tt\small REJECT}$ ($\mathrm{r}_{1}$ and QE $\# 7\ovalbox{\tt\small REJECT}$ (a2) $i\ovalbox{\tt\small REJECT}$
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