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1 Introduction

Vortex rings are invariably susceptible to wavy distortions, leading sometimes to disrup-
tion. We revisit the linear stability problem of a thin vortex ring. It i is widely accepted
that the Widnall instability is responsible for development of unstable waves. This is an
instability for a straight vortex tube subjected to a straining field in a plane perpendicular
to the tube axis (Moore & Saffman 1975, Tsai & Widnall 1976).
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When viewed locally, a thin vortex ring looks like a straight tube. We confine ourselves
to a circular core of uniform vorticity, that is, the Rankine vortez. This circular-cylindrical
vortex tube supports a family of neutrally stable waves of infinitesimal amplitude, being
well known as the Kelvin waves. The vortex ring induces, on itself, not only a local
uniform flow but also a local straining field akin to a pure shear (Widnall & Tsai 1977).
A pure shear with the principal axes perpendicular to the vorticity deforms the core
into an ellipse. This is a quadrupole field proportional to cos 26 or sin 20, in terms of
polar coordinates (r,0) in the meridional plane, and is capable of mediating a parametric
resonance between the bending waves of left- and right-handed. The Widnall instability
has a wider applicability; the influence of neighbouring vortices is, in the leading-order
approximation, represented by a linear shear flow.

However, the previous treatment has disregarded an ingredient peculiar to a curved
vortex filament. The solution of the Navier-Stokes equations, obtained by using the
matched asymptotic expansions in a small parameter ¢, the ratio of the core to the ring
radii, starts with a circular-cylindrical vortex tube, at O(°). Then a dipole field propor-
tional to cos@ follows at O(e'). The quadrupole field proportional to cos 28 comes as a
higher-order correction at O(e?) (Fukumoto & Moffatt 2000). The same is true of inviscid
vortex rings. The dipole field does not have attracted as much attention as it deserves.
This paper addresses a possible instability that the dipole field at O(e) can trigger.

According to Krein’s theory of parametric resonance in Hamiltonian systems (MacKay
1986), a single Kelvin mode cannot be fed by perturbations breaking the circular sym-
metry. An instability becomes permissible only for a superposition of at least two modes
with the same wavenumber and the same frequency. Subjected to the dipole field, two
Kelvin modes with angular dependence e™? and e™® can together be amplified at the in-
tersection points of dispersion curves if the condition [m —n| = 1 is met and if the energies
of the disturbance modes are of opposite signs, with one positive and the negative.

As a first step, we investigate a parametric resonance that may occur between azisym-
metric (m = 0) and bending (n =1 or n = —1) modes in the presence of the dipole field.
In §2, we give a concise description of Kelvin’s vortex ring and of the setting of linear
stability analysis. In §3, the Kelvin waves are recalled. With this preliminary, equations
of disturbances at O(e) are written out in §4 and are solved in §5. In §6, the growth rate
is calculated and a comparison is made with that of the Widnall instability.

2 Kelvin’s vortex ring and setting of 'stability prob-
lem

We write down the flow field associated with Kelvin’s vortex ring, a thin axisymmetric
vortex ring with vorticity proportional to the distance from the axis of symmetry which
propagates steadily in an incompressible inviscid fluid. The detail is found, for example,
in Widnall & Tsai (1977). Our assumption reads that the ratio € of the core radius ¢ to
the ring radius R is very small:

e=0/R<K 1. (2.1)
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Introduce local cylindrical coordinates (r,6) in the meridional plane, fixed to the ring,
with the origin r = 0 maintained at the center of the circular core and with the angle 6
measured from the direction parallel to the axis of symmetry.

The radial coordinate r is normalized by the core radius . The velocity is normalized
by the maximum azimuthal velocity I'/2wo. Here I is the circulation carried by the ring.
Let the r and 6 components of velocity field be U and V, and the pressure be P inside
the core (r < 1). We denote the velocity potential for the exterior irrotational flow by ®.

The basic flow is expanded in powers of ¢, the first-order truncation of which provides
us with Kelvin’s vortex ring:

U = eUy(r,0) 4+, V=Vo(r)+eVi(r,)+--+, (2.2)

P = Py(r)+ePy(r,0)+ - for r<1, (2.3)
& = Py0) + ePy(r,0)+--- for r>1. (2.4)

The leading-order flow is the Rankine vortex which is written, in dimensionless form, as

Vo=r, P0=%(T2——1), Bo=0. (2.5)

At O(e), the effect is curvature is called into play, and the flow field takes the following
form:

5 5 07 5\ . 5 33\ ..
U, = g(l —7r%)cosf, V= (—-8- + §r2) sing, P = (—gr + §r3) sinf, (2.6)
1 3 1
® = |r—=—3 : '
1 (87' . 2rlogr) cos 6 (2.7)

To this order, the boundary shape remains to be circular (r = 1). The pattern of stream-
lines in the exterior region (r > 1) resembles that of the flow past a circular cylinder.

We inquire into evolution of three-dimensional disturbances of infinitesimal amplitude
superposed on the above steady flow. We measure the centerline penetrating the torus
with arclength s, and denote the toroidal component of disturbance velocity by w. Fol-
lowing the prescription of Moore & Saffman (1975) and Tsai & Widnall (1976), we pose
the following form for disturbances velocity v: ' '

V= (’Uo +evy+ - .)ei(ks—ut) , (28)

and in a similar way for disturbance pressure p. The wavenumber & and the frequency w
are also expanded in powers of € as

k=ky+eky+---, w=wo+ew +---. (2.9)
The boundary of the core is disturbed as

r=1+ fo(0,s,t)+efi(8,8,8)+ . (2.10)
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3 The Kelvin waves

At O(¢€%), the stability problem is reduced to oscillations of the Rankine vortex whose
study is traced back to Kelvin (1880). The circular core of constant vorticity is neutrally
stable. The waves of form e*(m#+kos-wot) op ¢ called the Kelvin waves, obeys the following
dispersion relation:

am(wo, ko) = —i(wo — M) K\ (ko) A + ko Ky (ko) Jimi (1) = 0, (3.1)

where Jj, and K|, are, respectively, the Bessel function of the first kind and the modified
Bessel function of the second kind, both with order |m|, a prime designates its differenti-
ation, and

2 = [ﬁ - 1] &, (3.2)

_ Hwo — M) Jimi-1(1hm) + i|m| [—wo +m (1 - ﬁ)] Jjm| (m)
Am = re— . (33

For later use, we write down the eigenfunctions vy = v (r)e'™, py = 7P (r)e™,
$o = ¢5*(r)e'™ and fo = fi"e'™ for the axisymmetric (m = 0) and the bending (m = 1)
modes. Here the superscript m stands for azimuthal wavenumber.

For m =0,
w k
ug = —ﬁﬂo-fl(ﬂor)ao, v = T4 wgﬂo']l (nor)o, wp = “7210(7707')50, (3.4)
1
79 = Jo(mor)do, @3 = Ko(kor)yo, = mﬂoJl(ﬂo)5o ) (3.5)
— Wy

where dy and 7, are constants constrained by

. JO("O) (50 , (36)

= -1
0 woKo(ko)

but otherwise arbitrary.

For m =1,
S 1 1 ) i Jl(mr)}
”""{ 2(w0—1+w0—3 MJo(mr) + ——3=—="" fo, (3.7)
1 1 1 1 Jl(ThT)}
1 = - —_—
Yp = {2 (wo “1 wp— 3) mJdo(mr) + wo—3 r Bo, (3.8)
k
wp = o = h(mr)bo, w5 =R(mr)B, ¢ = Ki(kr)a, (3.9)
fl = 1 { 1 771J0(771) + 1 Jl(nl)}ﬂo (3.10)
0 wo — 3w +1 wo—1 ’
where o and f, are constants constrained by
J,
%= g, (3.11)

" {wo — 1)K (ko)
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4 Equations for O(¢) disturbance field

The neutral stability of the Rankine vortex is attributed to the circular (S!-) symmetry
about the cylinder axis. At O(e), the effect of curvature makes its appearance as the
dipole field and this field breaks the S'-symmetry. The disturbance velocity v, eiFs—wt)
and the disturbance pressure me'**=“% at O(e) inside the core (r < 1) are governed by

. 8u1 87r1 . 3U1 Buo V1 Buo (1 3U1 2V1)
—iwour + Z - =t 5= (Wl—ﬁr—) w-U5" =7 % r 80 o>
. (4.1)
. 6v1 1 371'1 I 1 8V1 U1 (2‘/_1 ﬁ)
z"dovl_*_zul-{_'349-1—1'8(9—(Zl_rc')@-1”)”0 6r+r o
Ovg V10w
Ui T e (42)
. 0 . . . V1 0w Owy . .
—iwow + —(—;% + ikgmy = —ik1mo + (iwy — 7 cos@)wo — 71—8?0 - Ul—éro + tkgr sinfmy ,
(4.3)
dur + “ + lgv—l + tkow; = — sinQugy — cos vy + ikor sin Hwyp . >(4.4)

or " r " r oo

The last one is the equation of continuity. The velocity potential preiks—«t) for the
disturbance flow outside the core (r > 1) satisfies, at O(e),

¢ 10¢ " 1 8%,

»61‘2 r or | r2 Ore

0o B cos 0 Ogy
or r 060

— k2¢y = 2kokybp — sin 6 — 2k2r sin ¢ .

(4.5)

The boundary conditions require that the normal component of velocity and the pres-
sure be continuous across the interface (r = 1) of the core:

0
uy = a¢;‘l ) . (4'6)
. : 0%, 0 ’ ,
m —t(wp —m)pr = w1 — 37—.9% . (4.7)

In view of the Fourier modes cos @ and sin @ characterizing the dipole field U; and V,
the disturbance fields of the modes €™ and ™ can afford to cooperate with each other
to grow themselves if the difference of the azimuthal wavenumber |m — n| =1, and both
the frequency and the axial wavenumber coincide with each other.

It is illustrative to carry throuth a calculation for the case of m =0 and n = 1. The
leading-order disturbance velocity voe**==0%), thus the disturbance pressure mpet(kos—wot)

and the disturbance-velocity potential ¢ as well, consist of a superposition of the axisym-
metric and right-handed bending waves:

vo = vl +vie?By, o =mydo+mpe’Bo, for r<1 (4.8)
¢ = Ko(kor)’)’o + Kl(koT)ewao, for r>1 (49)
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It follows from (4.1)-(4.4) that four Fourier modes with 1, et and €% are excited at
O(e). The value of w;, depending on being non-real or real, tells us whether the parametric
resonance instability occurs or not. To this aim, it suffices to look into, at O(e), again
the axisymmetric (m = 0) and the bending (m = 1) modes.

5 Waves at O(e)

Upon substituting (2.6) and (4.8) into (4.1)-(4.4), we obtain equations for the axisym-
metric and bending waves at O(e). The axisymmrtric wave at O(e) is denoted by
v] = (u),0f,wd), ¥ (r < 1) and ¢ (r > 1). The bending wave at O(e) is denoted
by vie? = (u,v},w})e®, mie® (r < 1) and ¢le? (r > 1). A general solution of the ve-
locity potential ¢? and ¢! is readily available. The Euler equations for r < 1 are reduced
to a second-order ordinary differential equation with inhomogeneous terms for 7 and 7l
A general solution is obtainable in terms of the Bessel functions, from which the velocity
components are manipulated. We omit the detail of a lengthy calculation and present
the general solution such that the disturbance velocity is finite at 7 = 0 and vanishes at

infinity.
For m = 0,
0 __ iwo _ iwl ék_g w(% +4 ﬁ
M=y 10J1(m0r) 81 z{wg — [w{‘,’ rJo(nor) + o 201 (nor) | + ky ” rJo(nor) $8

+

1 | (wo—1)(9wf — 18w — 17w2 — 6wo + 8
——{( 0 = 1)(Owp e E )7'711-70(7717‘)

16 (wo + 1) (wo — 3)(2wp — 1)
+ [9w3 — 54w + 82wf + 16w] — 87wl + 54w + 36wE — 56wp + 16
2(wo — 3)(2wp — 1)2

2
+5—k°-(1"2 - 1)] Jl(mf)}ﬂo, (5.1)
wo—1
4‘0 w4 k
= {1 |9r2 0 ko
v = oz 4770J1(7707’)51 {wg(wg >y [2korJo(7701‘) + ot - 4T]oJ1(170r)} + 2k, wngo(nor)}Jo
i(wo — 1) [ 9w — 27w + 10
- rmJo(mr)
8(wo - 3) { 2wo -1
9w — 45w8 + 37w + 53w — 34wd + 20wy — 8 5(wo — 3)k3 , ,
+[ 2((4)0 — 3)(2&)0 - 1)2 + (WO - 3)3 (7' 1)] Jl (771T) Bﬂ ’
, (5.2)
k wiko | 4k32 k
w = w—ZJo(’)or)Jl + {_:Jgo [wg_:;o rJi(nor) — Jo(nor)] - ;)% [rnoJ1 (nor) — Jo(mor)] }50

2
0 (2 _1\|M
16 2(2wp — 1)2 1" 1)] ko Jo(m7)

9w — 18w — 17w + 30wp — 10
(wo — 1)(2wp — 1)

L { [wo(wo —1)%(wo + 2) (9w — 27w? + 28wy —8) 5k

+

korJi(mr) }ﬂo , (5.3)
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4k} 4
m = Jo(mor)dy + {——wl + (1 - —) kOkI}LJl (noT)d0
wWo wo o

i{ [wo(wo — 1)%(wo + 2)(9w§ — 27w§ + 28uwp — 8) +5(r - 1)}711-70(7)17‘)

16 2(2wp — 1)2k(2)
9wi — 9w — 26wi + 20wo — 2
4 2% 0 0 0 Ji(mr) 6o, (5.4)
2w — 1 v
¢(1) = Ko(kor)y1 — kirK1(kor)vo + % [’I"Kl (kor) + k0T2Ko(k07‘)] ag . : (5.5)

Imposition of the boundary conditions (4.6) and (4.7) brings in a relation that holds
between 7; and 6;:

(frto —dehm)) (1) (&), o

where
w1 [4K? wg+4 [ko wo  Ko(ko) ]
G = —i{ 50— |—2 - —Jo(m0) — 6
1 2{w3 4 [wg Jo(mo) + ot = g1 (mo) | + k| = 0(m0) - 4K1(k0)noJ1(7lo) 0
_ 24 ol + k§) Ko(ko) ]szl(nl)
4(2wo — 1) ® " Ki(ko) + koKo(ko) M

1 [9w3 — 54w] + 82w§ + 16wf — 87w§ + 54wd + 36w§ — 56wp + 16 K2
wo—3 8(2wp — 1)2 0

ko(1 + k§) Ko (ko) ]Jl(nl)}ﬂo,. | | (5.7)

1{ 1 [gwg — 18wd — 17w — 6wo + 8
4

wo —1

~ K1 (ko) + koKo(ko)

w [ 4 Ko (ko) ] 2 J1(no) ko J1(no)
Gy = [ K2 + 4k 2 5
2 { wo lwg  koKi(ko) 70 ' mo 0

+3_{ [wo(wo + 1) (wo + 2)(wo — 3)(9wd — 27w + 28wp — 8)
8

42wy — 1)2

5 ko Ko(ko) Jo(m)
0 0Rolko o\
+ 2wop — 1+ )]
wo —1 ( 0 Kl(ko) + koKo(ko) (/)
1 [9w] — 36w + w§ + 90w3 — 54wp + 4 koKo(ko) ]
- - J . .
wo—3 [ 2(24&’0 - ]-) Kl(ko) + koK()(k ) 1(7]1) Bo (5 8)
For m =1,
1 __ _ ) wo — 1 Jl(mr)}
U =T B{w n ymdo(mr) = ——" b

. k2 (wd — 4wo + 7) Jo(mr) 1 4(wo — 3) 1
_zwl{ (o(,))o —0 1)3((.‘)0 -3) m + (wo — 3)2 [(WO — 1)2(w0 T 1)k(2,r + ;] ¥/ (nlr)}ﬁo
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—ikl(—kl—)? [(wo D)rdi(mr) — (wo — 3) J"(n'i‘r)] Bo
1
+E{_ [2(2—“’“"’0_)2(9“,0 27wp + wh + 55w8 — 1208 — 14wp + 4) + (r - 1)] Jo(mor)

_ [Qwo — 18wg — 17wd + 72w — 11wg — 10
wo — (wo +2)(2wo — 1)

wo—1 +1 1
(wo ; == _)(lu;gkg ) (90 — 2702 + 28 — 8) — 5) ;] o (nor)}ao , (5.9)
1__ 1 { 2 _Jl(fhf‘)}
= wo— 3 lwo + 1’71J0(171T‘) r B
_ Wi _ovz2Jo(mr) 8 o  (wo—1)3
(wo — 1)3(wp - 3) {4(wo 2)ky m + [ Py 1ko'r‘ + (@o =3 Ji(mr) 6o
- ko Jo(’h")]
k, (@o—1)2 [21’.]1 (mr) + (wo — 3)————= " Bo
i J[(wo — 1)(9wg — 18wy + wj — 11w — 17wy +6) = 10k2
+1_6{[( _— (2?»0 —01)2 " 09, wzo (r? - 1)]Jo(nor)
[1swg — 18wg — 42w + 55wy — 14
wo — 2 (wo + 2)(2wo — 1)
2 -1)? +1 1 _
(wo (;"(02“)0 —). i‘)";okg )(9&13 - 27w3 + 28wy — 8) - 5) ;] 170J1 (1)01")}50 s (510)

ko ko [ 4k? k
wi = _J0(7’0r)61 +{ 22 [ S di(mor) — Jo(mor) | - —l [7' noJ1(nor) — Jo(nor)] pdo
wg |wino
4 [wo(wo — 1)%(wo + 2)(wd — 27w + 28wy — 8) 5k§ 2 ] n
16 {[ 2Qwo — 1) o1 Y5, Jotmn)

Jwg — 18w — 17w + 30w — 10
(wo — 1)(2wo — 1)

+

koTJl(nlr)}ﬂo ) (5.11)

4
w1 = Jo(nor)dy + ﬁwl + (1 - -—) kok1 4 —J1(nor)do
o wd o

K wd(wo — 1)%(wo + 2)(9wi — 27wd + 28uwyp — 8) - ]
16 { [ 2(2wp — 1)2kE +5(r® — 1)|mJo(mr)

9w — 9w3 — 26w2 + 20wg — 2
+—2 0 S _01 0 2 di(mr) } o, (5.12)

)
¢1 = Ko(kor)m1 — krr K (kor)v0 + —

) [rK 1(kor) + korzKo(kor)] ag. (5.13)

Imposition of the boundary conditions (4.6) and (4.7) brings in a relation that holds
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between «; and (i:

(—[Kl(ko)+k0K0(k0)] [-“j?,;—imJo(m)—Jx(m)])(al)z(ﬂ>, (5.14)

—’i(wo — 1)K1(k‘0) J1(’l’]1) ﬁl F2
where .
2
) w [wg—dwo+7 2Jo(m) 1 ( 4(wp — 3) 2 ) ]
Fl_z{ w0—3[ (w0—1)3 ko m +wo—-3 (uJo—l)z(wo+1)k0+1 Jl("?l)
ko [ ( 2, WO —3> Jo(m)

+k 2J -3) (k

oo Diwo =3 [P+ oI BT 5T

14 K2 wo — 1 koKo(ko)
I =) (ew) - 20 i) g +koKo(ko)]}ﬂ°
1 {WO(“’O - 1)

" 16wo(2wo — 1) | 2(2wo — 1)

(9wl — 27wl + wi + 55wd — 12w§ — 14wo + 4)Jo(m0)

wo(wo — 1)2(wo + 1)(wo + 2)
2(2wp — 1)k3

14 k2 Ko(ko) 1. »J |
o B,

- [Qwé — 18w§ — 17Tw§ + 46wp — 18 +

(9wd — 27w + 28wp — 8)

2
_ w§ — 2wy +5 5Jo(m) | Ji(m)
Fz—{wl{ (wo —1)3 %o m T o0-3

1 wo—1 koKo(ko)
P (wo T 1"71J0(711) - Jl("l)) K (ko) + koKo(ko)]

_ - koKo(ko)
+k1 [—%mJo(m) + :2 _:13 (:‘; n imJo(m) - Jl(m)) Kl(kO()) +°,£020(k0)] }ﬂo

_in —1 [ wo(wo — 1)(9wd — 27wp + 10)
16wyq 2w — 1

Jo(no)
+ [wo(wo — 3)(wo — 1)(wo + 1)(wo + 2)(9wd — 27w3 + 28wo — 8) 4
2(2(.00 - l)kg

4Ko(ko) 1,2 J1(m0)
kOKl(kO)]k Mo }60'

(5.16)

The linear stability problem is thus reduced to the systems (5.6) and (5.14) of linear
algebraic equations. As is common, the matrices at O(e) are identical with those at O(€%).
In order for (5.6) and (5.14) to have non-trivial solutions for (v1,61) and (a1, 61), (F, F?)
and (G, G;) must belong to the spaces of the images of the corresponding matrices.

This condition postulates that

. 'l:woKo(ko)Gl - koKl(ko)G2 = 0, (517)
i(wo - 1)K1(k0)Fl - [koKo(ko) + Kl(ko)]Fz = 0. (518)

Substituting from (5.7), (5.8), (5.15) and (5.16), the coupled system of (5.17) and (5.18),
given ki, constitutes an eigenvalue problem for w;. The requirement that they possess a
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nontrivial solution for (G, &) gives rise to w;. Simultaneously, the wavenumber range k;
of instability is determined by the non-reality condition of wi.

6 Numerical result

Figure 1 displays curves of the dispersion relation of the Kelvin waves for the axisymmetric
(m = 0) and the bending (m = —1) modes of left-handed. Curves of m = —1 mode are
drawn with solid lines, whereas those of m = 0 mode are drawn with dashed lines. Curves
for the right-handed bending mode (m = 1) are readily available from curves for m = —1
simply by altering the sign wy — —wy.

The curves of the axisymmetric mode all start from (wp, ko) = (0,0). This mode has
two types of branches symmetrically with respect to the horizontal axis wo = 0, either
increasing or decreasing with k. Each type has an infinite number of branches. Among
the curves of the bending mode, one branch is isolated from the other branches and is
drawn with a thick solid line. This branch is called the primary mode or the long-wave
mode. An infinite number of the remaining curves start from (wp, ko) = (0,—1) and are
called the Bessel modes or the short-wave modes. They are classified into two types, either
increasing or decreasing with k. The increasing branches correspond to waves rotating
slower than the basic circulatory flow, while the decreasing branches correspond to waves
rotating faster than the basic flow.

By inspection, the local maximum of growth rate, if the instability occurs, is attained
when k; = 0. With the choice of k; = 0, we computed the value of w; at many of
the intersection points of the dispersion curves. The primary branch of m = —1 has
turned out to be totally irrelevant to the instability, and hence is ignored. The correction
w of the frequency takes pure-imaginary values only at the intersection points between
the decreasing branches of m = 0 and the increasing branches of m = —1. Among all
the intersection points looked at so far, the maximum growth rate is attained at the
intersection point with the smallest kg, that is,

(ko, wo) ~ (0.813487, —0.59709) . (6.1)

This exhibits a marked contrast with the Widnall instability. In the case of the latter,
the growth rate is maintained to be large at large wavenumbers. On the point (6.1), the
growth rate and the band width Ak; in k; of the instability are

Im[wi]| = 0.054341, Ak, ~ 0.102208 . (6.2)

Putting aside the primary branch of m = —1, this intersection is a collision between the
first branches of m = 0 and m = —1. Relatively large growth rate is attained at the
intersection points of the same (n-th) branches of m = 0 and m = —1.

We need to be cautious about the smallness of the value of |Im[w;]|. The growth
rate €/Im[w,]| of the resonance between m = 0 and m = —1 modes and the growth rate
€?|Im[w,]| of the Widnall instability are highly competitive. Comparison with the result
of Widnall & Tsai (1977) shows that the present mechanism predominates over Widnall’s
one when the vortex ring is very thin: e < 0.028.
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Wo

Fig. 1. Dispersion relation of the Kelvin waves on the Rankine vortex for axisymmetric
mode m = 0 (dasshed lines) and bending mode m = —1 (solid lines).
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