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ABSTRACT. We define triangulated piece wise linear constant mean curvature
surfaces using avariational characterization, so that they are critical for area
amongst continuous piece wise linear variations which preserve the boundary
and simplicial structure and also (in the nonminimal case) the volume to one
side of the surface. We then find explicit examples, such as discrete minimal
catenoids and helicoids.

We use these discretized surfaces to study the index of unstable minimal
surfaces, by numerically evaluating the spectrum of their Jacobi operators,
and this approach deviates from other numerical investigations in that we use
avariational characterization to define the discrete approximating surfaces.
Our numerical estimates confirm known results on the index of some smooth
minimal surfaces, and provide additional information regarding their area-
reducing variations.

1. INTRODUCTION

Smooth submanifolds, and surfaces in particular, with constant mean curvature
(CMC) have along history of study, and modern work in this field relies heavily on
geometric and analytic machinery which has evolved over hundreds of years. How-
ever, nonsmooth surfaces are also natural mathematical objects, even though there
is less machinery available for studying them. (Consider M. Gromov’s approach of
doing geometry using only aset with ameasure and ameasurable distance function
[8].)

Here we consider piecewise-linear triangulated surfaces (we call them “discrete
surfaces”), which have been brought more to the forefront of geometrical research
by computer graphics. We define $\mathrm{C}\mathrm{M}\mathrm{C}$ for discrete surfaces in $\mathbb{R}^{3}$ so that they are
critical for volume-preserving variations, just as smooth $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces are. Discrete
$\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces have both interesting differences from and similarities with smooth
ones. For example, they are different in that smooth minimal graphs in $\mathbb{R}^{3}$ over a
bounded domain are stable, whereas discrete minimal graphs can be highly unsta-
ble. We will explore properties like this in section 2.

And in section 3we will see some ways in which these two types of surfaces are
similar. We will see that: adiscrete catenoid has an explicit description in terms
of the hyperbolic cosine function, just as the smooth catenoid has; and adiscrete
helicoid can be described with the hyperbolic sine function, just as aconformally
parametrized smooth helicoid is; and there are discrete Delaunay surfaces which
have translational periodicities, just as smooth Delaunay surfaces have.

Pinkall and Polthier [16] used Dirichlet energy and anumerical minimization
procedure to find discrete minimal surfaces. In this work, we rather have the goal to
describe discrete minimal surfaces as explicitly as possible, and thus we are limite$\mathrm{d}$
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to the more fundamental examples, for example the discrete minimal catenoid and
helicoid. We note that these explicit descriptions will be useful for implementing a
procedure that we describe in the next paragraphs.

Discrete surfaces have an advantage over smooth ones in the following way:
Function spaces representing smooth variations of smooth surfaces are infinite di-
mensional, and hence the study of linear operators on these spaces is often very
difficult. In particular, it is often difficult to get explicit information about the
spectra of such operators. However, the function spaces of variations of discrete
surfaces contain piece-wise linear functions and are finite dimensional, and linear
operators then reduce to matrices. So the discrete case is much easier to handle.

This suggests that an useful procedure for studying the spectra of the linear Ja-
cobi operator in the second variation formula of smooth $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces is to consider
the corresponding spectra of discrete $\mathrm{C}\mathrm{M}\mathrm{C}$ approximating surfaces. (This is strongly
related to the finite element method in numerical analysis; however, in our case the
finite element approximations will have geometric and variational meaning in their
own right.) As aparticular example of this, consider that aproblem of interest
is to find the index (the number of negative points in the spectrum) of asmooth
minimal surface, and that the standard approach to this problem is to replace the
metric of the surface with the metric obtained by pulling back the spherical metric
via the Gauss map. This approach can yield the index: for example, the index of
acomplete catenoid is 1([6]), the index of acomplete Enneper surface is 1([6]),
the index of acomplete Jorge-Meeks $n$-noid is $2n-3([11], [10])$ and the index of
acomplete genus $k$ a-Hoffman-Meeks surface is $2k+3$ for every $k\leq 37([13]$ ,
[12] $)$ . However, this approach does not yield the eigenvalues and eigenfunctions on
compact portions of the original minimal surfaces, as the metric has been changed.
It would be interesting to know the eigenfunctions associated to negative eigen-
values, since these represent the directions of variations that reduce area, and the
above procedure can provide this information.

In sections 4and 6we establish some tools for studying the spectrum of discrete
$\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces, and then we test the above procedure on two simple cases-a(mini-
mal) rectangle, and aportion of asmooth minimal catenoid bounded by two circles.
In these two cases we know the spectra of the smooth surfaces (section 5), and we
know approximating discrete $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces as well (section 3), so we can check that
the above procedure produces good approximations for the eigenvalues and smooth
eigenfunctions (section 7), which indeed must be the case, by the theory of the fi-
nite element method [3], [7]. With these successful tests, we go on to consider cases
where we do not apriori know what the smooth eigenfunctions should be, such as
the Jorge-Meeks 3-noid and the genus 1Costa surface (section 7).

We note that the above procedure can also be implemented using discrete ap-
proximating surfaces which are found only numerically and not explicitly, such as
surfaces found by the method in [16]. And in fact, we use the method in [16] to
find approximating surfaces for the 3-noid and Enneper surface and Costa surface.

2. DISCRETE MINIMAL AND CMC SURFACES

We start with avariational characterization of discrete minimal and discrete $\mathrm{C}\mathrm{M}\mathrm{C}$

surfaces. This characterization will allow us to construct explicit unstable discrete
$\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces. (Note that merely finding minima for area with respect to avolume
constraint would not suffice for this, as that would produce only stable examples.
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FIGURE 1

We will use $\mathrm{C}\mathrm{M}\mathrm{C}$ discrete surfaces that are unstable for our later numerical spectra
computations.

The following definition for discrete surfaces works equally well for surfaces in
$\mathbb{R}^{n}$ , but, as our constructions will all be in $\mathbb{R}^{3}$ , we restrict to this space.

Definition 2.1. $A$ discrete surface in $\mathbb{R}^{3}$ is a triangular mesh $\mathcal{T}$ which has the
topology of an abstract 2-dimensional simplicial complex $K$ combined with a ge0-
metric $C^{0}$ -surface realization in $\mathbb{R}^{3}$ . The geornetric realization $|K|$ is later mined
by a set of vertices $\mathcal{V}=\{p_{1}, \ldots,p_{n}\}\subset \mathbb{R}^{3}$ , and $\mathcal{T}$ can be identified with the pair
$(K, \mathcal{V})$ . The simplicial complex $K$ represents the connectivity of the mesh. The 0,
1and 2dimensional simplices of $K$ represent the vertices, edges, and triangles of
the discrete surface.

Let $T=(p, q, r)$ denote an oriented triangle of $\mathcal{T}$ with vertices $p$ , $q$ , $r\in \mathcal{V}$ . Let
$pq$ denote an edge of $T$ with endpoints $p$ , $q\in V$ .

For $p\in V$ , let star(p) denote the triangles of $\mathcal{T}$ that contain $p$ as a vertex. For
an edge $\overline{pq}$, let star(pq) denote the (at most two) triangles of $\mathcal{T}$ that contain $\overline{pq}$ as
an edge.

The area of adiscrete surface is

area(T) $:= \sum$ area $T$ ,
$T\in \mathcal{T}$

where area $T$ denotes the area of the triangle $T$ as asubset of $\mathbb{R}^{3}$ .

Definition 2.2. Let $V=\{p_{1}, \ldots,p_{n}\}$ be the set of vertices of a discrete surface $\mathcal{T}$ .
$A$ variation $\mathcal{T}(t)$ of $\mathcal{T}$ is defined as a $C^{2}$ variation of the vertices $p_{*}$

.

$p_{\dot{*}}(t)$ : $[0, \epsilon)arrow \mathbb{R}^{3}$ so that Pi (0) $=p:\forall i=1$ , $\ldots$ , $n$ .

The straightness of the edges and the flatness of the triangles are preserved as the
vertices move.
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In the smooth situation, when the boundary is fixed, the variation space is typ-
ically restricted to normal variations, since the tangential parts of the variations
only perform reparametrizations of the surfaces in the variations. However, on dis-
crete surfaces there is an ambiguity in the choice of normal vectors at the vertices,
so we allow arbitrary variations. But we will later see (section 7) that our experi-
mental results can accurately estimate normal variations of asmooth surface when
the discrete surface is aclose approximation to the smooth surface.

In the following we derive the evolution equations for some basic entities under
surface variations.

Let $\mathcal{T}(t)$ be avariation of adiscrete surface $\mathcal{T}$ . At each vertex $p$ of $\mathcal{T}$ , the
gradient of area is

(1) $\nabla_{p}$ area $\mathcal{T}=\frac{1}{2}\sum_{T=(p,q,r)\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}p}J(r-q)$ ,

where $J$ is rotation of angle $\frac{\pi}{2}$ in the plane of each oriented triangle $T$ . The first
derivative of the surface area is then given by the chain rule

$\frac{d}{dt}$ area
$\mathcal{T}=\sum_{p\in \mathcal{V}}$

$\langle p’$ : $\nabla_{p}$ area $\mathcal{T}\rangle$ .

The volume of the surface is the oriented volume enclosed by the cone of the surface
over the origin in $\mathbb{R}^{3}$

$\mathrm{v}\mathrm{o}\mathrm{l}\mathcal{T}:=\frac{1}{6}\sum_{T=(p,q,r\rangle\in \mathcal{T}}\langle p,q\cross r\rangle=\frac{1}{3}\sum_{T=(p,q,r)\in \mathcal{T}}\langle\overline{N},p\rangle$
. area $T$ ,

where $p$ is any of the three vertices of the triangle $T$ and

$\overline{N}=\frac{(q-p)\cross(r-p)}{|(q-p)\cross(r-p)|}$

is the oriented normal of $T$. It follows that
(2)

$\nabla_{p}\mathrm{v}\mathrm{o}\mathrm{l}\mathcal{T}=\frac{1}{6}\sum_{T=(p,q,r)\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}p}q\mathrm{x}r=\frac{1}{6}\sum_{T=(p,q,r)\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}p}2$
. area $T\cdot\vec{N}+p\cross(r-q)$

and

$\frac{d}{dt}\mathrm{v}\mathrm{o}\mathrm{l}\mathcal{T}=\sum_{p\in \mathcal{V}}\langle p’, \nabla_{p}\mathrm{v}\mathrm{o}\mathrm{l}\mathcal{T}\rangle$ .

Note that if $p$ is an interior vertex, then the boundary of star $p$ is closed and
$\sum_{T\in 8\mathrm{t}\mathrm{a}\mathrm{r}p}p\mathrm{x}(r-q)=0$ disappears from $\nabla_{p}\mathrm{v}\mathrm{o}\mathrm{l}\mathcal{T}$ .

In the smooth case, aminimal surface is critical with respect to area for any
variation that fixes the boundary, and a $\mathrm{C}\mathrm{M}\mathrm{C}$ surface is critical with respect to area
for any variation that preserves volume and fixes the boundary. We wish to define
discrete $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces so that they have the same variational properties for the same
types of variations. So we will consider variations $\mathcal{T}(t)$ of $\mathcal{T}$ that fix the boundary
$\partial \mathcal{T}$ and that additionally preserve volume in the nonminimal case, which we call
permissible variations. The condition that makes adiscrete surface area-critical for
any permissible variation is expressed in the following definition
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Definition 2.3. A discrete surface has constant mean curvature (CMC) if there
exists a constant $H$ so that $\nabla_{p}$ area $=H\nabla_{p}\mathrm{v}\mathrm{o}\mathrm{l}$ for all interior vertices $p$ . If $H=0$
then it is minimal.

This definition for discrete minimality has been used in [16]. In contrast, our
definition of discrete $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces differs from [14], where $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces are char-
acterized algorithmically using discrete minimal surfaces in $S^{3}$ and aconjugation
transformation. Compare also [2] for adefinition via discrete integrable systems
which lacks variational properties.

2.0.1. Uniqueness of Discrete Minimal Disks. Uniqueness of abounded minimal
surface with agiven boundary ensures that it is stable, and uniqueness can some-
times be decided using the maximum principle of elliptic equations. For example,
the maximum principle ensures that aminimal surface is contained in the convex
hull of its boundary, and, if the boundary has a1-1 projection to aconvex planar
curve, then it is unique for that boundary and is aminimal graph. The maximum
principle also shows that any minimal graph is unique even when the projection of
its boundary is not convex. More generally, stability still holds when the surface
merely has aGauss map image contained in ahemisphere, as shown in [1] (although
their proof employs tools other than the maximum principle).

However, such statements do not hold for discrete minimal surfaces. Consider
the surface shown in the left-hand side of Figure 2, whose height function has a
local maximum at an interior vertex. This example does not lie in the convex
hull of its boundary and thereby disproves existence of adiscrete version of the
maximum principle. Also, the three surfaces on the right-hand side in Figure 3are
all minimal graphs over aring-like domain with the same boundary contours and
simplicial structure, and yet they are not the same surfaces, hence graphs with given
simplicial structure are not unique. And the left-hand surface in Figure 3shows
asurface whose Gauss map is contained in ahemisphere but which is unstable
(this surface is not agraph) -another example of this property is the first ring-like
surface in Figure 3, which is also unstable. (We define stability of discrete $\mathrm{C}\mathrm{M}\mathrm{C}$

surfaces in section 4).
The influence of the discretization on nonuniqueness, like as in the ring-like

examples of Figure 3, can also be observed in amore trivial way for adiscrete
minimal graph over asimply connected convex domain. The two surfaces on the
height-hand side of Figure 2have the same $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$, i.e. they are identical as geometric
surfaces, but they are different as discrete surfaces. Interior vertices may be freely
added and moved inside the middle planar square without affecting minimality.

In contrast to existence of these counterexamples we believe that some properties
of smooth minimal surfaces remain true in the discrete setting, based on numerical
experiments. We say that adiscrete surface is adisk if it is homeomorphic to a
simply connected domain.

Conjecture 2.1. Let $\mathcal{T}\subset \mathbb{R}^{3}$ be a discrete minimal disk whose boundary projects
injectively to a convex planar polygonal curve, then $\mathcal{T}$ is a graph over that plane.

The authors were able to prove this conjecture with the extra assumption that all
the triangles of the surface are acute, using the fact that the maximum principle (a
height function cannot attain astrict interior maximum) actually does hold when
all triangles are acute
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FIGURE 2. Two views on the left-hand side of asurface that de-
fies the maximum principle, and two discrete minimal surfaces on
the right-hand side with boundary vertices $(x, 0, z_{1})$ , $(\mathrm{x}, 0, z_{1})$ ,
$(0, y, z_{2})$ , and $(\mathrm{O}, -y, z_{2})$ in $\mathbb{R}^{3}$ . These two surfaces on the right
have the same $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ in $\mathbb{R}^{3}$ but have different simplicial structures,
and asurprising feature of these examples is that the innermost
triangles form asquare, regardless of the values of $x$ , $y$ , $z_{1}\neq z_{2}$ .

One can ask if adiscrete minimal surface $\mathcal{T}$ with given simplicial structure and
boundary is unique if it has a1-1 perpendicular or central projection to aconvex
polygonal domain in aplane. The placement of the vertices need not be unique,
as we saw in the examples on the right-hand side of Figure 2, however, one can
consider if there is uniqueness in the sense that the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of $\mathcal{T}$ in $\mathbb{R}^{3}$ is unique.

Conjecture 2.2. Let $\Gamma\subset \mathbb{R}^{3}$ be a polygonal curve that either $A$ :projects injec-
tively to a convex planar polygonal curve, or $B$ :has $a$ 1-1 central projection from
a point $p\in \mathbb{R}^{3}$ to a convex planar polygonal curve. Then, for each given simplicial
structure of disk type with boundary compatible to $\Gamma$ , there exists a discrete minimal
disk $\mathcal{T}$ with boundary $\Gamma$ and that simplicial structure, and the trace of $\mathcal{T}$ is uniquely
determined. Furthe rmore, $\mathcal{T}$ is a graph in the case $A$, and $\mathcal{T}$ is contained in the
cone of $\Gamma$ over $p$ in the case $B$ .

We have the following weaker form of Conjecture 2.2, which follows from Corol-
lary 4.1 of section 4in the case that there is only one interior vertex:

Conjecture 2.3. If a discrete minimal surface is a graph over a convex polygonal
domain, then it is stable.

3. EXPLICIT DISCRETE SURFACES

Here we describe explicit discrete catenoids and helicoids, which seem to be the
first explicitly known nontrivial complete discrete minimal surfaces (with minimal-
ity defined variationally).

3.1. Discrete Minimal Catenoids. To derive an explicit formula for embedded
complete discrete minimal catenoids, we choose the vertices to lie on congruent
planar polygonal meridians, with the meridians placed so that the traces of the
surfaces will have dihedral symmetry. We will find that the vertices of adiscrete
meridian lie equally spaced on asmooth hyperbolic cosine curve. Furthermore,
these discrete catenoids will converge uniformly in compact regions to the smooth
catenoid as the mesh is made finer.

We begin with alemma that prepares the construction of the meridian of the
discrete minimal catenoid. We derive an explicit representation of the position of a
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FIGURE 3. Two unstable and two stable discrete minimal surfaces
in $\mathbb{R}^{3}$ . The first figure on the left is unstable, even though it is
locally agraph over ahorizontal plane, in the sense that the third
coordinate of the normal vector to the surface is never zero. The
second figure on the left is one of the four congruent pieces of
the first figure. The middle figure (the leftmost annular graph)
is unstable, even though it is agraph over an annular polygonal
region in ahorizontal plane, and it has area-reducing variations
that can deform to either of the last two stable minimal surfaces
on the right, which have the same simplicial structure.

vertex surrounded by four triangles in terms of the other four vertex positions. The
center vertex is assumed to be coplanar with each of the two pairs of two opposite
vertices, with those two planes becoming the plane of the vertical meridian and the
horizontal plane containing adihedrally symmetric polygon (consisting of edges of
the surface).

Lemma 3.1. Consider the vertex $p=(d,0, e)$ surrounded by four vertices $q_{1}=$

$(a, 0, b),$ $q_{2}=(d\cos\theta, d\sin\theta, e)$ , $q_{3}=(f, 0,g)$ , and $q_{4}=(d\cos\theta, -d\sin\theta, e)$, form-
$ing$ four triangle $(p, q_{1}, q_{2})$ , $(p, q_{2}, q_{3})$ , $(p, q_{3}, q_{4})$ , and $(p, q_{4}, q_{1})$ . Given real numbers
$a$ , $b$ , $d_{f}e_{f}$ and angle $\theta$ so that $b\neq e$ , there exists a choice of real numbers $f$ and $g$

such that

$\nabla_{p}$ area(star $p$) $=0$

if and only if

$2ad> \frac{(e-b)^{2}}{1+\cos\theta}$ .

Furthermore, when $f$ and $g$ exist, they are unique and must be of the form
$f$ $=$ $\frac{2(1+\cos\theta)d^{3}+(a+2d)(e-b)^{2}}{2ad(1+\cos\theta)-(e-b)^{2}}$ ,

$g$ $=$ $2e-b$ .

Proof First we note that the assumption $b\neq e$ is necessary. If $b=e$ , then one may
choose $g=b$, and then there is afree 1-parameter family of choices of $f$ .

For simplicity we apply avertical translation and ahomothety about the origin
of $\mathbb{R}^{3}$ to normalize $d=1$ , $e=0$, and by doing areflection if necesary, we may
assume $b<0$ . Let $c=\cos\theta$ and $s=\sin\theta$ .

131



KONRAD POLTHIER AND WAYNE ROSSMAN

We derive conditions for the coordinate components of $\nabla_{p}$ area to vanish. The
second component vanishes by symmetry of star $p$ . Using the definitions

$c_{1}:= \frac{(a-1)s^{2}-b^{2}(1-c)}{\sqrt{2b^{2}(1-c)+(a-1)^{2}s^{2}}}$ , $c_{2}:= \frac{ab+b}{\sqrt{2b^{2}(1-c)+(a-1)^{2}s^{2}}}$ ,

the first (resp. third) component of $\nabla_{p}$ area vanishes if

(3) $c_{1}= \frac{g^{2}(1-c)-(f-1)s^{2}}{\sqrt{2g^{2}(1-c)+(f-1)^{2}s^{2}}}$ , resp. $c_{2}= \frac{-(f-1)g-2g}{\sqrt{2g^{2}(1-c)+(f-1)^{2}s^{2}}}$ .

Dividing one of these equations by the other we obtain

(4) $f-1= \frac{c_{2}g(1-c)+2c_{1}}{c_{2}s^{2}-c_{1}g}g$ ,

so $f$ is determined by $g$ . It now remains to determine if one can find $g$ so that
$c_{2}s^{2}-c_{1}g\neq 0$ . If $f-1$ is chosen as in equation 4, then the first minimality
condition of equation 3holds if and only if the second one holds as well. So we only
need to insert this value for $f-1$ into the first minimality condition and check for
solutions $g$ . When $c_{1}\neq 0$ , we find that the condition becomes,

$1= \frac{c_{2}s^{2}-c_{1}g}{|c_{2}s^{2}-c_{1}g|}\frac{g}{|g|}\frac{-(1-c)g^{2}-2s^{2}}{\sqrt{2(1-c)c_{2}^{2}s^{4}+4c_{1}^{2}s^{2}+(2(1-c)c_{1}^{2}+s^{2}(1-c)^{2}c_{2}^{2})g^{2}}}$ .

$\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}-(1-c)g^{2}-2s^{2}<0$ , note that this equation can hold only if $c_{2}s^{2}-c_{1}g$ and
$g$ have opposite signs, so the equation becomes

$1= \frac{(1-c)g^{2}+2s^{2}}{\sqrt{2(1-c)c_{2}^{2}s^{4}+4c_{1}^{2}s^{2}+(2(1-c)c_{1}^{2}+s^{2}(1-c)^{2}c_{2}^{2})g^{2}}}$ ,

which simplifies to

$1= \frac{\sqrt{(1-c)g^{2}+2s^{2}}}{\sqrt{(1-c)c_{2}^{2}s^{2}+2c_{1}^{2}}}$ .

This implies $g^{2}$ is uniquely determined. Inserting the value

$g=\pm b$ ,

one finds that the above equation holds. When $g=b<0$ , we find that $c_{2}s^{2}-c_{1}g<$

$0$ , which is impossible. When $g=-b>0$ , we find that $c_{2}s^{2}-c_{1}g<0$ if and only
if $2a(1+c)>b^{2}$ . And when $g=-b$ and $2a(1+c)>b^{2}$ , we have the minimality
condition when

$f= \frac{2+2c+ab^{2}+2b^{2}}{2a+2ac-b^{2}}$ .

Inverting the transformation we did at the beginning of this proof brings us back
to the general case where $d$ and $e$ are not necessarily 1and 0, and the equations
for $f$ and $g$ become as stated in the lemma.

When $c_{1}=0$ , we have $(a-1)(1+c)=b^{2}$ and $(f-1)(1+c)=g^{2}$ , so, in particular,
we have $a>1$ and therefore $2a(1+c)>b^{2}$ . The right-hand side of equation (3)
implies $g=-b$ and $f=a$. Again, inverting the transformation from the beginning
of this proof, we have that $f$ and $g$ must be of the form in the lemma for the case
$c_{1}=0$ as well. $\square$
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$y$

FIGURE 4. The construction in Lemma 3.1.

Note that the necessary and sufficient condition in the next lemma is identical to
that of the previous lemma. This observation is crucial to the proof of the upcoming
theorem.

Lemma 3.2. Given two points $(a, b)$ and $(d, e)$ in $\mathbb{R}^{2}$ and an angle $\theta$ , with $b\neq e$ ,
there exists an $r$ so that these two points lie on some vertical translate of the curve

$(r\cosh\{$ $t\in \mathbb{R}$ ,$\frac{1}{e-b}$ arccosh $\{1+\frac{1}{r^{2}}\frac{(e-b)^{2}}{1+\cos\theta}\}t],t)$

if and only if $2ad> \frac{(e-b)^{2}}{1+\cos\theta}$ .

Proof Define $\hat{\delta}=\frac{e-b}{\sqrt{1+\cos\theta}}$ . Without loss of generality, we may assume $0<a\leq d$

and $e>0$ , and hence $-e\leq b<e$ . If the points $(a, b)$ and $(d, e)$ both lie on the
curve in the lemma, then

arccosh $(1+ \frac{\hat{\delta}^{2}}{r^{2}})=\mathrm{a}\mathrm{r}\mathrm{c}\cosh$ $( \frac{d}{r})-\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(6)$ . arccosh $( \frac{a}{r})$ ,

where sign(6) $=1$ if $b\geq 0$ and sign(6) $=-1$ if $b<0$ . Note that if $b=0$ , then $a$

must equal $r$ (and so $\mathrm{a}\mathrm{r}\mathrm{c}\cosh(\frac{a}{r})$ $=0$). This equation is solvable (for either value of
sign(6) $)$ if and only if

$(_{\frac{d}{r}+} \sqrt{\frac{d^{2}}{r^{2}}-1})(_{\frac{a}{r}+}\sqrt{\frac{a^{2}}{r^{2}}-1})=1+\frac{\hat{\delta}^{2}}{r^{2}}+\frac{\hat{\delta}}{r}\sqrt{2+\frac{\hat{\delta}^{2}}{r^{2}}}$

when $b\leq 0$ , or

$\frac{\frac{d}{r}+\sqrt{\frac{d^{2}}{r^{2}}-1}}{\frac{a}{r}+\sqrt{\frac{a^{2}}{r^{2}}-1}}=1+\frac{\hat{\delta}^{2}}{r^{2}}+\frac{\hat{\delta}}{r}\sqrt{2+\frac{\hat{\delta}^{2}}{r^{2}}}$
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when $b\geq 0$ , for some $r\in(0, a]$ . The right-hand side of these two equations has the
following properties:

1. It is anonincreasing function of $r\in(0, a]$ .
2. It attains some finite positive value at $r=a$ .
3. It is greater than the function $2\hat{\delta}^{2}/r^{2}$ .
4. It approaches $2\hat{\delta}^{2}/r^{2}$ asymptotically as $rarrow \mathrm{O}$ .
The left-hand sides of these two equations have the following properties:
1. They attain the same finite positive value at $r=a$ .
2. The first one is anonincreasing function of $r\in(0, a]$ .
3. The second one is anondecreasing function of $r\in(0, a]$ .
4. The second one attains the value $\frac{d}{a}$ at $r=0$ .
5. The first one is less than the function $4ad/r^{2}$ .
6. The first one approaches $4ad/r^{2}$ asymptotically as $rarrow \mathrm{O}$ .
So, from these properties it is clear that one of the two equations above has a

solution for some $r$ if and only if $2ad>\hat{\delta}^{2}$ . This completes the proof. $\square$

We now derive an explicit formula for discrete minimal catenoids, which is given
by specifying the vertices along planar polygonal meridians. Then the traces of the
surfaces will have dihedral symmetry of order $k\geq 3$ . The surfaces are tessellated
by planar isosceles trapezoids like a $\mathbb{Z}^{2}$ grid, and each trapezoid can be triangulated
into two triangles by choosing adiagonal of the trapeziod as the interior edge. Either
diagonal can be chosen, as this does not affect the minimality of the catenoid.

The discrete catenoid has two surprising features. First, the vertices of amerid-
ian lie on asmooth hyperbolic cosine curve (which is the profile curve of smooth
catenoids), and there is no apriori reason to have expected this. Secondly, the
vertical spacing of the vertices along the meridians is constant.

Theorem 3.1. There exists a $fou$’-parameter family of embedded and complete
discrete minimal catenoids $C=\mathrm{C}(0, \delta, r, z_{\mathrm{O}})$ with dihedral rotational symmetry and
planar meridians. If we assume that the dihedral symmetry axis is the $z$ axis and
a meridian lies in the $xz$ -plane, then, up to vertical translation, the catenoid is
completely described by the following properties:

1. $\theta=\frac{2\pi}{k}$ , $k\in \mathrm{N},$ $k\geq 3$ , is the dihedral angle.
2. The vertices of the meridian in the $xz$ -plane interpolate the smooth $\cosh$ curve

$x(z)=r \cosh(\frac{1}{r}az)$ ,

with

$a= \frac{r}{\delta}$ aarrccccoosshh $(1+ \frac{1}{r^{2}}\frac{\delta^{2}}{1+\cos\theta})$ ,

where the parameter $r>0$ is the waist radius of the interpolated $\cosh$ curve,
and $\delta>0$ .

3. For any given arbitrary initial value $z_{\mathrm{O}}\in \mathbb{R}$ , the profile curve has vertices of
the forrn

$z_{j}$ $=$ $z_{0}+j\delta$

$x_{j}$ $=$ $x(z_{j})$

where $\delta$ is the constant vertical distance between adjacent vertices of the merid-
san.
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FIGURE 5. Adiscrete minimal catenoid and helicoid. (For this
helicoid we have chosen $x_{0}=0.$ )

4. The planar trapezoids of the catenoid may be triangulated independently of
each other.

Proof. By Lemma 3.1, if we have three consequtive vertices $(x_{n-1}, z_{n-1}),(x_{n}, z_{n})$ ,
and $(x_{n+1}, z_{n+1})$ along the meridian (the profile curve in the $xz$-plane), they satisfy
the recursion formula

(5) $x_{n+1}= \frac{(x_{n-1}+2x_{n})\hat{\delta}^{2}+2x_{n}^{3}}{2x_{n}x_{n-1}-\hat{\delta}^{2}}$ , $z_{n+1}=z_{n}+\delta$ ,

where $\delta$

$=z_{n}-z_{n-1}$ and $\hat{\delta}=\delta/\sqrt{1+\cos\theta}$. As seen in Lemma 3.1, the vertical
distance between $(x_{n-1}, z_{n-1})$ and $(x_{n}, z_{n})$ is the same as the vertical distance
between $(x_{n}, z_{n})$ and $(x_{n+1}, z_{n+1})$ , so we may consider $\delta$ and $\hat{\delta}$ to be constants
independent of $n$ .

In order for the surface to exist, Lemma 3.1 requires that

$2x_{n}x_{n-1}>\hat{\delta}^{2}$

This implies that all $x_{n}$ have the same sign, and we may assume $x_{n}>0$ for all $n$ .
Therefore the surface is embedded. Also, as the condition $2x_{n}x_{n-1}>\hat{\delta}^{2}$ implies

$2x_{n+1}x_{n}= \frac{2x_{n}(x_{n-1}+2x_{n})\hat{\delta}^{2}+4x_{n}^{4}}{2x_{n}x_{n-1}-\hat{\delta}^{2}}>\frac{2x_{n}x_{n-1}\hat{\delta}^{2}}{2x_{n}x_{n-1}-\hat{\delta}^{2}}>\hat{\delta}^{2}$ ,

we see, inductively, that $xj$ is defined for all $j\in \mathrm{Z}$ . Hence the surface is complete.
One can easily check that the function $x(z)$ in the theorem also satisfies the

recursion formula (5), in the sense that if $xj:=x(zj)$ , then these $xj$ satisfy this
recursion formula. It only remains to note that, given two initial points $(x_{n-1}, z_{n-1})$

and $(x_{n}, z_{n})$ with $z_{n}>z_{n-1}$ , there exists an $r$ so that these two points lie on
the curve $x(z)$ with our given $\delta$ and 0(up to vertical translation) if and only if
$2x_{n}x_{n-1}>\hat{\delta}^{2}$ , as shown in Lemma 3.2. $\square$
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Remark 3.1. If we consider the example where $(x_{1}, z_{1})=(1,$ 0) and $(x_{2}, z_{2})=$

$(1+\hat{\delta}^{2}, \delta)$ , then the recursion formula implies that

$(x_{n}, z_{n})=(1+ \sum_{j=1}^{n-1}2^{j-1}a_{n-1,j}\hat{\delta}^{2j}, (n-1)\delta)$ , for $n\geq 3$ ,

where $\mathrm{a}\mathrm{n}-\mathrm{i},\mathrm{j}$ is defined recursively by $a_{n,m}=0$ if $m<0$ or $n<0$ or $m>n$ ,
$a_{0,0}=1$ , $\mathrm{a}\mathrm{o},0=2$ if $n>0$ , and $an,m=2a_{n-1,m}-\mathrm{a}\mathrm{n}-\mathrm{i},\mathrm{j}$ $\mathrm{a}\mathrm{n}-\mathrm{i},\mathrm{m}-\mathrm{i}$ if $n\geq m\geq 1$ .
Thus

$a_{n,m}=(\begin{array}{l}n+m2m\end{array})$ $+$ $(\begin{array}{ll}n+m -12m \end{array})$ .

These $a_{n,m}$ are closely related to the recently solved refined alternating sign matrix
conjecture [4].

Corollary 3.1. There exists a twO-parameter family of discrete catenoids $C_{1}(\theta, z_{0})$

whose vertices interpolate the smooth minimal catenoid with meridian $x=\cosh z$ .

Proof The waist radius of the discrete meridian must be $r=1$ . Further, we must
choose the parameter $a=1$ which is fulfilled if $\theta$ and 5are related by $1+\cos\theta+\delta^{2}=$

$(1+\cos\theta)\cosh\delta$ . The offset parameter $z_{0}$ may be chosen arbitrarily leading to a
vertical shift of the vertices along the smooth catenoid. $\square$

Corollary 3.2. For each fixed $r$ and $z_{0}$ , the profile curves of the discrete catenoids
$C(\theta,\delta,r, \mathrm{z}\mathrm{o})$ approach the profile curve $x=r \cosh\frac{z}{r}$ of a smooth catenoid uniformly
in compact sets of $\mathbb{R}^{3}$ as 6, $\thetaarrow 0$ .

Proof Since

$\lim_{\deltaarrow 0}\frac{1}{\delta}\mathrm{a}\mathrm{r}\mathrm{c}\cosh(1+\frac{1}{r^{2}}\frac{\delta^{2}}{1+\cos\theta})=\frac{\sqrt{2}}{r\sqrt{1+\cos\theta}}$,

it follows that the profile curve of the discrete catenoid converges uniformly (in $C^{\mathrm{O}}$

sense) to the curve

$x=r \cosh\frac{\sqrt{2}z}{r\sqrt{1+\cos\theta}}$

as $\deltaarrow 0$ . Then, as $\thetaarrow 0$ we approach the profile curve $x=r \cosh\frac{z}{r}$ . $\square$

3.2. Discrete Minimal Helicoids. We continue on to the derivation of explicit
discrete helicoids, which are anatural second example of complete, embedded dis-
crete minimal surfaces.

In the smooth setting, there exists an isometric deformation through conjugate
surfaces ffom the catenoid to the helicoid (see, for example, [15]). So, one might
first try to make asimilar deformation from the discrete catenoids in Theorem 3.1
to discrete minimal helicoids. But such adeformation appears to be impossible-
in fact, in order to make an associate family of discrete minimal surfaces, one must
allow non-continuous triangle nets having greater flexibility, as described in [17].

Therefore, we adopt adifferent approach for finding discrete minimal helicoids.
The helicoids will be comprised of planar quadrilaterals, each triangulated by four
coplanar triangles, see Figure 5. Each quadrilateral is the star of aunique vertex,
and none of its four boundary edges are vertical or horizontal, and one pair of
opposite vertices in its boundary have the same $z$-coordinate, and the four boundary
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$z$

$x$

FIGURE 6. The construction in Lemma 3.3.

edges consist of two adjacent pairs of edges of equal length. First we derive an
explicit representation of the center vertex of atypical vertex star of the helicoid:

Lemma 3.3. Let $p$ be a point with a vertex star consisting of four vertices $q_{1}$ ,
$q_{2}$ , $q_{3},$ $q_{4}$ and four triangles $\triangle_{i}=(p, q_{i}, q:+1)$ , $i\in\{1,2,3,4\}$ (mod 4). We as-
surne that $p=(u, 0,0)$ , $q_{1}=(b\cos\theta, b\sin\theta, 1),$ $q_{2}=(b\cos\theta, -b\sin\theta, -1)$ , $q_{3}=$

$(t\cos\theta, -t\sin\theta, -1),$ $q_{4}=(t\cos\theta,t\sin\theta, 1)$ with real numbers $b<u<t$ and
$\theta\in(0, \frac{\pi}{2})$ .

If either

t $=-b(1+2u^{2}\sin^{2}\theta)+2u\sqrt{1+b^{2}\sin^{2}\theta}\sqrt{1+u^{2}\sin^{2}\theta}$ or

b $=-t(1+2u^{2}\sin^{2}\theta)+2u\sqrt{1+t^{2}\sin^{2}\theta}\sqrt{1+u^{2}\sin^{2}\theta}$ ,

then $\nabla_{p}$ area vanishes.

Proof. Consider the conormals $J_{1}=J(q_{2}-q_{1})$ , $J_{2}=J(q_{3}-q_{2})$ , $J_{3}=J(q_{4}-q_{3})$ ,
$J_{4}=J(q_{1}-q_{4})$ , where $J$ denotes oriented rotation by angle $\frac{\pi}{2}$ in the triangle $\triangle_{j}$

containing the edge being rotated. Then

$J_{1}=(2\sqrt{1+b^{2}\sin^{2}\theta}, \circ, 0)$ and $J_{3}=(-2\sqrt{1+t^{2}\sin^{2}\theta}, \circ, 0)$ .

Since $\langle J_{4}, (\cos\theta, \sin\theta, 0)\rangle=0$ and $(\mathrm{J}_{4}, (\cos\theta, \sin\theta, 0), (u-b\cos\theta, -b\sin\theta, -1))=$

$0$ and $|J_{4}|^{2}=(t-b)^{2}$ , we have that the first component of $J_{4}$ (and also of $J_{2}$ ) is

$u(t-b)\sin^{2}\theta$

$\overline{\sqrt{1+u^{2}\sin^{2}\theta}}$

.

By symmetry, the second and third components of $J_{2}$ and $J_{4}$ are equal but opposite
in sign, hence the second and third components of $J_{1}+J_{2}+J_{3}+J_{4}$ are zero. So
for the minimality condition to hold at $p$ , we need that the first component of
$J_{1}+J_{2}+J_{3}+J_{4}$ is also zero, that is, we need

$\frac{u(t-b)\sin^{2}\theta}{\sqrt{1+u^{2}\sin^{2}\theta}}+\sqrt{1+b^{2}\sin^{2}\theta}-\sqrt{1+t^{2}\sin^{2}\theta}=0$ ,

and the solution of this with respect to $b$ or $t$ is as in the lemma. So, for this
solution, $\nabla_{p}$ area vanishes. $\square$
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FIGURE 7. Discrete analogues of cylinders and Delaunay surfaces.

Theorem 3.2. There exists a family of complete embedded discrete minimal heli-
coids, with the connectivity as shown in Figure 5. The vertices, indexed by $i,j\in \mathbb{Z}$ ,
are the points

$\frac{r\sinh(x_{0}+j\delta)}{\sin\theta}(\cos(i\theta),\sin(i\theta)$ , $0)+( 0, ir)$ ,

for any given reals $\theta\in(0, \frac{\pi}{2})$ and $r$ , $\delta\in \mathrm{R}$ .

Note that these surfaces are invariant under the screw motion that combines
vertical upward translation of distance $2r$ with rotation about the $x_{3}$ -axis by an
angle of 20. The term $x_{0}$ determines the offset of the vertices from the $z$-axis, and $\delta$

determines the horizontal spacing of the vertices. The homothety factor is $r$ , which
equals the vertical distance between consecutive horizontal lines of edges.

Proof. Without loss of generality, we may assume $r=1$ . So for agiven $i$ , the
vertices are points on the line $\{s(\cos(i\theta), \sin(i\theta),i)|s\in \mathbb{R}\}$, for certain values of $s$ .
We choose $x_{0}$ and $\delta$ so that the $(j-2)’ \mathrm{t}\mathrm{h}$ vertex has $s$-value $s_{j-2}=\sinh(x_{0}+(j-$
$2)\delta)/\sin\theta$ and the $(j-1)’ \mathrm{t}\mathrm{h}$ vertex has $s$-value $s_{j-1}=\sinh(x_{0}+(j-\mathrm{j}\mathrm{S})/\sin\theta$ .
Lemma 3.3 implies that the $j’ \mathrm{t}\mathrm{h}$ vertex has s-value

$s_{j}=-s_{j-2}(1+2s_{j-1}^{2}\sin^{2}\theta)+2\mathrm{s}\mathrm{j}-\mathrm{i}\sqrt{1+s_{j-2}^{2}\sin^{2}\theta}\sqrt{1+s_{j-1}^{2}\sin^{2}\theta}$ ,

arecursion formula that is satisfied by
$s_{j}=\sinh(x_{0}+j\delta)/\sin\theta$ .

Lemma 3.3 implies asimilar formula for determining $\mathrm{S}\mathrm{j}-\mathrm{z}$ in terms of $\mathrm{S}\mathrm{j}-2$ and
$\mathrm{S}\mathrm{j}-2$ , with the same solution. Finally, noting that those vertices whose star is a
planar quadrilateral can be freely moved inside that planar quadrilateral without
disturbing minimality of the surface, the theorem is proved. $\square$

3.3. Discrete Cylinders and Delaunay Surfaces. We now describe some ways
one can find discrete analogues of cylinders and Delaunay surfaces. The simplest
way is to choose positive reals $a$ and $e$ and an integer $k\geq 3$ , and then choose the
vertices to be

$pj,\ell=(a\cos(2\pi j/k), a \sin(2\pi j/k)$ , $e\ell)$

for $j,\ell\in \mathrm{Z}$ . We then make agrid of rectangular faces, and cut the faces by
diagonals with endpoints $pj,\ell$ and $pj+1,\ell+1$ . This is adiscrete $\mathrm{C}\mathrm{M}\mathrm{C}$ surface with
$H=a^{-1}(\cos(\pi/k))^{-1}$ . It is interesting to note that $H$ is independent of the value
of $e$ . See the left-hand side of Figure 7.

Another example is to choose positive reals $a$ , $b$ , $e$ , and an integer $k\geq 3$ , and to
choose the vertices to be

$pj,\ell=$ $(a\cos(2\pi j/k), a \sin(2\pi j/k)$ , $e\ell)$ when $jf$ $\ell$ is even, and
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FIGURE 8. Atriply-periodic discrete minimal surface, whose sta-
bility properties have been investigated by Karsten $\mathrm{G}\mathrm{r}\mathrm{o}\beta \mathrm{e}$ Brauck-
mann. On the left is afundamental piece, and such pieces are
attached as on the right to make an infinite-topology surface with
the same symmetry as the $\mathbb{Z}^{3}$ cubic lattice in $\mathbb{R}^{3}$ .

$pj,\ell=$ $(b\cos(2\pi j/k), b\sin(2\pi j/k)$ , $e\ell)$ when $j+\ell$ is odd,
for $j$ , $\ell\in \mathrm{Z}$ . We then make agrid of quadrilateral faces, and cut the faces by
diagonals with endpoints $pj,\ell$ and $pj+1,\ell+1$ if $jf$ $\ell$ is even, and by diagonals with
endpoints $pj,\ell+1$ and $pj+1,\ell$ if $j+\ell$ is odd. By symmetry, it is clear that $\nabla_{p_{j,t}}$ area
and $\nabla_{p_{j,t}}vol$ are parallel at each vertex; and for each value of $e$ , one can then show
the existence of values of $a$ and $b$ so that $H$ is the same value at all vertices, using
an intermediate value argument. Thus adiscrete $\mathrm{C}\mathrm{M}\mathrm{C}$ cylinder is produced. See
the second surface in Figure 7.

Athird example can be produced by taking the vertices to be
$pj,\ell=$ $(a\cos(2\pi j/k), a \sin(2\pi j/k)$ , $e\ell)$ when $\ell$ is even, and

$pj,\ell=$ $(b\cos(2\pi j/k), b\sin(2\pi j/k)$ , $e\ell)$ when $\ell$ is odd,
for $j,\ell\in \mathrm{Z}$ . We then make agrid of isosceles trapezoidal faces, and put an extra
vertex in each of the trapezoidal faces, and connect this extra vertex by edges to
each of the four vertices of the surrounding trapezoid. Keeping the placement of
the vertices of the surface as symmetric as possible, one must move these extra
vertices in $\mathbb{R}^{3}$ so that $\nabla area$ and Vvol become parallel at these vertices, and then
one must solve so that $H$ has the same value at all vertices of the surface. This can
be done numerically. See the last two examples in Figure 7.

Remark 3.2. The 2-dimensional boundaries of the tetrahedron, octahedron, and
icosahedron are discrete $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces. The boundaries of the cube and dodecahe-
dron are not discrete surfaces in our sense, as they are not triangulated. However,
by adding a vertex to the center of each face and connecting it by edges to each
vertex in the boundary of the face, we can make discrete surfaces, and then we can
move these face-centered vertices perpendicularly to the faces to adjust the mean
curvature.

4. SECOND VARIATION OF AREA

We now begin to consider the spectra of the second variation for discrete $\mathrm{C}\mathrm{M}\mathrm{C}$

surfaces, which necessarily starts with atechnical and explicit computation of the
second variation. For notating area and volume, we shall now frequently use “

$a$
”
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and ” $V$” instead of “area” and “
$\mathrm{v}\mathrm{o}\mathrm{l}"$ , for brevity. We will also use $|T|$ or $|(p, q, r)|$

to signify the area of atriangle $T=(p, q, r)$ .

Lemma 4.1. For a compact discrete $\mathrm{C}\mathrm{M}\mathrm{C}H$ surface $\mathcal{T}$ with vertex set $\mathcal{V}$ ,

$a’(0):= \frac{\partial^{2}}{\partial^{2}t}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{a}(\mathcal{T})|_{t=0}=\sum_{p\in \mathcal{V}}\langle p’, (\nabla_{p}a)’-H(\nabla_{p}V)’\rangle$

for any permissible variation.

Proof

$a’(0)= \sum_{p\in \mathcal{V}}\langle p’, \nabla_{p}a\rangle+\langle p’, (\nabla_{p}a)’\rangle=\sum_{p\in \mathcal{V}}\langle p’, H\nabla_{p}V\rangle+\sum_{p\in \mathcal{V}}\langle p’, (\nabla_{p}a)’\rangle$
.

For aminimal discrete surface, the first term on the right hand side is clearly 0.
For adiscrete $\mathrm{C}\mathrm{M}\mathrm{C}$ surface with $H\neq 0$ , the variation $p(t)$ is volume preserving, so

$\frac{\partial \mathrm{v}\mathrm{o}1(\mathcal{T})}{\partial t}=0\forall t\Rightarrow\sum_{p}\langle p’, \nabla_{p}V\rangle=0\forall t\Rightarrow\sum_{p}\langle p’, \nabla_{p}V\rangle+\langle p’, (\nabla_{p}V)’\rangle=0$ ,

proving the lemma. $\square$

Definition 4.1. A rninirnal or CMC discrete surface $\mathcal{T}$ is stable if $a’(0)\geq 0$ for
any pe rmissible variation.

We now consider avector-valued function $v_{p_{\mathrm{j}}}\in \mathbb{R}^{3}$ that is defined on the $n$

interior vertices $\mathcal{V}:nt=\{p_{1}, \ldots,p_{n}\}$ of $\mathcal{T}$ . We may extend this function to the
boundary vertices of $\mathcal{T}$ as well, by assuming $v_{p}=\overline{0}\in \mathbb{R}^{3}$ for each boundary vertex
$p$ . The vectors $v_{p_{\mathrm{j}}}$ are the variation vector field of any boundary-fixing variation of
the form

$p_{j}(t)=p_{j}+t\cdot v_{p_{\mathrm{j}}}+O(t^{2})$ .
The fact that we have already restricted to boundary-fixing variations is no ob-
struction, as we will always consider only permissible variations. We define the
vector $\overline{v}\in \mathbb{R}^{3n}$ by

$v=(\triangleleft v_{p_{1}}^{t}, \ldots, v_{p_{n}}^{t})$ .

We will now find asymmetric $3n\cross 3n$ matrix $Q$ (also considered as abilinear
form), so that $\vec{v}^{\ell}Q\overline{v}$ is equal to $a’(0)$ for any permissible variation with variation
vector field $\overline{v}$. We define

$\tau(\overline{v}):=\sum_{p\in \mathcal{V}}\langle v_{p}, (\nabla_{p}a)’\rangle=\mathrm{I}\langle v_{p}, \frac{1}{2}\sum_{T=(p,q,r)\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}(p)}\overline{N}\cross(r’-q’)+\vec{N}’\cross(r-q)\rangle$

and

$\mu(\overline{v}):=\sum_{p\in \mathcal{V}}\langle v_{p}, (\nabla_{p}V)’\rangle$
,

and so $a’(0)=\tau(\overline{v})-H\mu(\overline{v})$ for any permissible variation with variation vector
field $\vec{v}$. The purpose of the next two propositions is to find matrices $Q_{a}$ and $Q_{V}$ so
that $\tau(\vec{v})=\vec{v}^{t}Q_{a}\vec{v}$ and $\mu(\vec{v})=\vec{v}^{t}Q_{V}\overline{v}$ . Thus $Q=Q_{a}-HQv$ .
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Proposition 4.1. There is a syrnrnetric bilinear form represented by a $3n\cross 3n$

matrix $Q_{a}$ , where $Q_{a}$ can be considered as an $n\cross n$ grid with a $3\cross 3$ entry $Q_{a,p:p_{\mathrm{j}}}$

for each pair of interior vertices $pi,Pj\in V:nt$ of $\mathcal{T}$, so that
$\tau(\vec{v})=\vec{v}^{t}Q_{a}\vec{v}$

for the variation vector field $\vec{v}$ of any permissible variation. The entry $Q_{a,p:p_{\mathrm{j}}}$ is 0
if the vertices $p:,pj$ are not adjacent, and is

$Q_{a,p:p_{j}}= \frac{1}{2}\sum_{(p:,p_{\mathrm{j}},r)\in star(\overline{p_{}p_{j}})}\frac{1}{|p_{\dot{*}}-p_{j}|^{2}}((p_{i}-p_{j})\cdot \mathcal{J}^{t}(p_{\dot{*}}-p_{j})$

$-J(p_{*}. -pj)\cdot(p_{\dot{*}}-p_{j})^{t})-\cot\theta_{(p_{\dot{*}},p_{\mathrm{j}},r)}\vec{N}_{(p:,p_{j},r)}\cdot\vec{N}_{(p:,p_{j},r)}^{t}$

for $p_{i}$ and $pj$ adjacent and unequal, where $\theta(p:,p_{\mathrm{j}},r)$ is the interior angle of the
triangle $(p_{i},pj, r)$ at $r$ , and is

$Q_{a,p:p}. \cdot=\frac{1}{4}\sum_{(p:,q,r)\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}(p:)}\frac{|r-q|^{2}}{|(p_{i},q,r)|}\vec{N}_{(p_{*\prime}q,r)}\vec{N}_{(p:,q,r)}^{t}$

when the vertices are both equal to $p_{i}$ . Here, $\vec{N}(p,q,r)$ denotes the oriented unit
no rmal vector of the triangle $(p, q, r)$ (which we will subsequently abbreviate to $\vec{N}$).

Proof. If $\vec{v}$ and $\vec{w}$ are variation vector fields for any pair of permissible variations,
we can define abilinear form

$Q_{a}( \vec{v},\vec{w}):=\frac{1}{2}\sum_{T=(p,q,r)\in \mathcal{T}}$

$-\langle v_{p}\cross w_{r}-v_{r}\cross w_{p}+v_{q}\cross w_{p}-v_{p}\cross w_{q}+v_{r}\cross w_{q}-v_{q}\cross w_{r},\vec{N}\rangle+$

$\frac{1}{2|T|}\langle v_{p}\cross(r-q)+v_{q}\cross$ $(p-r)+v_{r}\cross(q-p)$ ,

$w_{p}\cross(r-q)+w_{q}\cross(p-r)+w_{r}\cross(q-p)\rangle-$

$\frac{1}{2|T|}\langle v_{p}\cross(r-q)+v_{q}\cross(p-r)+v_{r}\cross(q-p),\vec{N}\rangle$ .

$\langle w_{p}\cross(r-q)+w_{q}\cross(p-r)+w_{r}\mathrm{x} (q-p),\vec{N}\rangle$ .

$\mathrm{i}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{l}1\mathrm{o}\mathrm{w}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{c}1\mathrm{e}\mathrm{a}’ \mathrm{b}\mathrm{i}1\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r},\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{t}\mathrm{h}\mathrm{e}1\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{t}\mathrm{w}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}\mathrm{o}\mathrm{f}Q_{a}\mathrm{U}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\vec{N}’=\frac{(q-p)\mathrm{x}(r’-p’)+(q’-p’)\cross(r-p)}{\tau(\overline{v})=Q_{a}(\vec{v},\vec{v}).Q_{a}\mathrm{i}\mathrm{s}2|T|}-\frac{\vec{N}}{2|T|,\mathrm{r}1\mathrm{y}}\langle(q-p)\cross(r’-p’)+(q’-p’)\cross(r-p),\vec{N}\rangle$

,

are obviously symmetric in $\vec{v}$ and $\vec{w}$ . The first term is also symmetric in $\overline{v}$ and $\overline{w}$ ,
since $v_{p}\cross w_{r}-v_{r}\cross w_{p}=w_{p}\cross v_{r}-w_{r}\cross v_{p}$ , $v_{q}\cross w_{p}-v_{p}\cross w_{q}=w_{q}\cross v_{p}-w_{p}\cross v_{q}$,
and $v_{r}\cross w_{q}-v_{q}\cross w_{r}=w_{\mathrm{r}}\cross v_{q}-w_{q}\cross v_{r}$ .

It only remains to determine an explicit form for $Q_{a}$ . For agiven interior vertex
$p$ , suppose $\vec{v}$ and $\vec{w}$ are nonzero only at $p$ , that is, that $v\triangleleft$

$=(0^{t}, \ldots, 0^{t}, v_{p}^{t}, 0^{t}, \ldots, 0^{t})$

and $\vec{w}^{t}=$ $(0^{t}, \ldots, 0^{t}, w_{p}^{t}, 0^{t}, \ldots, 0^{t})$ . Then

$Q_{a}( \vec{v},\vec{w})=Q_{a,pp}(v_{p},w_{p})=\frac{1}{4}$ $\sum$

$T=(p,q,r)\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}(p)$
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$\frac{1}{|T|}\langle v_{p}\cross(r-q), w_{p}\cross(r-q)\rangle-\frac{1}{|T|}\langle v_{p}\cross(r-q),\overline{N}\rangle\langle w_{p}\cross(r-q),\overline{N}\rangle$

$= \frac{1}{4}\sum_{T=(p,q,r)\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}(p)}$

$\frac{1}{|T|}v_{p}^{t}(|r-q|^{2}I-(r-\mathrm{g})(\mathrm{r}-q)^{t}-((r-q)\cross\vec{N})((r-q)\cross\overline{N})^{t})w_{p}$

$= \frac{1}{4}$ $\sum$ $\frac{|r-q|^{2}}{|T|}v_{p}^{t}(\vec{N}\vec{N}^{t})w_{\mathrm{P}}$ ,
$T=(p,q,r)$ Estar(p)

hence $Q_{a,pp}$ is of the form in the proposition.
Now suppose $v\vec{t}=$ $(0^{t}, \ldots, 0^{t}, v_{p}^{t}, 0^{t}, \ldots, 0^{t})$ and $\overline{w}^{t}=(0^{t}, \ldots, 0^{t}, w_{q}^{t}, 0^{t}, \ldots, 0’)$ for

some given unequal interior vertices $p$ and $\mathrm{g}$ . If $p$ and $q$ are not connected by some
edge of the surface, then clearly Qa $(\mathrm{v},\overline{w})=0$ , so assume that $p$ and $q$ are adjacent.
Note that star(pq) then contains two triangles $(p, q,rj)$ for $j=1,2$ and precisely
one of them is properly oriented. Noting also that the normal vector $\overline{N}$ of atriangle
changes sign when the orientation of the triangle is reversed, we have the following
equation:

$Q_{a}( \overline{v},\overline{w})=Q_{a,pq}(v_{p}, w_{q})=\frac{1}{2}\sum_{T=(p,q,r_{k}),k=1,2}\langle v_{p}\cross w_{q},\vec{N}\rangle+$

$\frac{1}{2|T|}\langle v_{p}\cross (r_{k} -q), w_{q}\cross(p-r_{k})\rangle-\frac{1}{2|T|}\langle v_{p}\mathrm{x}(r_{k} -q),\overline{N}\rangle\langle w_{q}\cross(p-r_{k}),\vec{N}\rangle=$

$= \frac{1}{4}\sum_{k=1}^{2}\frac{1}{|T|}v_{p}^{t}$ ($(p-r_{k})(q -r_{k})^{t}-(q-r_{k})(p-r_{k})^{t}-\langle p-rk, q-r_{k}\rangle\overline{N}\overline{N}^{t}$) $w_{q}$ .

For atriangle $(p,q, r)$ , one can check that
$(p-r)(q-r)^{t}-(q-r)(p-r)^{t}=$

$\frac{2|(p,q,r)|}{|p-q|^{2}}((p-q)(J(p-q))^{t}-J(p-q)(p-q)^{\ell})$ ,

so $Q_{a,pq}$ is as in the proposition. $\square$

Proposition 4.2. There is a symmetric bilinear form represented by a $3n\cross 3n$

matrix $Q_{V}$ , where $Qv$ has a $3\cross 3$ entry $Q_{V,p:p_{j}}$ for each pair of vertices $p:$ , $pj\in V_{int}$

of $\mathcal{T}$, so that
$\mu(\overline{v})=vQ_{V}\triangleleft\overline{v}$

for the variation vector field $\overline{v}$ of any permissible variation. We have $Q_{V,p:p:}=0$ ,
and $Qv_{p:\mathrm{P}i},=0$ when the vertices $p$:and $pj$ are not adjacent, and

$Q_{V,p:p_{\mathrm{j}}}= \frac{1}{6}$ $(\begin{array}{lll}0 \mathrm{r}_{2,3}-r_{1,3} r_{1,2}-r_{2,2}\gamma_{1_{\prime}3}-r_{2,3} 0 r_{2,1}-r_{1,1}r_{2,2}-r_{1,2} r_{1,1}-r_{2,1} 0\end{array})$

for adjacent unequal $p$:and $pj$ , where $(p:,pj, rk)$ are the two triangles in star(pipj)
and $r_{k}$ $=(r_{k,1},$ $\mathrm{r}\mathrm{i},2\mathrm{r}2,3$ for $k=1,2$, and $(p:,pj,r2)$ is properly oriented and
$(p:,pj,r1)$ is not.
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Proof.

$\sum_{p\in \mathcal{V}}\langle p’, (\nabla_{p}V)’\rangle$

$=$
$\sum_{p\in \mathcal{V}_{nt}}\langle v_{p}, \frac{1}{6}\sum_{(p,q,r)\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}(p)}(q\cross r)’\rangle$

$=$
$\frac{1}{6}\sum_{p\in \mathcal{V}_{nt}}$ ( $\sum_{\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}}$

to
$p,q\neq p\langle v_{p}\cross v_{q},r_{2}-r_{1}\rangle$),

where $(p, q, r_{2})$ is the properly oriented triangle in star(pg), and $(p, q, r_{1})$ is the
non-properly oriented triangle in star(pg). Thus we have

$\mu(\vec{v})=\sum_{p\in \mathcal{V}_{*nt}}.(\sum_{q\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{o}p,q\neq p}v_{p}^{t}(Q_{V,pq})v_{q})$ ,

where $Q_{V,pq}$ is a $3\cross 3$ matrix defined as in the proposition. Thus $Q_{V,pp}=0$ , and
the fact that $Q_{V,pq}$ is skew-symmetric in $p$ and $q$ implies $Qv$ is symmetric. $\square$

Corollary 4.1. If a discrete $\mathrm{C}\mathrm{M}\mathrm{C}$ surface $\mathcal{T}$ has only one interior vertex, then it
is stable.

Proof. Denote the single interior vertex by $p$ , so star(p) $=\mathcal{T}$. Then $Q_{a}=Q_{a,pp}$

and $Q_{V}=Q_{V,pp}$ are $3\cross 3$ matrices. By Propositions 4.1 and 4.2, $Q_{V}=0$ and for
any vector $u_{p}\in \mathbb{R}^{3}$ at $p$ we have

$u_{p}^{t}Q_{a}u_{p}= \frac{1}{4}\sum_{(p,q,r)\in \mathcal{T}}\frac{|r-q|^{2}}{|(p,q,r)|}u_{p}^{t}\vec{N}\vec{N}^{t}u_{p}=\frac{1}{4}\sum_{(p,q,r)\in \mathcal{T}}\frac{|r-q|^{2}}{|(p,q,r)|}\langle u_{p},\vec{N}\rangle^{2}\geq 0$,

so $a’(0)\geq 0$ for all permissible variations. $\square$

5. JACOBI OPERATOR FOR SMOOTH $\mathrm{C}\mathrm{M}\mathrm{C}$ SURFACES

We now are able to begin the study of the spectra of the second variation of
discrete $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces, as the second variation is now in an explicit form. However,
we postpone this to the next section, in order to discuss the spectra of the second
variation of smooth $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces here. We digress to the smooth case for later
comparison with the discrete case (section 7). In particular, here we explicitly
determine the eigenvalues and eigenfunctions of the Jacobi operator for portions of
smooth catenoids.

Let $\Phi$ : $Marrow \mathbb{R}^{3}$ be an immersion of acompact 2-dimensional surface $M$ . Let
$\vec{N}$ be aunit normal vector field on $\Phi(M)$ (we write $\Phi^{*}\vec{N}$ simply as $\vec{N}$ defined on
$M)$ . Let $\Phi(t)$ be asmooth variation of immersions for $t\in(-\epsilon, \epsilon)$ so that $\Phi(0)=\Phi$

and $\Phi(t)|_{\partial M}=\Phi(0)|_{\partial M}$ for all $t\in(-\epsilon, \epsilon)$ . Let $\vec{E}(t)$ be the variation vector field on
$\Phi(t)$ . We can assume, by reparametrizing $(t) for nonzero $t$ if necessary, that the
corresponding variation vector field at $t=0$ is $\vec{E}(0)=u\vec{N}$ , $u\in C_{0}^{\infty}(\mathrm{A}\mathrm{t})$ . Let $a(t)$

be the area of $\Phi(t)(M)$ and $H$ be the mean curvature of$(M). The first variational
formula is

$a’(0):= \frac{d}{dt}a(t)|_{t=0}=-\int_{M}\langle nH\vec{N}, u\vec{N}\rangle dA$ ,

where $\langle$ , $\rangle$ and dA are the metric and area form on $M$ induced by the immersion
$\Phi$ . We now assume $H$ is constant, so $a’(0)=-nH \int_{M}udA$ . Let $V(t)$ be the
volume of $\Phi(t)(M)$ , then $V’(0)= \int_{M}udA$ . The variation is volume preserving if
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$\int_{M}\langle\overline{E}(t),\overline{N}(t)\rangle dA(t)=0$ for all $t\in(-\epsilon, \epsilon)$ . In particular, $\int_{M}udA=0$ when $t=0$ ,
so $\mathrm{a}’(0)=0$ md $(M) is critical for area amongst all volume preserving variations.

The second variation formula for volume preserving variations $\Phi(t)$ is

$a’(0):= \frac{d^{2}}{dt^{2}}a(t)|_{t=0}=\int_{M}\{|\nabla u|^{2}-(4H^{2}-2K)u^{2}\}dA=\int_{M}$ uLudA,

where $K$ is the Gaussian curvature on $M$ induced by $\Phi$ , and
$L=-\triangle-4H^{2}+2K$

is the Jacobi operator with Laplace-Bel $\mathrm{t}$ operator $\triangle$ .
There are two ways that the index of asmooth $\mathrm{C}\mathrm{M}\mathrm{C}$ surface can be defined:
The geometrically natural definition for index is the maximum possible dimen-

sion of asubspace $S$ of volume preserving variation functions $u\in C_{0}^{\infty}(M)$ for which
$\mathrm{a}’(0)<0$ for all nonzero $u\in S$ , which we call Ind(M). (We are identifying $\Phi(M)$

with $M$ so that we can write simply Ind(M), rather than Ind( $\Phi$ (At)).)
The analytically natural definition for index is the number of negative eigenvalues

of the operator $L$ , which equals the maximum possible dimension of asubspace $Su$

of (not necessarily volume preserving) variation functions $u\in C_{0}^{\infty}(\mathrm{A}\mathrm{t})$ for which
$\int_{M}$ uLudA $<0$ for all nonzero $u\in S_{U}$ . We call this index Ind(/(M), where the
subscript $U$ stands for $u$ Unconstrained index”.

Clearly, indu(M) $\geq \mathrm{I}\mathrm{n}\mathrm{d}(M)$ . It is also not difficult to see that lndu(M)-l $\leq$

Ind(M) [9]. As it is geometrically more natural, we want to compute Ind(M). But
lndu(M) is more accessible to computation than Ind(M), and since they differ by
at most 1, computing Jndu{M) means that we know Ind(M) is either lndu(M) or
$\mathrm{I}\mathrm{n}\mathrm{d}_{U}(M)-1$ .

In the case that we are considering minimal surfaces, as in section 7the volume
constraint is not necessary, and hence Ind(M) $=\mathrm{I}\mathrm{n}\mathrm{d}u(M)$ .

5.1. Eigenvectors of L for Rectangles. Consider the rectangle

A# $=\{(x,$ y,$0)\in \mathbb{R}^{3}|0\leq x\leq x_{0},0\leq y\leq y_{0}\}$

as asmooth minimal immersion (inclusion map) into $\mathbb{R}^{3}$ , and consider functions on
it with Dirichlet boundary conditions. In this case, $L=-\triangle$ , and its eigenvalues
and eigenfunctions are

$\lambda_{m,n}=\frac{m^{2}\pi^{2}}{x_{0}^{2}}+\frac{n^{2}\pi^{2}}{y_{0}^{2}}$ , $\phi_{m,n}=\frac{2}{\sqrt{x_{0}y_{0}}}\mathrm{s}.\mathrm{n}\frac{m\pi x}{x_{0}}\mathrm{s}.\mathrm{n}\frac{n\pi y}{y_{0}}$

for $(m, n)\in \mathbb{Z}^{+}\cross \mathbb{Z}^{+}$. hence Ind(M) $=$ $0$ .

5.2. Eigenvectors of L for Catenoids. We can consider the catenoid as amap

$\Phi$ : $(x, y)\in \mathcal{R}arrow(\cos x\cosh y, \sin x\cosh y,y)\in \mathbb{R}^{3}$ ,

where
$\mathcal{R}=\{(x,y)\in \mathbb{R}^{2}|0\leq x\leq 2\pi, y\mathrm{o}\leq y\leq y_{1}\}$ ,

and the left and right boundary segments of 7? are identified with each other. This is
aconformal map, and the metric, Laplace-Bel $\mathrm{t}$ operator, and Gauss curvature
are

$ds^{2}=\cosh^{2}y\cdot(dx^{2}+dy^{2})$ , $\triangle=\frac{\frac{\partial^{2}}{\partial^{2}x}\dagger\overline{\partial}^{\mathrm{T}}\overline{y}\partial^{2}}{\cosh^{2}(y)}$ , $K=-\cosh^{-4}y$ .
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FIGURE 9. The function $f(y)$ (computed numerically) in the eigen-
function $\cos(mx)f(y)=f(y)$ when $m=0$ for the catenoid $\Phi(\mathcal{R})$

with $y_{1}=-y_{0}=1.91$ . The corresponding eigenvalue is $\lambda\approx-0.54$ ,
and all other eigenvalues are positive. We show this function for
later comparison with the first eigenvector field of the second vari-
ation of adiscrete catenoid in section 7.

We put Dirichlet boundary conditions on the upper and lower boundary segments
of 7?.

Lemma 5.1. An $L^{2}$ basis of eigenfienctions of the Jacobi operator $L=-\triangle+2K$ of
$\Phi$ can be chosen so the eigenfunctions are of the form $\sin(mx)f(y)$ or $\cos(mx)f(y)$ ,
for $m\in \mathrm{N}\cup\{0\}$ .

Proof It is well known that $L$ , with respect to the Dirichlet boundary condition, has
adiscrete spectrum in $\mathbb{R}$ , and that, for all $\lambda\in \mathbb{R}$ , $\mathrm{k}\mathrm{e}\mathrm{r}(L-\lambda)$ is afinite dimensional
space of smooth functions. Furthermore, an orthonormal basis of the $L^{2}$ space over
7? (with respect to $ds^{2}$ ) can be obtained as aset of smooth eigenfunctions of $L$

satisfying the Dirichlet boundary condition.
Define the operator $D=i \frac{\partial}{\partial x}$ . Then $DL=LD$, so $D:\mathrm{k}\mathrm{e}\mathrm{r}(L-\lambda)arrow \mathrm{k}\mathrm{e}\mathrm{r}(L-\lambda)$ .

For functions $u$ and $v$ that are $2\pi$-periodic in $x$ we have

$\langle\frac{\partial}{\partial x}u, v\rangle_{L^{2}}+\langle u, \frac{\partial}{\partial x}v\rangle_{L^{2}}=\int_{R}(u_{x}\overline{v}+u\overline{v}_{x})\cosh^{2}$ ydxdy $=0$ ,

which implies that the operator $\frac{\partial}{\partial x}$ is skew symmetric. Therefore $D$ is symmetric.
$D$ is elliptic, so it has abasis of eigenfunctions in each finite dimensional space

$\mathrm{k}\mathrm{e}\mathrm{r}(L-\lambda)$ . So we can choose aset of functions that is simultaneously an $L^{2}$ basis
of eigenfunctions for both $D$ and $L$ . Since the eigenfunctions of $D$ must be of the
form $e^{mxi}f(y)$ with $m\in \mathbb{Z}$ , the lemma follows. $\square$

Now note that an eigenfunction $\sin(mx)f(y)$ of $L$ satisfies

$L(\sin(mx)f(y))$ $=$ A $\sin(mx)f(y)$

$=$ $\frac{m^{2}\sin(mx)f(y)}{\cosh^{2}y}-\frac{\sin(mx)f_{yy}(y)}{\cosh^{2}y}-\frac{2\sin(mx)f(y)}{\cosh^{4}y}$ ,

and asimilar computation holds for an eigenfunction $\cos(mx)f(y)$ . It follows that

$f_{yy}=$ $(m^{2}-\lambda \cosh^{2}y-2\cosh^{-2}y)f$ ,

and finding the eigenvalues Aamounts to finding solutions of this equation that
satisfy the boundary conditions $f(y_{0})=f(y_{1})=0$ . Thus we know all of the eigen-
functions, up to solutions of adetermined $2\mathrm{n}\mathrm{d}$-order ordinary differential equation
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6. JACOBI OPERATOR FOR DISCRETE $\mathrm{C}\mathrm{M}\mathrm{C}$ SURFACES

Since we know the second variation matrix $Q$ explicitly (section 4), we are now
able to find the “discrete Jacobi operator” for compact discrete $\mathrm{C}\mathrm{M}\mathrm{C}$ surfaces $\mathcal{T}$ ,
analogous to $L$ in the smooth case (section 5). We first convert variation vector
fields into piece-wise linear continuous functions, in order to naturally describe the
$L^{2}$ norm on the space of variation vector fields. With this $L^{2}$ norm, we then find the
correct matrix for the discrete Jacobi operator, and this matrix has the eigenvalues
and eigenfunctions of the second variation of $\mathcal{T}$ .

Consider apermissible variation

$p_{j}(t)=p_{j}+t\cdot v_{p_{\mathrm{i}}}+\mathcal{O}(t^{2})$ ,

where the vector-valued function $v_{p_{j}}\in \mathbb{R}^{3}$ defined on the $n$ interior vertices $\mathcal{V}_{int}=$

$\{p_{1}, \ldots,p_{n}\}$ of $\mathcal{T}$ ( $v_{p}=\vec{0}$ if $p$ is aboundary vertex) comprises its variation vector
field $v\vec{\ell}_{=}(v_{p_{1}}^{t}, \ldots, v_{p_{\mathfrak{n}}}^{t})$, as defined in section 4.

There is anatural way to extend the function $\vec{v}$ to acontinuous piece-wise linear
$\mathbb{R}^{3}$-valued function $v$ defined at every point of $\mathcal{T}$ . In order to define $\mathrm{u}$ , we first
define aset of piece-wise linear continuous head functions:

Definition 6.1. For $p\in \mathcal{V}:nt$ , let $\psi_{p}$ be the head function on $\mathcal{T}$ which is 1at $p$

and is 0at all other vertices of T. We then extend $\psi_{p}$ to every point of $\mathcal{T}$ (in the
unique way) so that it is linear on each edge and each face of $\mathcal{T}$ .

There is ahead function for each $pj\in \mathcal{V}_{\dot{|}nt}$, hence there are $n$ of them, and the
support of $\psi_{\mathrm{P}\mathrm{j}}$ is star(pj).

Definition 6.2. We define $v$ associated to $\overline{v}$ by

$v|_{T}=v_{p}\psi_{p}+v_{q}\psi_{q}+v_{r}\psi_{f}$ ,

for all triangles $T=(p, q, r)$ in $\mathcal{T}$ .

The function $v$ has the following four properties:
1. $v$ is continuous,
2. $v$ is linear on each triangle $T\subset \mathcal{T}$,
3. $v$ is 0on $\partial \mathcal{T}$ ,
4. $v$ is the variation vector field for the $C^{0}$ surface variation induced by the

associated vertex variation $p_{j}(t)$ .
We will consider the $v_{\mathrm{P}i}$ to be the $\mathbb{R}^{3}$-valued coefficients of $v$ with respect to the

basis of functions $\{\psi_{p_{1}}, \ldots, \psi_{p_{n}}\}$ . And, as the $\psi_{p_{j}}$ form abasis for all functions $v$

with the above properties, they are abasis (with scalars in $\mathbb{R}^{3}$ ) for the following
$3n$-dimensional function space:

Definition 6.3. Define $S_{h}$ of the discrete surface $\mathcal{T}$ to be

$S_{h}:=$ { $v:\mathcal{T}arrow \mathbb{R}^{3}|v\in C^{0}(\mathcal{T})$, $v$ is linear on each $T\in \mathcal{T}$ and $v|\partial \mathcal{T}=0$}.

We have named this space $S_{h}$ , in keeping with the notational conventions of the
theory of finite elements. Note that the component functions of any function $v\in S_{h}$

all have bounded Sobolev $H^{1}$ norm.
Now we can find an explicit form for the $L^{2}$ inner product on $S_{h}$ with respect

to the basis $\{\psi_{p_{1}}, \ldots, \psi_{\mathrm{P}n}\}$:
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FIGURE 10. The eigenvectors of the discrete square with $n=15$
associated to the eigenvalues A392, A393, $\lambda_{394}$ , and $\lambda_{395}$ . Note that
these eigenvectors closely resemble the eigenfunctions $\sin(x)\sin(y)$ ,
$\sin(x)\sin(2y)-\sin(2x)\sin(y)$ , $\sin(x)\sin(2y)+\sin(2x)\sin(y)$ , and
$\sin(2x)\sin(2y)$ from the smooth case.

Proposition 6.1. There is a positive definite $3n\cross 3n$ matrix
$S=(\langle\psi_{p:}, \psi_{p_{\mathrm{j}}}\rangle_{L^{2}}I_{3\cross 3})_{*,j=1}^{n}$.

so that
$\langle u, v\rangle_{L^{2}}=\vec{u}^{t}S\vec{v}$

for all $u$ , $v\in S_{h}$ with associated vectors $\vec{u},\vec{v}\in \mathbb{R}^{3n}$ . The matrix $S$ consists of $3\cross$ $3$

blocks $S_{p:p_{j}}$ in an $n\cross n$ grid, with the diagonal (resp. nondiagonal) blocks each
being multiples of the $3\cross 3$ identity matrix,

$S_{p\mathrm{j}p_{j}}=( \sum_{T\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}(p_{j})}\frac{|T|}{6})I_{3\cross 3}$ , resp. $S_{p.p_{\mathrm{j}}}.=( \sum_{T\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}(\overline{pp_{j}})}\frac{|T|}{12})I_{3\cross 3}$

when $p_{i}$ and $p_{j}$ are adjacent, and $S_{p.p_{j}}.=0$ when $p$:and $pj$ are not adjacent.

Proof We first note that

$|v|_{L^{2}}^{2}:= \int_{\mathcal{T}}\langle v, v\rangle dA=\sum_{T\subset \mathcal{T}}\int_{T}\langle v|_{T}, v|\tau\rangle dA$ .

Acomputation yields that for each triangle $T\subset \mathcal{T}$,

$\int_{T}\psi_{p}^{2}dA=\frac{|T|}{6}$ , $\int_{T}\psi_{p}\psi_{q}dA=\frac{|T|}{12}$ ,
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FIGURE 11. The eigenvectors of the discrete square
with $n$ $=$ 15 associated to the eigenvalues $\lambda_{396}$ , $\lambda_{397}$ ,
$\lambda_{398}$ , and $\lambda_{399}$ . Note that these eigenvectors closely re-
semble the eigenfunctions $\sin(3x)\sin(y)$ – $\sin(x)\sin(3y)$ ,
$\sin(3x)\sin(y)+\sin(x)\sin(3y)$ , $\sin(3x)\sin(2y)-\sin(2x)\sin(3y)$ ,
and $-\sin(3x)\sin(2y)-\sin(2x)\sin(3y)$ fiom the smooth case.

for any vertices $p$ and $q$ of $T$ . Thus

$|v|_{L^{2}}^{2}= \sum_{T=(p,q,r)\in \mathcal{T}}\frac{|T|}{6}\{|v_{p}|^{2}+|v_{q}|^{2}+|v_{r}|^{2}+\langle v_{p}, v_{q}\rangle+\langle v_{p}, v_{r}\rangle+\langle v_{q}, v_{r}\rangle\}$.

Hence, for any two functions $u,v\in S_{h}$ , we have

$\langle u,v\rangle_{L^{2}}=$

$\sum_{T=(p,q,r\rangle\in \mathcal{T}}\frac{|T|}{12}\{\langle u_{p}+u_{q}+u_{r},v_{p}+v_{q}+v_{r}\rangle+\langle u_{p},v_{p}\rangle+\langle u_{q}, v_{q}\rangle+\langle u_{r},v_{r}\rangle\}$

$= \sum_{p_{j}\in \mathcal{V}_{\mathfrak{n}t}}(\langle u_{p_{\mathrm{j}}},v_{p}\rangle(\sum_{T\in\epsilon \mathrm{t}\mathrm{a}\mathrm{r}(p_{j})}\frac{|T|}{6})+$

$p: \in \mathcal{V}:nt\sum_{\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}}$

to

$p_{\mathrm{j}} \langle u_{p_{\mathrm{j}}}, v_{p:}\rangle(\sum_{T\in \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}(\overline{p_{}p_{j}})}\frac{|T|}{12}))$

Hence the $3\cross 3$ blocks $S_{p:p_{\mathrm{j}}}$ are as in the proposition.
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FIGURE 12. The eigenvector associated to the eigenvalue $\lambda_{0}\approx$

-0.542 of adiscrete catenoid. Here we have also shown this $\mathbb{R}^{3n_{-}}$

vector field on ahorizontal planar grid (where each $\mathbb{R}^{3}$-vector is
vertical with length equal to that of the corresponding $\mathbb{R}^{3}$-vector
in the $\mathbb{R}^{3n}$-eigenvector field on the discrete catenoid), so that we
can compare it directly with the eigenfunction shown in Figure
9for the smooth case. Notice that the plot on the right closely
resembles the curve in Figure 9.

We now compute the discrete Jacobi operator $L_{h}$ : $S_{h}arrow S_{h}$ associated to the
second variation formula for the surface, i.e. $\int_{\mathcal{T}}v^{t}L_{h}vdA=\vec{v}^{t}Q\vec{v}$ for all $v\in S_{h}$

(recall that $Q=Q_{a}-HQv$ ). We need the property $L_{h}(S_{h})\subset S_{h}$ so that we can
consider the eigenvalue problem for $L_{h}$ . And we also wish $L_{h}$ to be linear and
symmetric ( $\int_{\mathcal{T}}u^{t}L_{h}v=\int_{\mathcal{T}}v^{t}L_{h}u$ for all $u$ , $v\in S_{h}$ ). With these properties, the
choice of $L_{h}$ is canonical:

Proposition 6.2. There exists a unique linear operator $L_{h}$ : $S_{h}arrow S_{h}$ so that
$\int_{\mathcal{T}}u^{t}L_{h}vdA$ is symmetric in $u$ and $v$ and

$\int_{\mathcal{T}}v^{t}L_{h}vdA=vQ\triangleleft\vec{v}$

for all $v\in S_{h}$ . Furthermore, if $v$ is the function in $S_{h}$ associated to the $\mathbb{R}^{3n}$ -vector
$\vec{v}_{f}$ then $L_{h}v$ is the function in $S_{h}$ associated to the $\mathbb{R}^{3n}$ -vector

$S^{-1}Qvrightarrow$ .

Proof For $v= \sum_{j=1}^{n}v_{p_{j}}\psi_{p_{j}}$ , we define

$L_{h}v:= \sum_{i,j,k=1}^{n}(S^{-1})_{p:p_{k}}((Q_{a,p_{k}p_{j}}-HQ_{V,p_{k}p_{j}})v_{p_{j}})\psi_{p:}$ ,

which is the function in $S_{h}$ associated to $S^{-1}Q\overline{v}$. This map $L_{h}$ is clearly linear,
and

$\int_{\mathcal{T}}u^{t}L_{h}vdA=\langle u, L_{h}v\rangle_{L^{2}}=\overline{u}S(S^{-1}Q\vec{v})=\vec{u}^{t}Q\vec{v}$

for all $u$ , $v\in S_{h}$ . Hence, since $Q$ is symmetric, $\int_{\mathcal{T}}u^{t}L_{h}vdA$ is symmetric in $u$ and
$v$ .

Uniqueness of $L_{h}$ with the above properties follows from the following:

$\int_{\mathcal{T}}u^{t}L_{h}vdA=\frac{1}{2}(\int_{\mathcal{T}}(u+v)^{t}L_{h}(u+v)dA-\int_{\mathcal{T}}u^{t}L_{h}udA-\int_{\mathcal{T}}v^{t}L_{h}vdA)$
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FIGURE 13. TwO-thirds of the eigenvectors axe approximately tan-
gential to the surface. For example, here we show the $\mathbb{R}^{3n_{-}}$

eigenvector fields associated to the eigenvalues Ai, $\lambda_{2}$ , and A3
(whose values are just slightly greater than 0).

$= \frac{1}{2}((\overline{u}+\overline{v})^{t}Q(\overline{u}+\vec{v})-\overline{u}^{t}Q\overline{u}-vQ\prec\overline{v})$ .

Hence $\int_{\mathcal{T}}u^{t}L_{h}vdA$ is uniquely determined for all $u\in S_{h}$ , so $L_{h}v$ is uniquely deter-
mined for each $v\in S_{h}$ . $\square$

So the spectrum of the second variation of $\mathcal{T}$ is the set of eigenvalues of $S^{-1}Q$ .
One can check that $S^{-1}Q$ is self-adjoint with respect to the $L^{2}$ inner product on
$S_{h}$ , thus all the eigenvalues of $S^{-1}Q$ are real.

Remark 6.1. Another way to see that $S^{-1}Q$ is the correct discrete Jacobi operator
is to consider the Rayleigh quotient

$\frac{\tilde{v}^{t}Q\overline{v}}{\langle v,v\rangle_{L^{2}}}=\frac{\overline{v}^{t}S(S^{-1}Q\overline{v})}{\vec{v}^{t}S\overline{v}}$ .

Using the standard procedure for producing eigenvalues from the Rayleigh quotient
in this case would produce the eigenvalues of $S^{-1}Q$ .

7. APPROXIMATING SPECTRA OF SMOOTH CMC SURFACES

We can now implement the procedure described in the second half of the intr0-
duction, since we know $S^{-1}Q$ explicitly.

If asequence of compact $\mathrm{C}\mathrm{M}\mathrm{C}$ discrete surfaces { $\eta_{\dot{\iota}=1}^{\infty}$ converges (in the Sobolev
$H^{1}$ norm as graphs over the limiting surface) to asmooth compact $\mathrm{C}\mathrm{M}\mathrm{C}$ surface
$\Phi$ : $Marrow \mathbb{R}^{3}$ , then standard estimates from the theory of finite elements (see, for
example, [3] or [7] $)$ imply that the eigenvalues and eigenvectors (piece-wise linearly
extended to functions) of the operators $L_{h}$ of the $\mathcal{T}_{j}$ converge to the eigenvalues
and eigenfunctions of the Jacobi operator $L$ of $\Phi$ (convergence is in the $L^{2}$ norm
for the eigenfunctions).

For the first two examples here -aplanar square and rotationally symmetric
portion of acatenoid –we know the approximating discrete minimal surfaces ex-
actly, and we know the eigenvalues and eigenfunctions of $L$ for the smooth minimal
surfaces exactly, so we can check that convergence of the eigenvalues and eigenfunc-
tions does indeed occur.

In the final example -asymmetric portion of atrinoid –the spectrum of the
smooth minimal surface is unknown, so we see estimates for the eigenvalues and
eigenfunctions for the first time. Our experiments confirm the known value 3for the
index of this unstable surface, and additionally show us the directions of variation$\mathrm{s}$
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FIGURE 14. One-third of the eigenvectors are approximately per-
pendicular to the surface. For example, here we show the $\mathbb{R}^{3n_{-}}$

eigenvector fields associated to the eigenvalues A147, $\lambda_{171}$ , $\lambda_{204}$ ,
and $\lambda_{210}$ .

that reduce area. Thus we have approximations for maximal spaces of variation
vector fields on the smooth minimal surfaces for which the associated variations
reduce area. (For the approximating discrete surfaces in this example, we do not
have an explicit form; however, the theory of finite elements applies and we can
still expect convergence of the eigenvalues and eigenfunctions (in $L^{2}$ norm), if we
choose the discrete aproximations so that they converge (in $H^{1}$ norm) to the smooth
minimal surfaces.)

7.1. The flat minimal square. Considering the square $M=\{0\leq x\leq\pi$ , $0\leq y\leq$

$\pi\}$ included in $\mathbb{R}^{3}$ as asmooth minimal surface, the eigenvalues and eigenfunctions
of $L$ are $\mu_{m,n}=m^{2}+n^{2}$ and $\phi_{m,n}=\frac{2}{\pi}\sin(mx)\sin(ny)$ for $m$ , $n\in \mathbb{Z}^{+}$ (section 5).

Now we consider the discrete minimal surface $\mathcal{T}$ that is $M$ with aregular square
$n\cross n$ grid. In each subsquare of dimension $\frac{\pi}{n}\cross\frac{\pi}{n}$ , we draw an edge from the lower
left corner to the upper right corner, producing adiscrete minimal surface with $2n^{2}$

congruent triangles with angles $\frac{\pi}{4}$ , $\frac{\pi}{4}$ , and $\frac{\pi}{2}$ .
For this $\mathcal{T}$, $S^{-1}Q$ has no negative eigenvalues, as expected, since the smooth

minimal square is stable. However, we must take tangential motions into account in
the discrete case, and we find that (when writing the eigenvalues in increasing order)
the first tw0-thirds of the eigenvalues are 0and their associated eigenvectors are
entirely tangent to the surface. The final one-third of the eigenvalues are positive,
with eigenvectors that are exactly perpendicular to the surface. Examples of these
perpendicular vector fields are shown in Figures 10 and 11 for $n=15$ . (There are
196 interior vertices, and so there are 588 eigenvalues $\lambda j$ of $S^{-1}Q$ and $\lambda_{\mathrm{O}}=\ldots=$

$\lambda_{391}=0$ and $\lambda_{j}>0$ when $j\in[392,587].)$ The $\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{n}\backslash$vectors shown in these figures
and their eigenvalues are close to those of the smooth operator $L$ of $M$ . We have
$\lambda_{392}=2.022$ $\approx\mu_{1,1}$ , $\lambda_{393}=5.094$ $\approx\mu_{1,2}$ , A394 $=5.148$ $\approx\mu_{2,1}$ , $A\mathit{3}\mathit{9}\mathit{5}=8.347$

$\approx\mu_{2,2}$ ,
$\lambda_{396}=10.434$ $\approx\mu 1,3$ , $\lambda_{397}=10.445$ $\approx\mu 3,1$ , $\lambda_{398}=13.649$ $\approx/\mathrm{i}2,3$ , A393 $=14.12$ $\approx$

$\mu_{3,2}$ .

7.2. Discrete Minimal Catenoids. By Corollary 3.2, we know that the discrete
minimal catenoids converge to smooth catenoids as the meshes are made finer.
Hence the eigenvalues and eigenvectors of the discrete catenoids converge to the
eigenvalues and eigenfunctions of the smooth catenoid. For the discrete catenoids
with relatively fine meshes, we find that tw0-thirds of the eigenvectors are approx-
imately tangent to the surface, and the remaining ones are approximately perpen-
dicular. The approximately perpendicular ones (considered as functions which are
multiplied by unit normal vectors) and their eigenvalues converge to the eigenfunc-
tions and eigenvalues of the smooth catenoid (computed in section 5)
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FIGURE 15. Here we show the projected versions of the eigenvec-
tors in the previous figure, for use in comparing with the eigenfunc-
tions of the smooth case considered in section 5. These projected
versions are made the same way as in Figure 12.

Consider the example shown in the Figures 12, 13, 14, and 15. Here the catenoid
has $9\cross 14=126$ interior vertices, so the matrix $S^{-1}Q$ has dimension 378 $\cross 378$ .
The first eigenvalue of this matrix is $\lambda_{0}\approx$ -0.542 and $\lambda j>0$ for all $j\in[1,377]$ ,
as expected, since the smooth complete catenoid has index 1([6]). Note that $\lambda_{\mathrm{O}}$ is
very close to the negative eigenvalue for the smooth case, described in the caption of
Figure 9(the closest matching smooth catenoid portion satisfies $y_{1}=-y_{0}=1.91$ ).
The first eigenfunction in the discrete case (Figure 12) is also very close to the first
eigenfunction in the smooth case (Figure 9).

7.3. Discrete Minimal Trinoids. Since the trinoid has index 3, we find that
approximating discrete surfaces with relatively fine meshes have 3negative eigen-
values. And we can look at the corresponding eigenvector fields (which estimate
the eigenfunctions in the smooth case), shown in Figure 16. For the approxi-
mating discrete trinoid in Figure 16, the first four eigenvalues are approximately
-3.79, -1.31, -1.31, 0.014, so we indeed have 3negative eigenvalues and the second
eigenvalue has multiplicity 2.
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FIGURE 16. Variation vector fields for three area-reducing varia-
tions of adiscrete approximation of acompact portion of atrinoid.
The lower row has overhead views of these variation vector fields,
as well as an overhead view of the variation vector field associated
to the fourth (and first positive) eigenvalue.
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FIGURE 17. The first eigenvector field (whose corresponding eigen-
value is the first one and is negative) for adiscrete approximation
of acompact portion of agenus 1Costa surface. Two other views
of this discrete surface are shown
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FIGURE 18. The first eigenvector field for adiscrete approximation
of acompact portion of an Enneper surface. The associated first
eigenvalue is negative and is the only negative eigenvalue that is
not approximately zero, corresponding to the fact that the smooth
Enneper surface has index 1. Those other negative (approximately
zero) eigenvalues have corresponding eigenvector fields that appear
roughly tangent to the surface.
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