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1. INTRODUCTION

Meyer defined a2-cocycle on the mapping class group of aclosed oriented surface of
genus greater than 0using the signature of 4-manifolds. It is called Meyer’s signature
2-cocycle[15, 1, 2, 7, 12, 16]. It defines anontrivial class in the second cohomology
group of the mapping class group with coefficients in Z. In the case that the genus of the
surface is 1or 2, it is atorsion class, hence is trivial over Q. Since the first cohomology
group over $\mathbb{Q}$ of the mapping class group vanishes, there is aunique rational valued
function on the mapping class group of genus 1or 2whose coboundary is the Meyer’s
signature cocycle. This function is called Meyer function. Since Meyer’s signature cocycle
is defined in ageometrical manner, it is thought that there is ageometric interpretation
of the Meyer function. In fact, in the case of genus 1, using the fact that the mapping
class group is $SL(2,\mathbb{Z})$ , Atiyah gave various geometric interpretations of it in terms of the
following: Hirzebruch’s signature defect, Dedekind $\eta$-function, Quillen’s determinant line
bundle, Shimizu $\mathrm{L}$-function, Atiyah-Patodi-Sin er $\eta$-invarinat and the adiabatic limit of
$\eta$-invariant[1].

In higher genus cases, Meyer’s signature 2-cocycle defines anontrivial class over Q.
Thus, on the whole mapping class group, the same doesn’t go well, but if we consider
only the subgroup of it called the hyperelliptic mapping class group, the same situation
occurs. Therefore we have aunique function whose coboundary is Meyer’s signature
2-cocycle on the subgroup, which is also called the Meyer function.

Since hyperelliptic mapping class groups and Meyer’s signature 2-cocycles are $\mathrm{g}\omega-$

metrical objects, Meyer functions ought to have some geometric interpretations or some
relations to other,geometrical objects like the case of genus 1. In fact, there are some
works in this direction. See [7, 10, 14, 16] for genus $\geqq 2$ .

In this note, we define some functions on subgroups of the hyperelliptic mapping class
groups of surfaces using $\eta$-invariants of the Dirac operator and the signature one and show
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arelation of them to the Meyer function on the hyperelliptic mapping class group (see
also [11] ).

2. $\eta$-INVARIANTS OF THREE MANIFOLDS

In this section we recall the definition of $\eta$-invariants of 3-manifolds and some properties
of them [3].

Let $M$ be aclosed oriented spin manifold of dimension 3. If aRiemannian metric on
$M$ is given, then the Dirac operator

$D:\Gamma(S_{M})arrow\Gamma(S_{M})$

on the spinor bundle $S_{M}$ over $M$ is defined. It is aself adjoint elliptic operator. The
function

$\eta_{D}(s)=\sum_{\lambda\neq 0}\frac{sign\lambda}{|\lambda|^{\epsilon}}$,

where Aruns over the nonzero eigenvalues of the Dirac operator $D$ with multiplicities, is
holomorphic for&(s) $>- \frac{1}{2}$ and extends to ameromorphic function on the whole s-plane
with afinite value at $s=0$. The $\eta$-invariant $\eta_{D}$ of the Dirac operator $D$ is defined by the
value $\eta_{D}(0)$ of this function at the origin.

It is known that any closed oriented spin 3-manifold is realized as the boundary of
acompact oriented spin $l$-manifold. For the spin 3-manifold $M$ , let $Z$ be such aspin
4-manifold. We give aRiemannian metric on $Z$ such that its restriction to aproduct
neighborhood (-1,0) $\cross$ $M\subset Z$ of the boundary $\partial Z=M$ is the product metric of the
one on $M$ with the standard one on (-1, 0]. Then the Dirac operator

$D^{+}:$ $\Gamma(S_{Z}^{+})arrow\Gamma(S_{Z}^{-})$

on the half spinor bundles is defined. Here $S_{Z}^{\pm}$ denote the positive and the negative half
spinor bundles over $Z$. On the product neighborhood (-1, 0] $\cross M$ of the boundary, we
have

$D^{+}=e_{1} \cdot(\frac{\partial}{\partial t}-D)$,

where $t$ is the coordinate of (-1, 0] and $e_{1}$ . is the Clfford multiplication by $\partial/\partial t$ . We
remark that the orientation of (-1, $0$] $\cross M$ , namely of $Z$ is given by $\frac{\partial}{\theta t}\Lambda$ (orientation of A#)
in this note.

Let $P$ be the projection of $\Gamma(S_{M})$ onto the space spanned by the eigenfunctions of $D$

for nonnegative eigenvalues. Let $\Gamma(S_{Z}^{+};P)$ be the subspace of $\Gamma(S_{Z}^{+})$ consisting of the
sections $u$ which satisfy the condition $P(u|_{0\mathrm{x}M})=0$ . The operator

$D^{+}:$ $\Gamma(S_{Z}^{+};P)arrow\Gamma(S_{Z}^{-})$
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has afinite index, which is denoted by $\mathrm{i}\mathrm{n}\mathrm{d}D^{+}$ .

Theorem 1(Atiyah-Patodi-Singer [3]). Under the above setting, the equality

$\mathrm{i}\mathrm{n}\mathrm{d}D^{+}=-\frac{1}{24}\int_{Z}p_{1}-\frac{h_{D}+\eta_{D}}{2}$

holds. Here $p_{1}$ is the first Pontrjagin form of the Riemannian metric on $Z$ and $h_{D}$ : $=$

$\dim$ $\mathrm{k}\mathrm{e}\mathrm{r}$ $D$ is the dimension of the harmonic spinors on $M$ with respect to the metric.

Similarly we have the following theorem, which doesn’t need spin structures.

Theorem 2(Atiyah-Patodi-Singer [3]). The equality

sign Z $= \frac{1}{3}\int_{Z}p_{1}-\eta_{B}$

holds. Here sign $Z$ is the signature of the 4-manifold $Z$ and $\eta_{B}$ is the $\eta$ invariant of the
signature operator

$B$ : $\Omega^{even}(M;\mathbb{C})\ni\phi$ $\vdash+(-1)2(*d-d*)\phi\underline{\mathrm{d}}\omega\in\Omega^{even}(M;\mathbb{C})$ ,

$where*is$ the $Hodge*$-operator with respect to the Riemannian metric on $M$ .

Put
$F_{M}^{\sigma}(m):=4\eta_{D}+\eta_{B}$ ,

where $m$ and $\sigma$ are the Riemannian metric and the spin structure on $M$ considered above
respectively. Theorem 1and 2imply

$F_{M}^{\sigma}(m)=-8\mathrm{i}\mathrm{n}\mathrm{d}D^{+}$ -sign $Z-\mathrm{A}\mathrm{h}\mathrm{D}$ .

It is known that $\eta_{B}$ is continuous on the space Met(M) of the Riemannian metrics on $M$

and that so is $\eta_{D}$ on the subspace $Met_{0}(M):=\{m\in Met(M)|h_{D(m)}=0\}$ of Met(M),
where $D(m)$ is the Dirac operator with respect to aRiemannian metric $m$ . This implies
that, on $Met_{0}(M)$ , $F_{M}^{\sigma}(m)$ is locally constant and $F_{M}^{\sigma}(m)=-8\mathrm{i}\mathrm{n}\mathrm{d}D^{+}-signZ$ . We
remark that the above result holds also in the case that the 3-manifold $M$ is not connected.
We also remark that the invariant $F_{M}^{\sigma}(m)$ has appeared in the Seiberg-Witten theory
$[18, 19]$ .

3. BISMUT AND CHEEGER’S PROPOSITION

In this section, we partially extend Proposition 4.41 in [6] by Bismut and Cheeger to
the case that amanifold admits boundaries.

Let Ibe aclosed oriented smooth manifold of even dimension 1and $B$ compact oriented
smooth manifold of even dimension $k$ possibly with boundary. We consider afiber bundl
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$\pi:Zarrow B$ with fiber X. Near the boundary of the fibration, we may identify it with
the product $id\cross(\pi|_{\partial Z}):(-\delta,0]\cross\partial Zarrow(-\delta,0]\cross\partial B$ for some $\delta>0$ . Take asplitting
$TZ=T^{H}Z\oplus T^{V}Z$ of the tangent bundle over $Z$ satisfying $\mathrm{R}\frac{\partial}{\partial t}\subset T^{H}Z$ , where $t$ denotes
the standard coordinate of $(-\delta,0]$ . Here $T^{V}Z$ denotes the tangent bundle along the fiber.
We assume that both $T^{V}Z$ (, hence X) and $B$ have spin structures. Then aspin structure
on $T^{H}Z$ is induced from that of $B$ via $\pi:Zarrow B$ , hence that of $TZ$ , namely of $Z$ is
also defined (see [13]). In this paper, such aspin structure on afiber bundle is called a
decomposed spin structure.

We consider aRiemannian metric

$m_{Z}=\pi^{*}m_{B}\oplus m^{V}$

on $Z$ such that the above splitting of $TZ$ is orthogonal, where $m_{B}$ is aRimannian metric
on $B$ and $m^{V}$ is afiber metric on $T^{V}Z$ . Moreover we assume $m_{B}=dt^{2}\oplus(m_{B}|_{\partial B})$ on
$(-\delta,\mathrm{O}]\cross\partial B$ and $mz=dt^{2}\oplus\pi^{*}(m_{B}|\partial B)\oplus(m^{V}|_{\partial Z})$ on $(-\delta,\mathrm{O}]\cross\partial Z$ . Thus the boundary
$\partial Zarrow\partial B$ also is in the same situation.

For any $\epsilon$ $>0$ , put

$m_{Z,\epsilon}=( \frac{1}{\epsilon}\pi^{*}m_{B})\oplus m^{V}$ ,

then we have a1-parameter family of Riemannian metrics on $Z$ .
Thus we can consider a1-parameter family of Dirac operators

$D_{Z,\epsilon}$ : $\Gamma(S_{Z,\epsilon})arrow\Gamma(S_{Z\rho})$ ,

where $\epsilon$ presents the dependence on the metrics.
We can consider the Dirac operators

$D_{Z,\epsilon}$ : $\Gamma(S_{Z}, P_{e})arrow\Gamma(S_{Z})$

with the Atiyah-Patodi-Singer boundary condition as in section 2. We note that, for
each $b\in B$ , we have the Dirac operator $D_{\pi^{-1}}(b)(m_{Z}|_{\pi^{-1}(b)})$ on $\pi^{-1}(b)$ with respect to the
induced Riemannian metric $m_{Z}|_{\pi^{-1}(b)}$ .

Proposition 3. Under the above situation, assume that the Dirac operator $D_{\pi^{-1}(b)}(m_{Z}$

$|_{\pi^{-1}(b)})$ is invertible for any $b\in B$ . Then, for any sufficiently small $\epsilon>0$ , the kemel of
the Dirac operator $Dz_{\epsilon}$, : $\Gamma(S_{Z}, P_{\epsilon})arrow\Gamma(S_{Z})$ vanishes.

We can prove this proposition in the same way as the proof by Bismut and Cheeger in
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Corollary 4. Under the assumption of Proposition 3, the kernels, the cokernelS and
the indices of the Dirac operators $D_{Z,\epsilon}^{+}$ : $\Gamma(S_{Z,\epsilon}^{+}, P_{\epsilon}^{+})arrow\Gamma(S_{Z\rho}^{-})$ and $D_{\partial Z\rho}$ : $\Gamma(S_{\partial Z,\epsilon})arrow$

$\Gamma(S_{\partial Z,\epsilon})$ vanish for any sufficiently small $\epsilon>0$ .

The statement on $D_{\partial Z,\epsilon}$ in this corollary is aresult of Bismut and Cheeger’s proposition
[6].

4. THE HYPERELLIPTIC MAPPING CLASS GROUPS AND THE MEYER FUNCTIONS

In this section, we recall the definitions of the hyperelliptic mapping class group and of
the Meyer function on it.

Let $\Sigma_{g}$ be aclosed oriented surface of genus $g\geqq 1$ and $\mathcal{M}_{g}$ its mapping class group
consisting of the isotopy classes of orientation preserving diffeomorphisms of $\Sigma_{g}$ . We
denote the 2-sphere with 3-holes by $P$ . For any $a,b\in \mathcal{M}_{g}$ , let $N_{a,b}$ be the $\Sigma_{g}$-bundle over
$P$ with monodromies $a^{-1}$ and $b^{-1}$ .

Meyer’s signature 2-c0cycle

$sign_{g}$ : $\mathcal{M}_{g}\cross\Lambda 4_{g}arrow \mathbb{Z}$

is defined by $sign_{g}(a, b):=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(N_{a,b})$ , where $\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(N_{a,b})$ is the signature of the 4-manif0ld
$N_{a,b}[1,15]$ . Novikov additivity for the signature of manifolds shows that $sign_{g}$ satisfies
the cocycle condition.

Let $\iota$ be the involution on $\Sigma_{g}$ with $2g+2$ fixed points depicted in Figure 1.

FIGURE 1. An involution $\iota$ on $\Sigma_{g}$ with $2g+2$ fixed points.

The hyperelliptic mapping class group ??, of $\Sigma_{g}$ is the subgroup of $\mathcal{M}_{g}$ consisting of
elements which commute with the class of $\iota$ . It is known that $\mathcal{M}_{1}=H_{1}=SL(2,\mathbb{Z})$ ,
$\mathrm{M}_{2}=l- t_{2}$ and that $\mathcal{H}_{g}(g\geqq 3)$ is asubgroup of $\mathcal{M}_{g}$ of infinite index.

Meyer’s signature cocycle $sign_{g}$ defines anontrivial class of the second cohomology
group $H^{2}(\mathcal{M}_{g},\mathbb{Z})$ of $\mathcal{M}_{g}$ with coefficients in $\mathbb{Z}$ and its restriction to $H_{g}$ is also nontrivial.
But it is trivial in $H^{2}(H_{g},\mathbb{Q})$ . Thus there exists afunction or l-cochai

$\phi_{g}$ : $?t_{g}arrow \mathbb{Q}$
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such that $sign_{g}=\delta\phi_{g}$ , where $\delta$ denotes the coboundary operator defined by $\delta\phi_{g}(a, b)$

$=\phi_{g}(b)-\phi_{g}(ab)+\phi_{g}(a)$ for $a,b\in H_{g}$ . It follows that $\phi_{g}$ is unique from the fact of
$H^{1}(\mathcal{H}_{g},\mathbb{Q})=\{0\}$ . This function $\phi_{g}$ is called the Meyer function. It is known to be
conjugacy invariant. Its values are contained in $\frac{1}{2g+1}\mathbb{Z}$ and concrete values on Lickorish
generators and BSCC maps are calculated by Endo [7], Matsumoto [14] and Morifuji [16].

In the case of $g=1$ , under the identification $\mathcal{M}_{1}\cong \mathcal{H}_{1}\cong SL(2,\mathbb{Z})$ , Meyer [15] and
Atiyah [1] gave an explicit expression of the Meyer function using the Dedekind sums
(see also [12]). Thus we can compute the values of it. Moreover Atiyah [1] put various
geometric interpretations on the values of $\phi_{1}$ on hyperbolic elements.

There is another description of the hyperelliptic mapping class group as follows, which
is needed in this note.

We consider the subgroup $Diff_{+}^{\iota}(\Sigma_{g})$ of the group $Diff_{+}(\Sigma_{g})$ of orientation preserving
diffeomorphisms of $\Sigma_{g}$ consisting of the elements which commute with $\iota$ . Birman and
Hilden [5] proved that the quotient group of this subgroup modulo its identity component
is isomorphic to the hyperelliptic mapping class group $H_{g}$ .

In this note we let ahyperelliptic fibration mean a $\Sigma_{g}$-bunlde with structure group
$Diff_{+}^{\iota}(\Sigma_{g})$ . Since it is known that the identity component of $Diff_{+}^{\iota}(\Sigma_{g})$ is contractible,

that we consider hyperellptic fibrations is equivalent to that we consider representations
of the fundamental groups of their base spaces to the hyperelliptic mapping class group
$H_{g}$ .

5. ARESULT OF B\"AR AND SCHMUTZ FOR DIRAC OPERATORS ON SURFACES

In this section we recal aresult [4] of Bi and Schmutz for the Dirac operators on
hyperelliptic Riemann surfaces.

Let $\Sigma_{g}$ be aclosed oriented surface of genus $g\geq 2$ .
For any spin structure and any Riemannian metric on $\Sigma_{g}$ , we have the Dirac operator

$D:\Gamma(S_{\Sigma_{\mathit{9}}})arrow\Gamma(S_{\mathrm{Z}_{g}})$ ,

where $S_{\Sigma_{\mathit{9}}}$ is the spinor bundle over $\Sigma_{g}$ with respect to the spin structure and the Rie-
mannian metric on $\Sigma_{g}$ .

We are interested in the behavior of the dimension $\dim \mathrm{k}\mathrm{e}\mathrm{r}$ $D$ of the space of the har-
monic spinors under deformation of metrics. On asurface, since the dimensions of the
spaces of the positive and the negative harmonic spinors agree, we have only to know the
behavior of the dimension $h^{0}$ of the positive spinors. If we consider only metrics inducing
ahyperelliptic complex structure, it has been completely described by C. Bi and P.

Schmutz [4] as foUows.
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Theorem 5(C. Bi and P. Schmutz [4]). Let $\Sigma_{g}$ be a hyperelliptic Riemann surface of
odd genus $g$ with Weierstrass points $p_{1}$ , $\ldots$ , $p_{2g+2}$ . Then the $2^{2g}$ divisors

$(g-1)p_{1}$ , $(g-2k)p_{i_{1}}+p_{\dot{l}2}+ \cdots+p_{\dot{\iota}_{2k}}(k=1,2, \ldots, \frac{g-1}{2})$ , $-p_{1}$ % $p_{\dot{l}2}+\cdots+p_{\dot{\iota}_{g\dagger 1}}$ ,

where $i_{\nu}<i_{\mu}$ for $\nu<\mu$, are the pair wise inequivalent square roots of the canonical divisor,

hence these give the spin stmctures of $\Sigma_{g}$ .
Moreover, for the spin structures corresponding to the above divisors, the dimensions

$h^{0}$ of the positive harmonic spinors are given by

$\frac{g+1}{2}$ , $\frac{g-2k+1}{2}(k=1,2, \ldots, \frac{g-1}{2})$ , 0

respectively.
Similarly in the case of even genus $g$ , the $2^{2g}$ divisors are given by

$(g-(2k+1))p_{i_{1}}+p_{i_{2}}+ \cdots+p_{i_{2k+1}}(k=0,1, \ldots, \frac{g-2}{2})$ , $-p_{1}+p_{i_{2}}+\cdots+p_{i_{g+1}}$

and the corresponding dimensions $h^{0}$ are given by

$\frac{g-(2k+1)+1}{2}(k=0,1, \ldots, \frac{g-2}{2})$ , 0

respectively.

Let $S(\Sigma_{g})$ be the set of the spin structures on $\Sigma_{g}$ , then we have $\# S(\Sigma_{g})=2^{2g}$ .
Let $\iota$ be the involution in section 4and $Met(\Sigma_{g})^{\iota}$ the space of $\iota$-invariant Riemannian

metrics on $\Sigma_{g}$ . Then we can obtain the following corollary from Theorem 5and some
elementary facts about hyperelliptic Riemann surfaces.

Corollary 6. For any fied spin structure on $\Sigma_{g}$ , the dimension dimker $D$ of the have

monic spinors on $\Sigma_{g}$ is constant on $Met(\Sigma_{g})^{\iota}$ . Moreover put $S_{0}(\Sigma_{g})=\{\sigma\in S(\Sigma_{g})|$

$\dim \mathrm{k}\mathrm{e}\mathrm{r}D=0$ on $Met(\Sigma_{g})^{\iota}\}$ , then the number $\# S_{0}(\Sigma_{g})$ is $(\begin{array}{l}2g+1\mathit{9}\end{array})$ .

Clearly the subset $S_{0}(\Sigma_{g})$ is preserved by the action of $\mathcal{H}_{g}$ .
We remark that this corollary holds also for $g=0,1(, 2)$ by aresult [9] of Hitchen. In

this case, it holds on the space of all Riemannian metrics.

6. SOME FUNCTIONS ON SUBGROUPS OF HYPERELLIPTIC MAPPING CLASS GROUPS

In this section we define some functions on subgroups of hyperelliptic mapping class

groups and state our main theorem.
For any spin structure $\sigma\in S(\Sigma_{g})$ , let $\mathcal{H}_{g}^{\sigma}$ be the subgroup of $H_{g}$ consisting of the

elements which preserve $\sigma$ .
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$\mathrm{L}\mathrm{e}\mathrm{t}*\in D^{2}\subset\Sigma_{g}$ be abase point and an embedded disk in $\Sigma_{g}$ . Let $\mathcal{M}_{g,1}$ be the group

of all isotopy classes relative to $D^{2}$ of diffeomorphisms of $\Sigma_{g}$ which restrict to the identity

on $D^{2}$ . Then there is anatural homomorphism $j:\mathcal{M}_{g,1}arrow \mathcal{M}_{g}$ . Let $H_{g,1}^{\sigma}$ be the subgroup

of $\mathcal{M}_{g,1}$ given by $j^{-1}(\mathcal{H}_{g}^{\sigma})$ .
Let $\sigma_{\mathrm{S}^{1}}$ be the spin structure on $S^{1}=\partial D^{2}$ induced from the unique one on $D^{2}$ .
For any $a\in H_{g,1}^{\sigma}$ , we define a $\Sigma_{g}$-bundle $M_{a}$ over $S^{1}$ by $M_{a}=\Sigma_{g}\cross[0,1]/(x,0)\sim$

$(a(x), 1)$ . Moreover we have the identification $i$ of $\Sigma_{g}$ with the fiber of $M_{a}$ at the base

point $1\in S^{1}$ . Here we remark that we can confuse diffeomorphisms on $\Sigma_{g}$ with their

mapping classes since surface bundles are determined by their holonomies in $\mathcal{M}_{g,1}$ for
$g\geq 1$ .

Lemma 7. A decomposed spin structure $\sigma_{a}$ on $M_{a}$ is uniquely constructed for each $a\in$

$\mathcal{H}_{g,1}^{\sigma}$ .
The decomposed spin structure $\sigma_{a}$ in this lemma is defined as follows. Take asplitting

$TM_{a}=T^{V}M_{a}\oplus T^{H}M_{a}$ , where $T^{V}M_{a}$ be the tangent bundle of the $\Sigma_{g}$-bundle $M_{a}$ along

the fiber. Aspin structure on $T^{H}M_{a}$ is given by the pullback of the spin structure $\sigma_{S^{1}}$ on
$S^{1}$ via the projection $\pi:M_{a}arrow S^{1}$ . Let $P_{GL}(+T^{V}M_{a})$ be the $GL_{+}(2,\mathbb{R})$-bundle over $M_{a}$

associated with $T^{V}M_{a}$ . It can be regarded also as abundle over $S^{1}$ with fiber $P_{GL_{+}}(T\Sigma_{g})$

which is the $GL_{+}(2,\mathbb{R})$-bundle associated with $T\Sigma_{g}$ . We note that aspin structure on
$T^{V}M_{a}$ is corresponding to ahomomorphism from $\pi_{1}(P_{G\iota_{+}}(T^{V}M_{a}))$ to $\mathbb{Z}_{2}$ with the non-
trivial value on the class of 50(2) in the fiber $GL_{+}(2,\mathbb{R})$ . If we take an oriented basis
$b=\{b_{1},b_{2}\}$ for $T_{*}\Sigma_{g}$ at the base point, then since any element of $?t_{g,1}^{\sigma}$ preserves the basis
$b$ for $T_{*}\Sigma_{g}$ , the bundle $P_{GL}(+T^{V}M_{a})$ over $S^{1}$ has the section $\overline{b}$ obtained from the basis
$b$. We give aspin structure on $T^{V}M_{a}$ by the homomorphism on $\pi_{1}(P_{GL}(+T^{V}M_{a}))$ whose

restriction to the fiber is corresponding to $\sigma$ and whose value on $S^{1}$ , which is the image

of $\overline{b}$ , is trivial.
These spin structures induce aspin structure $\sigma_{a}$ on $TM_{a}$ . This is the required one.
Next we replace the representative of the class $a\in H_{g,1}^{\sigma}\subset \mathcal{M}_{g,1}^{\sigma}$ by that of $j(a)\in \mathcal{H}_{g}^{\sigma}$

which is taken in $Diff_{+}^{\iota}(\Sigma_{g})$ . Then we can obtain astructure of ahyperelliptic fibration

on Ma. Moreover this fibration has adecomposed spin structure induced from $\sigma_{a}$ using

an isotopy between old and new representatives.

Prom now on, we aaeuine $\sigma\in \mathrm{f}\mathrm{i}(\Sigma_{g})$ . Let $m_{a}=\pi^{*}m_{S^{1}}\oplus m^{V}$ be ametric on $M_{a}$

satisfying the same conditions as in Proposition 3and $m_{a,\epsilon}=(\epsilon^{-1}\pi^{*}m_{S^{1}})$ $ $m^{V}$ a1-

parameter family of Riemannian metrics on $M_{a}$ with $\epsilon>0$ . Thus we have the l-parameter

family of the Dirac operators $D_{M_{a},e}$ : $\Gamma(S_{M_{a},\epsilon})arrow\Gamma(S_{M_{a},\epsilon})$ on the 3-manifold $M_{a}$ with

the spin structure $\sigma_{a}$ for $\epsilon>0$ . By Corollary 4and the fact that the condition of
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$\dim$ ker $D_{hI_{a}}=0$ is an open one on the space of the Riemannian metrics, the function

$F_{\sigma,1}$ : $H_{g,1}^{\sigma}arrow \mathbb{Z}$

defined by
$F_{\sigma,1}(a):= \lim_{\epsilonarrow+0}F_{M_{a}^{a}}^{\sigma}(m_{a,\epsilon})$ ,

where $F_{M_{a}}^{\sigma_{a}}(m_{a,\epsilon})$ was defined in section 2, is well defined since any two metrics on $M_{a}$

satisfying the above conditions can be connected by apath of metrics with the same
conditions.

Lemma 8. For any $\sigma\in S_{0}(\Sigma_{g})$ , the following holds:

1. $F_{\sigma,1}(1)=0$ ,

2. $F_{\sigma,1}(a^{-1})=-F_{\sigma,1}(a)$ ,

3. $F_{(f^{-1})^{*}\sigma,1}(faf^{-1})=F_{\sigma,1}(a)$ ,

4. $j^{*}sign_{g}=-\delta F_{\sigma,1}$ on $H_{g,1}^{\sigma}$ ,

where $a\in H_{g,1}^{\sigma}$ , $f\in H_{g,1}$ , 1 is the identity element of $\mathcal{H}_{g,1}^{\sigma}$ and $\delta$ is the coboundary

operator.

For any $\sigma\in S_{0}(\Sigma_{g})$ , let
$\psi_{\sigma,1}$ : $\mathcal{H}_{g,1}^{\sigma}arrow \mathbb{Q}$

be the function defined by
$\psi_{\sigma,1}:=F_{\sigma,1}+j^{*}\phi_{g}$.

Since the Meyer function $\phi_{g}$ has similar properties to those in Lemma 8, we have the

following corollary.

Corollary 9. For any $\sigma\in S_{0}(\Sigma_{g})$ , $\psi_{\sigma,1}$ is a homomorphism on $\mathcal{H}_{g,1}^{\sigma}$ . Moreover the

equality $\psi_{(f^{-1})^{\wedge}\sigma,1}(faf^{-1})=\psi_{\sigma,1}(a)$ holds for all a $\in \mathcal{H}_{g,1}^{\sigma}$ and f $\in H_{g,1}$ .

The next proposition shows that the functions $F_{\sigma,1}$ and $\psi_{\sigma,1}$ are obtained ffom functions

on $\mathcal{H}_{g}^{\sigma}$ by the pullback via $j:H_{g,1}^{\sigma}arrow H_{g}^{\sigma}$ .

Proposition 10. The functions Fail and $\psi_{\sigma,1}$ descend to $F_{\sigma}$ : $H_{g}^{\sigma}arrow \mathbb{Z}$ and $\psi_{\sigma}$ : $\mathcal{H}_{g}^{\sigma}arrow$

$\mathbb{Q}$ respectively. Moreover $F_{\sigma}$ and $\psi_{\sigma}$ have similar properties to those in Lemma 8and

Corollary 9respectively

Now we state our main theorem. Put $H_{g}^{\mathrm{f}\mathrm{i}}$ : $= \bigcap_{\sigma\in S_{1}(\Sigma_{\mathit{9}})}\mathcal{H}_{g}^{\sigma}$ , then it is asubgroup of
$H_{g}$ of finite index and all of funcions $F_{\sigma}$ are defined on it.

Theorem 11. The equality $\phi_{g}=-\frac{1}{\#\theta_{1}(\Sigma_{g})}$ $\sum$ $F_{\sigma}$ holds on $H_{g}^{\theta)}$ .
$\sigma\in \mathrm{f}\mathrm{i}(\Sigma_{g})$
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Prom this theorem and explicit values of $\ovalbox{\tt\small REJECT}/\ovalbox{\tt\small REJECT}_{g}$ (see [7, 16]), we can find that the functions
F. and P, are nontrivial on \yen hence on $7^{\ovalbox{\tt\small REJECT}}?\ovalbox{\tt\small REJECT}$ for any ()E $50(\mathrm{S}\mathrm{P})$ .
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