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Abstract

We present an extension of term rewriting systems with the mechanism of syn-
chronization, called synchronized TRSs. The notion of synchronization is newly in-
troduced for synchronizing applications of rewrite rules. The construction of $\mathrm{s}\mathrm{y}\mathrm{n}\mathrm{c}\mathrm{h}\mathrm{r}\triangleright$

nized TRSs can be regarded as acombination problem of TRSs. We prove fundamen-
tal properties of synchronized ground TRSs:

(1) Termination property is decidable for finite $\mathrm{r}\mathrm{i}\grave{\mathrm{g}}\mathrm{h}\mathrm{t}$-ground synchronized TRSs.

(2) The reachability problem for synchronized ground TRSs is undecidable.

We show two prooS of the second result, using the halting problem for two counter
automata and using Post’s correspondence problem. The prooffi also reveal explic-
itly arole of synchronization to be acorrespondence or coordination relation among
computations.

1Introduction
The notion of term rewriting systems (TRSs) gives amathematical model of computation
in terms of aset of rewrite rules. In particular, the traditional TRSs play a role of anatural
model of sequential computations. We present an extension of term rewriting systems
with the mechanism of synchronization, called synchronized TRSs. Synchronization is
widely used as amechanism of parallel programming with explicit concurrency. The notion
of synchronization is newly introduced into TRSs from the motivation for synchronizing
applications of rewrite rules, i.e., synchronized computation. The new notion captures
intrinsically paralel computation. We prove fundamental properties of synchronized TRSs:

(1) Termination is decidable for finite right-ground synchronized TRSs.

(2) The reachabilty problem for synchronized ground TRSs is undecidable.
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It is well-known that termination for finite right-ground TRSs is decidable. We show that
this property also holds for finite right-ground synchronized TRSs, although the parallel
computation is not closed under contexts. On the other hand, the reachabilty problem
of ground TRSs is known $\mathcal{P}$-complete[TN83], and the decidabilty result is now extended
to more general cases [Oya90, NT99]. However, from the second result the reachabilty
problem becomes undecidable even in the case of synchronized ground TRSs. Moreover,
synchronized ground TRSs has Turing computability. The encodings used in the prooffi also
reveal explicitly arole or mechanism of synchronization in pure programming languages.

The notion of synchronization is involved in the work on Metaterm Rewriting Calculus
(MRC) by Ohshima and Sakabe [OS99]. Although both have synchronized annotations
(labels) for rewrite rules, the key distinction is that occurrences $t_{1}$ and $t_{2}$ to be synchronously
rewritten are explicitly mentioned as anew term $t_{1}\mathrm{s}\mathrm{y}\mathrm{n}\mathrm{c}t_{2}$ in $[\mathrm{O}\mathrm{S}\Re]$ , and hence our results
obtained here cannot be applied to their calculus straightforwardly.

2Synchronized Term Rewriting Systems

(1) the term $s$ in the left-hand side is not avariable, and

(2) the variables appeared in the $\mathrm{r}\mathrm{i}\phi \mathrm{t}$-hand side $t$ are contained in the left-hand side $s$ .

We write $sarrow t$ for $\langle$$s$ , $t)$ . Let $R$ be aset of rewrite rules. A $t\mathrm{e}\mathrm{m}$ $oe$ riting system is
defined as apair ($\Sigma,R\rangle$ . For simplicity we often $\mathrm{c}\mathrm{a}\mathrm{u}$ aterm rewriting system any set $R$

of rewrite rules. Aterm rewriting system $R$ is called finite if $R$ is afinite set. If for each
$larrow r$ $\in R$ the right- and side $r$ contains no variables, then the term rewriting system $R$ is
caUd right-ground.

A $te\mathrm{m}$ context is obtained from term by replacing one occurrence of the subterm with
aspecial symbol $[]$ cffled ahole. Aterm context is denoted by $t[]$ . For aterm context $t[]$

and aterm $s$ , $t[s]$ denotes aterm obtained by placing $s$ into the hole of $t[]$ . Asubstitution
$\sigma$ is amap from $\mathcal{T}$ to $\mathcal{T}$ such that $\sigma(f(t_{1},\ldots,t_{n}))=f(\sigma(t_{1}), \ldots,\sigma(t_{l},))$ for every $f\in F_{n}$ .

Aone step rewriting (reduction) relation $arrow R$ is defined as $t[\sigma(l)]\prec_{R}t[\sigma(r)]$ for some
$larrow r\in R$. We say that the term $t[\sigma(l)]$ is reduced (contracted) to $t[\sigma(r)]$ by the application
of $larrow r$ $\in R$, and $\sigma(l)$ is called a redex. Aterm is in nomal $fom$ if and only if it contains
no redex. We denote the transitive closure $\mathrm{o}\mathrm{f}arrow R$ by $\prec_{R}^{+}$ , and the reflexive and transitive
closure by $\prec_{R}^{*}$ , respectively
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Second we define asynchronized $te\mathrm{m}re$ riting system (STRS) to be aterm rewriting
system consisting of labelled rewrite rules. We write $i$ : $larrow r$ for alabelled rewrite rule,
where $i$ is called alabel or an annotation for synchronization. An STRS $R$ is called finite
right-ground if $R$ is afinite set and the right-hand side of every rule in $R$ contains no
variables. A ground STRS is an STRS in which no rewrite rule contains variables. Aone
step rewriting relation $=_{R}$ by an STRS $R$ is defined as contracting, at pairwise disjoint
positions in aterm, maximal number of redexes simultaneously by rewrite rules only with
the same annotation. The transitive closure of $\mathrm{Z}_{R}$ is denoted by $\supset_{R}^{+}$ , and the reflexive
and transitive closure is by $=_{R}^{\mathrm{s}}$ . We cffi computation by the application of $=_{R}$ $\mathrm{m}\mathrm{n}\cdot \mathrm{m}\mathrm{a}\mathrm{N}\mathrm{y}$

parallel computation.
For instance, let $R$ be the following STRS:

$R=(\begin{array}{ll}1\cdot.aarrow b 2\cdot.barrow c1\cdot.aarrow c 2\cdot.carrow a1..f(x)arrow g(x,x) \end{array})$

Then we have one step reduction by maximally parallel computation, as follows:
$f(a)\supset_{R}f(b)$ , $f(c)$ , or $g(a, a)$ ;
$g(a, f(a))\supset_{R}g(b, f(b))$ , $g(b, f(c))$ , $g(c, f(b))$ , $g(c, f(c))$ , $g(b,g(a,a))$ , or $g(c,g(a, a))$ ;
$g(a, b)\Xi_{R}g(b, b)$ , $\mathrm{g}(\mathrm{c},$ , or $g(a, c)$ .

iRom the definition, the maximally parallel computation is not closed under acontext
in general. That is, for aterm context $t[]$ , $t[s_{1}]p_{R}t[s_{2}]$ even though $s_{1}\supset_{R}s_{2}$ . In this
case, we only obtain $t[s_{1}]=_{R}t[s_{2}]$ for some context $\mathrm{P}[]$ . It is clear from the definition that
$\supset_{R}\subseteqarrow_{|R|}^{+}$ , where $|R|$ denotes aTRS obtained by omitting the labels from $R$. The inverse
direction $\supset_{R}^{+}\supseteqarrow_{|R|}^{+}$ does not hold true, in general, because of the synchronized annotations.
This property is an essential point of giving encodings in the following sections, so that the
correspondence relation of Post’s correspondence problem is naturally represented as the
notion of synchronization together with ground terms as well as the coordination of the
two counters of automata. In the following sections, we investigate the termination and
reachability properties for STRSs with the maximally parallel computation.

3Termination for finite right-ground STRSs
In this section, we prove that termination is decidable for finite right-ground STRSs. An
STRS $R$ is terminating (strongly nomalizing or noetherian) if and only if there is no infinite
reduction sequence $t_{1}\supset_{R}t_{2}\supset_{R}\cdots$ . An STRS is weakly nomalizing if every term has a
normal form.

Lemma 1An STRS is not terminating if and only if it admits infinite reduction sequences
that contain a root rewrite step.

Proof. We show the if part since the only-if part is clear. Assume that we have an
infinite reduction sequence Seq: $t_{1}=$ $t_{2}=$ $\cdots$ . By induction on the structure of $t_{1}$ , we
prove that there also exists an infinite reduction sequence that contain aroot rewrite step.
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The base case is obvious, i.e., aconstant $t_{1}$ itself is contracted.
Suppose $t_{1}=f(s_{1}, \ldots, s_{1*})$ . If Seq contains no root rewrite steps, then all the steps take

place in the proper subtenns $s_{1}$ , $\ldots$ , $s_{n}$ . The number of the subtenns is finite, while Seq
admits an $\underline{\inf \mathrm{i}\mathrm{n}\mathrm{i}}\mathrm{t}\mathrm{e}$ number of rewrite steps. Hence, from pigeonhole principle there exists
$S$:that admits an infinite reduction. According to the induction hypothesis, we also have
an infinite reduction that contains aroot rewrite step. $\square$

Corollary 1A right-ground STRS $R$ is terminating if and only $|.f$ for any rule $i:larrow r\in$

$R$, $r$ is terminating.

Proof. We show the only-if part since the if part is clear. Suppose that $R$ had an
infinite reduction sequence. From Lemma 1, the infinite path contains aroot rewrite step.
A $\cdot\ovalbox{\tt\small REJECT} \mathrm{t}$-yound STRS guarantees that aredex is the right- and side of arewrite rule.

$\mathrm{N}\mathrm{o}\mathrm{w}\square$

$\mathrm{m}$ of them are terminating, which $\dot{g}\mathrm{v}\mathrm{a}\mathrm{e}$ acontradiction.

Lemma 2Let $R$ be a finite right-ground STRS.
$R$ is not terminating if and only $|.f$for some term context $t[]$ and a redex $mle$ $i$ : $larrow r\in R$,
we have $r$ $3_{R}^{+}t[r]$ .

$Pmf$. The if part is proved by induction on the cardinalty of $R$. If $R$ is not terminating,
then ffom Corollary 1 there exists :: $larrow r$ $\in R$ such that we have an infinite sequence Seq:
$r$ $\equiv t_{1}3_{R}t_{2}3_{R}\cdots$ . According to the excluded middle, the rewrite rule $i$ : $larrow r\in R$ is
applied in Seq or not.
Case where :: $larrow r$ is applied in Seq:
We have $r$ $3_{R}^{*}\#[\sigma(l)]3_{R}t[r]$ for some term contexts $f[]$ and $t[]$ .
$\mathrm{O}\mathrm{t}\mathrm{h}\alpha \mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}$:
The statement can be $\infty \mathrm{f}\mathrm{f}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{d}$ by the use of the induction hypothesis for $R\backslash \{i:larrow r\}$ .

For the only-if part, if we have $r3_{R}^{+}t[r]$ , then we also have $t[r]=_{R}^{+}t_{1}[t[r]]=_{R}^{+}\cdots$ for
some context $t_{1}[]$ , even though the computation is not closed under contexts. Hence,

$\square r$

induces an infinite reduction sequence, and $R$ is not terminating.

Proposition 1Termination is decidable for finite right-grv und STRSs.

Proof. The decision procedure for termination of finite rigb round STRSs is derived
from Lemma 2. Generate the reducts of the right-hand sides of aU the rewrite rules in a
breadth-first way. If we do not observe $r$ $3_{R}^{+}t[r]$ for some context $t[]$ , then the STRS is
terminating from Lemma 2, and hence the process of the reductions eventually terminates.
If we observe $r3_{R}^{+}t[r]$ for some context $t[]$ , then the STRS cannot be terminating

$\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\square$

Lemma 2.

We are currently investigating whether other known (un)decidability results for re
stricted classes of TRSs carry over to STRSs.
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4Synchronization and Post’s Correspondence Prob-
lem

In this section and the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\cdot \mathrm{g}$ section, we prove that the $\mathrm{r}\mathrm{e}a\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{b}\underline{\mathrm{i}\mathrm{l}\mathrm{i}}\mathrm{t}\mathrm{y}$ property is undecid-
able for STRSs even consisting only of ground terms, and that ground STRSs has Turing
computability. The decidable reachability property cannot be carried over to ground STRSs
from ground TRSs. The reachability problem for STRSs is, given an STRS $R$ and terms $t_{1}$

and $t_{2}$ , to decide whether $t_{1}=_{R}^{\mathrm{s}}t_{2}$ or not.

Let $\Sigma$ be anon-empty finite set including at least two symbols, called alphabet. For
simplicity, we set $\Sigma$ as {0, 1} without loss of generalty. Let $\Sigma^{+}$ be aset of aU words over
$\Sigma$ excluding $\mathrm{n}\mathrm{u}\mathrm{U}$ words. Given an arbitrary finite set $\{(\alpha:,\sqrt{}^{})|\alpha:,\sqrt{}^{}\in\Sigma^{+}(1\leq i\leq n)\}$ of
pairs of corresponding non-null words on $\Sigma$ , then Post’s correspondence decision problem
(PCP) [POs46] is to decide if there exist $i_{1}$ ,i2, $\ldots$ , $i_{k}$ such that $\alpha:_{1}\alpha_{2}\dot{.}\cdots$ $\alpha:_{k}=\sqrt.\cdot 1\sqrt.\cdot 2\ldots$ $\sqrt.\cdot k$

$(k\geq 1, 1\leq i_{\mathrm{j}}\leq n)$ .
Given an instance of Post’s correspondence problem, then define the following STRS

$R$ over the signature consisting of constants $a$, $b,c$, $d$, unary function symbols 0, 1, and a
binary function symbol $f$ :

$R=(n.\cdot+3^{\cdot}..\cdot.0(d)arrow dn+3.0(c)arrow cn+1.0(b)arrow dn+1.0(a)arrow c1.aarrow\alpha_{1}1(a)1.barrow\sqrt(b)$ $n..+4^{\cdot}..\cdot$

.
$1(d)arrow dn.barrow\sqrt n(b)n.aarrow\alpha.*n+2.1(a)arrow cn+4\cdot 1(c)arrow cn+2\cdot 1(b)arrow d(a))$

where the natural numbers 1, 2, ..., $n+4$ are used as annotations for synchronization.

Lemma 3 $f(a, b)=_{R}^{*}f(c,d)$ if and only if the instance of Post’s correspondence problem
has a solution.

Proof. $(\Rightarrow)$ The term $f(a, b)$ can be reduced only by the use of rewrite rules annotated
with $1\leq j\leq n$. Then we obtain

$f(a, b)\supset_{R}^{+}f(\alpha:_{1}(\alpha_{2}.\cdot\cdots\alpha:_{k}(a)\cdots), \sqrt{}^{_{1}}(\sqrt|.2\ldots\sqrt\dot{.}k(b)\cdots))$

for some $i_{1}$ , $i_{2}$ , $\ldots$ , $i_{k}$ . Now one can apply only rewrite rules annotated with either $n+1$ or
$n+2$ , and then apply only the rules annotated with either $n+3$ or $n+4$. The right-hand
side is here reduced to $f(c, d)$ ffom the assumption, which implies that $\alpha:_{1}\alpha_{2}.\cdot\cdots$ $\alpha_{k}.\cdot=$

$\sqrt i_{1}\sqrt.\cdot 2\ldots\sqrt.\cdot k$ from the definition of rules annotated with $n+1,n+2,n+3,n+4$.
$(\Leftarrow)$ Assume that $\alpha:_{1}\alpha_{2}.\cdot\cdots\alpha_{\dot{1}_{k}}=\sqrt{}^{_{1}}\sqrt _{2}\cdots$ $\sqrt.\cdot k$ for some $i_{1},i_{2}$ , $\ldots$ , $i_{k}$ . We now have

$f(a,b)=_{R}^{+}f(\alpha:_{1}(\alpha:_{2k}\cdots\alpha\dot{.}(a)\cdots),\sqrt.\cdot 1(\sqrt|.2\ldots\sqrt|.k(b)\cdots))$ .

Then from the synchronized applications of rewrite rules annotated with either $n+1$ or
$n+2$ , foUowing with either $n+3$ or $n+4$, one eventually has

$f(\alpha:_{1}(\alpha_{\dot{1}2}\ldots\alpha_{k}\dot{.}(a)\cdots),\sqrt{}^{_{1}}(\sqrt{}^{_{2}}\cdots\sqrt|.k(b)\cdots))=_{R}^{+}f(c, d)$ ,

since $\alpha:_{1}\alpha:_{2}\cdots\alpha:_{k}=\sqrt{}^{_{1}}\sqrt _{2}\cdots$ $\sqrt\cdot.k$ . $\square$
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Theorem 1The reachability problem for ground STRSs is undecidable.

Proof. Rom Lemma 3and [POs46]. $\square$

The theorem above says that it is unsolvable to determine whether the term $f(a, b)$ has
anormal form. In other words, it is undecidable to decide whether the STRS $R$ constructed
ffom PCP is weakly normalzing or not.

5Synchronization and TwO-Counter Automata

5.1 Two Counter Automata
Following [HU79, Sch97], we briefly introduce two counter automata. $O$ denotes an opera-
tion on counters, and $T$ stands for astates of counters, as follows:

$\mathrm{O}\in O$ $=$ {$NOP$,INC, $DEC$}:operations on counters
$T\in \mathcal{T}=\{Z, NZ\}$ :states of acounter

AtwO-counter automaton is defined by an off-line Turing machine with two counters,
as foUows:
$\bullet$ Two Counter Automaton $\langle Q, q., q" \delta,C_{1}, C_{2}\rangle$

$Q$:aset of states including an initial state $q_{l}$ and afinal state $q_{f}$

$\delta$:a $\mathrm{n}\mathrm{a}\mathrm{t}$-step deterministic function from $\mathcal{T}^{2}\mathrm{x}Q$ to $O^{2}\mathrm{x}Q$ such that
$\langle T_{1},T_{2},q\rangle\ovalbox{\tt\small REJECT}\mapsto\iota(O_{1},O_{2},\phi\rangle$

$C_{1}$ , $C_{2}$ :two counters denoting natural numbers

An instantaneous description of the two counter automaton is defined as $\langle C_{1}, C_{2}, q\rangle$ , as
follows:
$\bullet$ Instantaneous description of the automaton (ID)

$(n_{1},n_{2},q)\ovalbox{\tt\small REJECT}\mapsto s(n_{1}’,\mathrm{n}_{2}’$ , $\phi\rangle$ where $n_{t},n_{}’\in N$

Starting $\mathrm{I}\mathrm{D}:(0,0,q.\rangle$ ;Final $\mathrm{I}\mathrm{D}:(0,0,q_{f}\}$

For atechnical reason, without loss of generality we have the following assumption (A):
If $\langle T_{1},T_{2},q_{1}\rangle\mapsto s\langle O_{1},O_{2},q_{2}$), then there is no transition such that
($T_{1}’,T_{2}’,q_{1}\rangle\mapsto s(U_{1}, U_{2},q_{2})$ for $T_{1}\neq T_{1}’$ , $T_{2}\neq T_{2}$ , $O_{1}\neq\sigma_{1}$ , or $O_{2}\neq\sigma_{2}$ .
Remarked that the assumption guarantees that ($T_{1},T_{2},q\rangle\vdash\nu_{\delta}\langle O_{1},O_{2},\phi\rangle$ is uniquely

determined by the pair of the two states $(q,\phi)$ .

Theorem 2([Min61, Fis66, HU79])
A twO-counter automaton can simulate an arbitrary Turing machine.

5.2 Encoding of $\mathrm{C}_{2}$-Automata via Synchronized Ground TRS
It is, in general, impossible to encode $\mathrm{t}\mathrm{w}\triangleright$ ounter automata via ground TRS, because one
has Theorems 2while ground TRSs have less computational power than Turing machine.

110



First we observe what is the essential distinction between tw0-counter automata and ground
TRSs. Filling the deep gap naturally leads to the notion of synchronized TRSs.

Following [Sch97], we use one bimy-function symbol $f$ , and constants 0, 1and $q_{\mathrm{j}}^{1},q_{j}^{2}$

for $q_{j}\in Q$ , where $1\leq j\leq \mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(\mathrm{Q})$ . For aset $Q$, card(Q) denotes the cardinalty of the
set.
$\bullet$

$)$

$\bullet$ Code of the transition $\delta$ : $\langle T_{1},T_{2},q_{1}\rangle\vdasharrow\langle O_{1}, O_{2},q_{2}\rangle$

Let $k=\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(\mathrm{Q})$ . For $j\in\{1, \ldots, k\}$ , $\delta$ is coded as aunion of the two sets of the rewrite
rules

$\mathcal{R}$ $=\mathcal{R}_{1}\cup \mathcal{R}_{2}=\{b_{j}^{1}arrow b_{j}^{\prime 1}|j=1, \ldots,k\}$ $\cup\{b_{\dot{f}}^{2}arrow b_{\mathrm{j}}^{\Omega}|j=1, \ldots, k\}$

consisting of $b\mathrm{j}$ $arrow\theta j$ $(i=1,2)$ which are defined based on (A), as follows:

Here, R. describes acomputation relating to the counter $i(i=1,2)$ . Now we can simulate
each transition of ID’s

$\langle 0, 0, q_{s}\rangle\vdash+_{\delta}\langle n, n’, q\rangle\vdash+_{\delta}\cdots$

via the two steps rewriting denoted by $arrow_{\mathcal{R}}^{2}$

$t_{\langle 0,0,q.\rangle}arrow_{\mathcal{R}}^{2}t_{\{\cdot*,n’,q\rangle}arrow_{\mathcal{R}}^{2}\cdots$ .

Lemma 4If we have $\langle n_{1},n_{2}, q_{1}\rangle|arrow_{\delta}\langle n_{1}’,n_{2}’, q_{2}\rangle$ , then $t_{(n_{1},\mathfrak{n}_{2},q_{1})}arrow_{\mathcal{R}}^{2}t_{\langle n_{\acute{1}},.*_{\acute{2}},q_{2}\}}$ .

Proof. Rom the case analysis on the definition of the implementation of $\delta$ . $\square$

Proposition 2
A twO-counter auto maton stops, then $f(f(0,q_{s}^{1}),f(0,q_{s}^{2}))arrow_{\mathcal{R}}^{\mathrm{P}}f(f(0, q_{f}^{1}),f(0,q_{f}^{2}))$ .

Proof. Rom Lemma 4. $\square$

Noted that the inverse direction of Proposition 2is not true in general. For instance,
take the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\dot{\mathrm{w}}\mathrm{n}\mathrm{g}$

$\delta$ :

$\delta$
$=\{\langle NZ,NZ,q_{2}\rangle\mapsto_{\delta_{4}}\langle DEC,DEC,q_{f}\rangle\langle NZ,NZ,q_{1}\rangle\mapsto_{\delta_{2}}\langle NOP,NOP,q_{2}\rangle\langle Z,Z,q_{s}\rangle|arrow_{\delta_{1}}\langle INC,NOP,q_{1}\rangle,,$

,
$\langle NZ,NZ,q_{3}\rangle\mapsto_{\delta_{5}}\langle DEC,DEC,q_{f}\rangle\langle NZ,Z,q_{1}\rangle\vdash\succ_{\delta_{3}}\langle NOP,INC,q_{3}\rangle,\}$

Then we obtain the expected transitions:

$\langle 0, 0, q_{s}\rangle\vdasharrow\delta_{1}\langle 1,0,q_{1}\rangle\vdash*_{\delta_{3}}\langle 1,1,q_{3}\rangle\vdash+_{\delta_{5}}\langle 0,0,q_{f}\rangle$

However, not only this but also the following can be obtained by the rewriting $\prec_{\mathcal{R}}$ :
$f(f(0,q_{s}^{1})$ , $f(0, q_{s}^{2}))arrow_{\mathcal{R}}^{2}f(f(0,f(1, q_{1}^{1})), f(0, q_{1}^{2}))$

$arrow_{\mathcal{R}}f(f(0, f(1,q_{2}^{1})),f(0,q_{1}^{2}))arrow_{\mathcal{R}}f(f(0, f(1,q_{2}^{1})),f(0, f(1,q_{3}^{2})))$

$arrow_{\mathcal{R}}f(f(0, q_{f}^{1}),f(0, f(1,q_{3}^{2})))arrow_{\mathcal{R}}f(f(0,q_{f}^{1}),$ $f(0,q_{f}^{2}))$
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which cannot give an ID. In order to obtain the inverse direction, it is not enough to make a
simple union of the two rewriting systems; we need amechanism of synchronization between
the two rewrite rules, $b!\ovalbox{\tt\small REJECT}$ $bl^{1}$ and & 1. Now we define asynchronized ground TRS

f
$\ovalbox{\tt\small REJECT}$

$\ovalbox{\tt\small REJECT}_{Z}$ $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} f$ $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} f$

$\ovalbox{\tt\small REJECT} \mathrm{r}$ over $\ovalbox{\tt\small REJECT} \mathrm{X}$. and 74, as follows:

$\mathcal{R}^{s}=\{s_{j} : b_{j}^{1}arrow b_{j}^{\prime 1}|j=1, \ldots,k\}\cup\{s_{j} : b_{j}^{2}arrow b_{j}^{\prime 2}|j=1, \ldots, k\}$ ,

where the rewrite rules with the same annotation $s_{j}$ can be applied in parallel, which means
that the synchronization of the two counters $\mathrm{c}\mathrm{a}.\mathrm{n}$ be implemented by synchronous rewriting
over $\mathcal{R}_{1}$ and $\mathcal{R}_{2}$ .

It is remarked that in Schubert’s encoding via second-0rder unification [Sch97, Sch98],
the coordination equation ($s_{4},u_{4}\rangle$ plays arole of the synchronization for the two counters.

We now have the inverse direction of Proposition 2in the following sense:

Proposition 3
If $f(f(0, q_{l}^{1}),f(0,q^{2}.))3_{\mathcal{R}}’$. $f(f(0,q_{f}^{1}),$ $f(0,q_{f}^{2}))$ , then a twO-counter automaton stops.

Proof. If we have $t\{n1,||2,q_{1}\}\Rightarrow \mathcal{R}$. $t\mathrm{t}^{n_{\acute{1}}.\pi_{\acute{2}}},oe$ ), then $(n_{1},n_{2},q_{1}\rangle\vdash*\iota(n_{1}’,n_{2}’,q_{2}\rangle.$ $\square$

Theorem 3A ground STRS can simulate an arbitrary Turing machine.
The reachability problem is undecidable for ground STRSs.

Proof. We can also establish the same statement as Proposition 2with respect to
$=_{\mathcal{R}\square }^{*}.$

,

and ffom Proposition 3and Theorem 2.
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