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1 Introduction

The aim of this paper is to give a partial answer to the problem of deriving a functional
quantum It6 formula for (unbounded) semimartingales, i.e., an Ité formula for f(Z), where
Z is in a certain class of quantum semimartingales.

Since a quantum stochastic calculus ([21], [27]; also [24] for the white noise approach)
of Itd type first formulated by Hudson and Parthasarathy [12], the stochastic integral
representations of quantum martingales have been studied by many authors, see [10], 1 1].
In particular, Parthasarathy and Sinha [28] established a stochastic integral representation
of regular bounded quantum martingales in (Boson) Fock space with respect to the basic
martingales, namely the annihilation, creation and number processes. A new proof of the
Parthasarathy and Sinha representation theorem has been discussed by Meyer in [22] in
which he gives the special form of the number operator coefficient. The representation
theorem has been extended to regular bounded semimartingales by Attal [1] and the Ito
formula for products of regular semimartingales belonging to a certain class has been
discussed which yields a quantum It6 formula for polynomial [2]. In [30], by Vincent-
Smith, a functional quantum It formula for regular bounded semimartingales has been
widely studied with closed form of the Itd correction term. For more discussions of
functional quantum Ité formula, we refer to [4], [13].

In [16], we extended the quantum stochastic integral to a wider class of adapted
quantum stochastic processes on Boson Fock space and a quantum stochastic integral
representation theorem has been proved for a class of unbounded semimartingales. Mo-
tivated by results in [16] and [30], we discuss a functional quantum It6 formula for f(E),
where f is an entire function and Z is a (unbounded) semimartingale such that f and
= satisfy certain conditions. Our approach is based on riggings of Fock space which are
applied in many fields of mathematics and mathematical physics, e.g., (3], [5], (8], [19],
[20], [29], we also refer to [9], (18], [23] for nuclear riggings which are the fundamental
frameworks of white noise analysis.

1This work was supported by the Brain Korea 21 Project.
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2 Riggings of Fock Space

Let Hgr = L?(R,,dt) be the real Hilbert space of square integrable functions on R, =
[0, 00) with norm |- |, induced by the inner product (-, -). The complexification of Hp is
denoted by H whose norm is also denoted by |- |,. The (Boson) Fock space H = I'(H)
over H is defined by

H= {¢=(fn ?:0

fa € H® foralln > 0and || ¢||, <oo},

where H®" is the n-fold symmetric tensor power of H and the norm || - ||y is defined by

o0
oI5 = "nl|fals < oo.

n=0 :

We denote by (-, -)) the canonical C-bilinear form on H defined through (-, -).
Let N be the number operator and let G, be the H-domain of eV for each p > 0.

Then G, is a Hilbert space with norm || -||, = || e”"- ||, More precisely, for any p > 0
o0
161 =D nle™fals, ¢ =(fa) €Gp (1)
n=0

Then we naturally come to

G =projlimG, C---CGyC---CG, C---

p—00

~--CQO=HC---CQ_,,C---CQ_,,C-'-CQ*,

where G_, and G* are strong dual spaces of G, and G, respectively. Note that G is a
countable Hilbert space equipped with the Hilbertian norms defined in (1) and G* =
ind lim, ;0 G—p. The canonical C-bilinear form on G* x G is also denoted by ((-, -)), and
we have

(@ o) =D nl(Fu fo), @=(F)EG, ¢=(fa) €0
n=0
Moreover, the Schwartz inequality takes the form:

(@, oh | <l @l ll¢ll,-

It is noted that for any p € R, e?¥H = G_, and e PNG_, = H. Moreover, e?VG, = G,_,
for any p,q € R.

For each £ € H, we write g = {xB, where B C R, and xjp is the indicator function
on B. For notational convenience, we write {) = £jo,4 and &z = &[t,00) for any ¢ > 0. Then
we have the decomposition

H=Hs]®H[5‘t]®H[t,~ 0<s<t<oo,
where Hg) = {fs]l £ € HY, Hyy = {f[s,t]l ¢ € H} and Hy = {E[tlf € H}. Put
7‘[5] == F(Hs]), H[s,t] = I‘(H[s,t]) and 'H[t = P(H[t).
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Then we have the identification

H = H,g] ® H[s,t] ® H[t

via the following decomposition:

Pe = ¢£a] ® ¢€[a,e] ® d’([n § € H,

where ¢¢ = (£%"/n!) is the exponential vector of £ € H. Moreover, for any p € R and
0 < s<t< oo, we have

Gp = Gpis) ® Gpils,) @ ity
where Gy} = Gp Ny, gp;[s,t] =Gp NHs g, Gpiit = Gp NH; and their completion for p < 0.

3 Operators on Fock Space

Let £(X,9) be the space of all bounded linear operators from a locally convex X into
another locally convex space ). Let I, m be non-negative integers. Then for each K, €
L(H®™, H®') the integral kernel operator Eym(Kim) € L(G,G) with kernel K , is defined
by

El,m(Kl,m)¢ = ((n__;'!l)!(Kl,m ® I®nfn+m)sym) ) ¢ = (fn) €g.

In this case, we have forany pe R, ¢>0and ¢ € G

. . 2 eq/2 (l+m)/2
IZm(im)8l, < € (0r9me0) mnss (S2) 0 g,

where C > 0 satisfies that |Kijmflo < C|flo for any f € H®™. Moreover, the integral
kernel operator Z;,,(K|m) has a unique extension to a continuous linear operator from
G* into itself (see [14], [15]).

Let n € H and let K, € L(H,C) be defined by K,(§) = (n,§) for any £ € H. For
simple notation, we identify n = K, = K, where K} is the adjoint operator of K, i.e.,
K;(a) = an for all a € C. For each ¢ > 0, we put

A =Z01(xg), Af =Z10(xg), Ac=E11(xg), (2)

where x4 = X0, and for the definition of A;, the indicator function is considered as the
multiplication operator on H, i.e., xyj(§) = &; for any £ € H. For each t € R, A; and A}
are called the annihilation operator and the creation operator, respectively.

We now mention the following Fock expansion theorem. For the proof, see [17].

Theorem 1 Letp,q € R. For any E € L(Gp, G,) there exists a unique family of operators
Kim € L(H®™, H®), I,m >0, such that

(1

o)
-1)"_
= Z ‘(n—l):n+l,n+m(I®n®K1,m),

Imn=0

where the series converges in L(Gpvg)y+r,Gq—s) for any r > 0 and s > 0 satisfying
p"/(—rlogp) <1 and p*/(—slogp) < 1.
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For a given entire function f, let A; be the class of continuous linear operators = in
L(G, G) satistying that for any p > 0 there exist ¢ > 0, M > 0 and 0 < v < 1 such that

LS O)IIE
n'

Pl < M7y|4ll,, n>0, ¢€g. (3)

Proposition 2 For any E € Ay, we can define f(E) as a continuous operator on G by

f(8) = Zf(n OF (4)

PROOF. By definition of Ay, for any p > 0 there exist g>0,M>0and0<y<1
such that (3) holds. Therefore, for any ¢ € G

> | £ (0 > S
3 f n'( Jzng| < 3 My ligll, < M (Z’y”) [ 1lg-
p n=0 n=0

E"¢
n=0

Hence the series in the right hand side of (4) converges in £(G,G). It then follows the
proof. W

If f is a polynomial, then A; = £(G,G). Also, if f is the exponential function, then
an element of Ay is called an equicontinuous generator, see [26].

4 Equicontinuous Generators

Let GL(G) denote the group of all linear homeomorphisms from G onto itself. In this
section we consider a (complex) one-parameter subgroup {2, },cc of GL(G), i.e., for each
z € C, Q, € GL(G) and

Qo = I (identity operator); 0, =4, 21,22 € C

A one-parameter subgroup {Q,}.cc is said to be holomorphic if there exists a = € L(G)
such that for any ¢ € G,

Qz¢—¢

z

lim

z—0

—Z¢ll =0 forallp>0.

p

Such a Z is called the infinitesimal generator of {2, },cc. A family of operators {Z;}icr C
L(G,G) is said to be equicontinuous if for any p > 0 there exist ¢ > 0 and C > 0 such
that

'|51¢IIP < C”¢|IQ7 ¢ € ga 1€ I>
see [26].
Theorem 3 [26] Every equicontinuous generator E € L(G,G) is the infinitesimal gener-

ator of some holomorphic one-parameter subgroup {Q,}.cc C GL(G) such that {2,;|z| <
R} is equicontinuous for some R > 0. In this case,

where the series converges in L(G,G).
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From Theorem 3, for an equicontinuous generator = € L£(G,G) the corresponding
holomorphic one-parameter subgroup of GL(G) is denoted by {exp(zE)}.cc.

Lemma 4 [26] Let E € L(G,G). Then the following conditions are equivalent:
(i) there exists some R > 0 such that {(RE)*/nl;n =0,1,2,---} is equicontinuous;
(i) {(RE)"/nY;n=0,1,2, -} is equicontinuous for any R > 0.

Lemma 5 Let (,n € H and B € L(H,H). Then there ezxists a unique operator Gy ¢ €
L(G,G) such that

GnBco = ( Z Z (ll,;:, o) ¢®"® ((%)® (n ®k®kfl+k)))

l4+m=n k=0

for any ¢ = (fn)20 € G, where &y is the right contraction [23].

For the proof, see [15]. For each £ € H, we can easily see that

Gn,Bc e = exp{(n, £)}Penes¢- (5)

Motivated by results in [6] and Theorem 3, we now consider a holomorphic one-
parameter subgroup of GL(G) with infinitesimal generator a1l + azA; + asA; + a4 A}
for arbitrary a,, a3, a3, a4 € C and t > 0.

For notational convenience, we put

Gt;al,az,as,tu = alGazxt],asx”,(ux‘]’ ), 2, O3, (4 € C) t>0.

Let C and C* = C— {0} be the additive and multiplicative group of complex numbers,
respectively.

Theorem 6 Let &; = {Gioyazas,00 : @1 € C*, 02,03,04 € C}. Then &; forms a sub-
group of GL(G).

PRrROOF. For any ¢ € H we have, by (5), Gt1,00,00¢ = ¢¢ and
Gt;a’l,a’z,a's,a"Gt;al,02.03,04¢€ = t;allale"'z"‘4',a'2eas+a2,e°§+°3,e“§a4+ag¢£’

for any oq,a) € C* and an,a},03,05,04,0 € C. But {¢¢ : £ € H} spans a dense
subspace of G and Gy, az,0s,a4 iS continuous. Hence it follows that for any ¢ € G

Gt1,0000 = ¢ and

ol ol IG . = G ' ' '
Gt 10y ,Og, Qg Oy t,01,02,03704¢ tiay aleag"u‘ al %3 +a2,e°'3+°'3 ’e“3a4+a2¢’

Put o} = (1/o) exp{e **aza4t}, oh = —a2e™®, 03 = —as, and oy = —age™*. Then
Gal oy a0, 18 the inverse of Gy, as,03,0 10 ®¢. This completes the proof. [ |
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For each a = (a1, a3, a3,a4) € C*, we define the functions ay, a2, az and a4 on C by

a;(z) = exp {alz + 2284 [%(easz ~1)— z] },
a(z) = G2(e®* — 1),

a3(z) = a3z,

ay(z) = f(e®* — 1)

(6)

if as 75 0;
a1(z) = exp { a1z + 22422¢}
asz(2) = ayz,
as(2) = 0, (7)
ay(2) = agz

if a3 = 0. For each a = (ay,a2,a3,a4) € C* we also define a family of transforms
{Ra,t;2}zec by

ﬁAa,t;z = (z)ji,t;z = al(Z)Gt;az(z),a3(z),a4(z)a S C,

where a = (ay, a3, a4) and the functions a;, o, a3 and oy are given as in (6) or (7). Then,
by direct computations using (5), {fay;:}zec is a one-parameter subgroup of GL(G).

Lemma 7 For each a = (a3, as3,a4) € C? and for any ¢ € G, we have

li j'zi,t;z‘)ls - d)
m || ——
z

z—0

— (agAt + a3At + a4A:)¢

p € R
p

PrROOF. Let p € R and ¢ = (f,) € G be given. Then by definition of Jz ..., we have

35 . — *
.%_2 — (agAs + azA; + asAy)é
337X )®n _ 1 n—
— (( z fn — asn (Xt] ® I®( 1)f")sym)

( ag(z )X ® ((e»™x0)®rf,) — a4xq<§fn>
N ((n +1)! [az(z) (sxayon a2} Yo fnﬂ)

n! z

+ —Gn ),
Zz

(I +k)!
l+§;n k-§>2 iktm!

X (04(Z)Xt])®m® [(ea3zx‘])®l ((a2(z)Xt])®k®kfl+k)] .

Therefore, we obtain that

jE,t;z ¢ - ¢
z

where

2
- (azAt + a3At + a4AZ)q5

<4) Ii(2)

P j=1
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00
e%32xy\en _ 1 2
L(z) = aneZIM ( ,Z fa—asn (xg ® I®("_1)fn)sym ;
n=
d A1) Ta2(2), .., ~ 2
Iz(z) — Zn!ezp ( ~ ) [ 2( )(esxq)@n_az] Xt]®1fn+1 ,
=0 ! z 0
00 2
n A% o a3z n N
o) = Y+ 1) |20 g (o) — axydf,
n=0 0
and
o 1 2
Ii(z) = Zn!ez’"‘ —0n
n=0 z 0

Then by simple modification of the proof of Proposition 5.4.5 in [23], we can easily see
that lim,_,o I;(z) = 0. On the other hand, by similar arguments of those used in the proof
Lemma 3.4 in [14], we see that lim,_,¢(2(2) + I3(2) + I4(z)) = 0. The proof follows. B

Theorem 8 For eacht > 0 and a = (ay, az, a3, a4) € C, {Ray:}zec 15 @ holomorphic one-
parameter subgroup of GL(G) with the infinitesimal generator ail + az Ay + asA, + asA;}.

PROOF. Let p € R and ¢ € G be given. Then we have

W — (1] + agA; + asAs + asA)o

p

1356281, + llas (Fae: — 1) 4,

al(z) -1 —a
z

p

j’i 2@ — -
+ t—f—é — (agA¢ + azA; + a4 A})d

From Lemma 7, the proof follows. B

Theorem 9 The transform Gi.a, 03,0504 s the following representation:

_ agAf ash¢ agzA
Gtar,en,as,00 = 01677 0€ ce .

PROOF. It can be easily shown that for any £ € H, we have
Gtiar,02,03,04P¢ = a4 o e o eazAt¢£ .

We note that Gia, 0030 a0d a1e®44f 0 €237 0 €224¢ are continuous linear operators on
G. Since {¢; : £ € H} spans a dense subspace of G, the proof follows. N

By similar arguments of those used in the proof of Lemma 5, {f.y;|2| < R} is
equicontinuous for any R > 0. Therefore, by Theorems 8 and 3, a1 + a2 A; + azA; + ag A}
is an equicontinuous generator for each ¢ > 0 and a = (a1, az,a3,a4) € C*. Hence by
Theorem 9 we have

ez(alI+azA¢+aaA¢+a4A;) — a]_(Z)e(u(z)A: o eas(z)A: o eaz(z)Ag,

where the functions o, a2, a3 and a4 are given as in (6) or (7).
For each a,b € C and t € Ry, let Q,(t) = aA; + bA;. Then by Theorems 8 and 3 we
also see that @, (t) is an equicontinuous generator.
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5 Quantum Stochastic Processes

A family of operators {Z;};50 C L£(G,G*) is called a quantum stochastic process if there
exists p, ¢ € R such that E; € £(G,, G,) for all t > 0 and for each ¢ € Gp the map t — Z;¢
is strongly measurable. A quantum stochastic process {Z:}s50 C £(Gy, G,) (p > q) is said
to be adapted if for each t > 0 there exists Eq € L(Gpy), Ggyy)) such that 5, = Ey ® I,
where Ij; : Gyt < gyt is the inclusion map.

For each t € Ry, the conditional expectation E, (see [5], [25]) is defined by the second
quantization operator I'(x4) of Xy, i.e., for each t € Ry

E® = (X?nfn), ®=(fn) €G".
Then for any p € R and ® = (f,) € G,, we have

o0
B} =D nle®|xg" fal§ < [1DII2.
n=0
Hence for any p € R and t € R, E; € £(G,,G,) and E, is an orthogonal projection.
Moreover, E; € £(G,G) and E; € L(G*, G*).
An adapted process of operators {Z;:}s>0 in £(Gp,G,) (p > q) is called a gquantum
martingale if for any 0 < s <t

E,5E, = E,5,E,.

The processes {A¢}i>0, {Af}1>0 and {A;}s>o defined in (2) are called the annihilation,
creation and number (or gauge) processes, respectively. The quantum stochastic process
Q: = Q11(t) = Ay + A} is called the quantum Brownian motion or the position process.
For any non-negative integers [, m, the processes {(A;)' A" }+>0 and {Ag'}>0 are quantum
martingales, where ¢ is the Wick product or normal-ordered product [7]. In particular,
the annihilation process {A;}:>0, the creation process {A;f}:>o and the number process
{A¢}4>0 are quantum martingales. These martingales are called the basic martingales.
Also, the basic martingales and the time process are called the basic processes.

An adapted process {E;}s>0 is called a regular semimartingale in £(G,G) if for any
p > 0 there exists ¢ > p and an absolutely continuous measure m on R, such that for
any r < s <tand ¢ € Ggp}, ¥ € G_pir)

IE - Englly < ligllgm(ls, t]);
1B —ED¢l%, < I19lZ,m((s,]);
1(EsZ: = Eo)ell, < l6llgm([s, ).

Let LZ (R, ) be the space of all locally bounded square integrable functions on R, and
& a dense subspace of H spanned by all exponential vectors ¢¢, £ € L2 (R,).

The space S(G) of adapted process {Z;}+>0 in £(G,G) admitting the integral repre-
sentation:

t
Sy =M+ / (EdA + FdA + GdA* + Hds)
0

on & with a A € C and adapted processes (E, F,G, H) in £(G,G) satisfying that for
any p > 0 there exists ¢ > p such that s — ||Fj||;p and s — ||G,llq,p are locally square
integrable, s — ||E;||q;p is locally bounded and s — ||H,l|,,, is locally integrable, where
| - llg;p is the operator norm on £(G,, Gp).
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Theorem 10 An adapted process {E:}i>0 in L(G,G) is an element of S(G) if and only
if 2 is a reqular semimartingale.

For the proof, we refer to [16].

6 Functional Quantum It6 Formula

Let Ly(G) be the class of quadruples F = (E, F,G, H) of adapted processes in £(G, G)
satisfying that for any p > 0 there exists ¢ > p such that s = ||Fy|lgp and s = ||Gslgp
are locally square integrable, s — ||Ej|q;p is locally bounded and s + || H,l|g; is locally
integrable.

Theorem 11 Let {Z;}1>0 € S(G) and {E}}i>0 € S(G) with the following integral repre-
sentations:

t
z, = / (BdA+ FdA + GdA® + Hds),
0
t
= - / (B'dA + F'dA + G'dA® + H'ds)
0

on & for some F € Ly(G) and F' € Ly(G), respectively. Then both integral representa-
tions can be extended to G and we have

t
B = / (EE'dA + FE'dA + GE'dA* + HE'ds)
0
t
+ / (EE'dA + EF'dA + EG'dA* + EH'ds)
0
t
+ / (EE'dA + FE'dA + EG'dA* + FG'ds). (8)
0

PROOF. By the similar arguments of those used in the proof of Theorems 6.1 and 6.2 in
[16], the proof is straightforward. W

The equation (8) is sometimes written in the shorter differential form:

d(E=) = (dE)E’ +ZE(dZ") + (dE)(dE'), (9)
where
(d= = = EF'dA+ F='dA+ GE'dA* + HZ'ds,

S(dE') = ESE'dA+EF'dA+EG'dA* +EH'ds,
(dE)(dE") = EE'dA+ FE'dA+EG'dA* + FG'ds.

From now on we consider Z € S(G) with the integral representation:

i
S, = Eo+ / (EdA + FdA + GdA* + Hds).
0
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By similar arguments of those used in the proof of Theorem 5 in [1] with Remark 7.4 in
[16], we can easily prove that for each p > 0 there exists ¢ > 0 the map s — |||, is
locally bounded. Therefore, by (8) we see that for each positive integer n, Z"*! € S(G)
and we have

d(E™*!) = (dB)E" + E(dE") + (dE)(d="). -(10)
It follows the following lemma. For the proof, see the proof of Lemma 4.1 in [30].

Lemma 12 We have

t
Er =20+ / (EndA + FodA + GndA* + H,ds), (11)
0
where -
E,=(E+E"-E" F,= Y EFE+EY, Go= ) (E+E)GH
i+j=n-1 ' i+j=n—1
and

H,= Y EZHZ¥+ Y EFE+E)GE
i+j=n—1 i4+j+k=n—2

From Lemma 12 we have a quantum Ité formula for p(Z), where p is a polynomial
and Z € S(G). Now we consider a quantum It formula for f(Z), where f is an entire
function on C satisfying certain condition.

Lemma 13 Let {a,}32, C C such that
1
Ianl < ;"—‘MRn, n Z 0

for some M >0 and R > 0. If E; and E;+ E; are equicontinuous generators for allt > 0,

then the series
oo [o ] o0 o0
> 6nEn, Y anFa, Y anGhy, > a.H,
n=0 n=0 n=0 n=0

converge in L(G,G),where E,, F,, G, and H, are given as in Lemma 12.

PRrROOF. We will prove only that the series o, a,H, converges in £(G,G) since the
proofs of convergence of other series are very similar. For any n > 0 and p > 0, we have

[ Hndllp < ( > IEHE L+ ) lIEiF(E+E)jGEk¢IIp)

i+j=n—1 i+j+k=n-2

By the equicontinuity of = and the continuity of H, there exist C;,C;,C3 > 0 and
g,r,s > 0 such that for any € > 0

Y IEHE, < G Y illlHE ),

i+j=n—1 itj=n—1
< GG Y ElE g
itj=n—1
< 010203€n_1 ( Z i!j!) llolls
i+j=n—1

< C1CoC3e™ 0! 9l
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Similarly, by the equicontinuity of Z+ E and the continuity of F' and G, there exist C' > 0
and ¢ > 0 such that

> |IE'F(E+ E)GEF |, < Ce2nl|| ¢,

i+j+k=n—2

Therefore, by choosing € > 0 such that Re < 1 we have

> llanHngll, < MR(CLCxCs+ RC) (Z(Re)") 16l

n=0 n=0

where ¢' = sV ¢. It proves that the series Y >, an,H, converges in £(G,G). 1

For the following theorem we assume that there exists R > 0 such that {(RZ;)"/n!; t €
K,n=0,1,2,---} and {(R(E; + E;))*/n!;t € K,n = 0,1,2,---} are equicontinuous
families for any bounded interval K C R,, i.e., for any p > 0 there exists C,C’' > 0 and
q,q > 0 such that for any bounded interval K C R,

A=) 4 ” (R(Et;; Ey))"

sup
n

teK

¢ < C’Hd)“q” ¢ €g

p

(RE,)"™
!

< Cligllg, sup
teK

p

foralln=0,1,2,---.

Theorem 14 Let f be an entire function with Taylor ezpansion

f(z)= Za,,z", 2€C

n=0

and E € S(G) admit the integral representation
t
Ee=Z0+ / (EdA + FdA + GdA* + Hds) .
' 0
Assume that there exist M > 0 and R > 0 such that
lan| < -1—'MR", n > 0.
n!
Then we have
t
F(E) = f(Eo) + / (E'dA + F'dA+ G'dA* + H'ds) (12)

0

where

oo (s o) oo oo
E'= 6.En, F'=) aFn, G =) a.Go, H =) anH,

n=0 n=0 n=0 n=0
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PROOF. By similar arguments of those used in the proof of Lemma 13, we can easily
prove that for any p > 0 there exists ¢ > p such that s — ||E)||,, is locally bounded,

s + ||Fyllgp and s > ||G}|lgp are locally square integrable and s — ||H}||,,, is locally
integrable. Therefore, by Lemma 12, for all ¢ > 0 and &,n € L2 (R, ) we have

(FEDde, dn) = D an (Ebde, b))

+ E an / ((EnBn + EFy + 1Gr + H)de, d,) ds
= f(~0)¢£, ) |
/ zan ((EnBn + EFa+nGo + H)dg, 60) ds,

where for the last equality we used the dominated convergence theorem. It follows the
proof. N

Lemma 15 For each t € R, let B, € L£(G,G) be an equicontinuous generator and let

{Q4..}zcc be the corresponding holomorphic one-parameter subgroup of GL(G). Then the
following conditions are equivalent:

(i) there exists R > 0 such that {(RE)"/nl;t € K,n =0,1,2,---} is equicontinuous
for any bounded interval K C Ry ;

(i) {Q.;t € K, |z| < R} is equicontinuous for some R > 0 and any bounded interval
K CR,.

PROOF. (i) = (ii) By assumption

Qop = Z $€G, |2|<R

n=0

converges in G. Moreover, for any ¢ € G and |z| < R' < R we have

R R
. < < .
sup [l < C (2 ) Wl < © (725 ) 19l
(i1) = (i) For each fixed ® € G* and ¢ € G, we have

n!
(@50 = s [ (@ 0%d) 70 (13)

|z|=r

On the other hand, by assumption for any p > 0 there exists C' > 0 and ¢ > 0 such that
for any bounded interval K C R,

fg}lg ||Qt;1¢|lp < C”d’“qa Izl <R, ¢€g.
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Therefore, by (13) we have

(@ ey < » dz]

o ] Nl-aliOusdllr

INA

|2|=r

n!
Cl®l-plldll, tek, O0<r<R

IN

It follows the proof. B

Let t € R, and a; = (a;t,as,a3,a4) € C*. Then by direct computation, we see that
{Ra,tz;t € K, |z| < R} is equicontinuous for any R > 0 and bounded interval K C R,.
Therefore, by Lemma 15, {(RE;)*/n!;t € K, n = 0,1,2,---} is equicontinuous for any
R > 0 and bounded interval K C R, where E; = a;t + a2A; + asA: + agA;.

Theorem 16 Let t € Ry, (a;,a2,a3,a4) € C! and let E; = a1A¢ + azA; + a3 A} + aqt.
Assume that ay # 0. Then €%t is a reqular semimartingale and

t
et = 1 +/ ((e"1 —1)e5dA, + Ez3(6“‘ —1)e5+dA,
0

+?(e‘“ — 1) dA? + ( as + —a2a3 [ (e —1) — 1]) eE’ds> .
1
ProoF. By Theorem 14, we have
t
et =1+ / (E'dA + F'dA + G'dA* + H'ds), (14)
0
where
. o0
= Z [( +a;)" — 5" = 5T — & = (&% — 1) €%,
n—O
t I
ZZ( T 2 SE ), “3Z(n+1)' 2 E+ o)
i+j=n i+j=n
and
201 , .
H = Z 'n' (a4nu + azas3 Z E(E+ al)’Ek)
n=0 i+j+k=n—-2

= a4€” +a2a32( +2)' Z =(_+a1)1

i+j=n
By similar arguments of those used in the proof of Proposition 5.1 in [30], we see that
a as

e — 1 E’ G == 81 _ 1)
2 (e - e (e - e

H = <a4 it [—1—(6“1 -1)- 1]) €.
ai ay

This completes the proof from (14).

F' =

and

The following result is immediate from Theorem 16.
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Corollary 17 Let (a,b,c,d) € C*. Assume that a # 0,—1. Then
E; = exp {ln(a +1)A; + - ln(a +1)A,

b
+Eln(a+ 1)A; + [(d— —C) b—cln(a+ 1)] } , teR,
is a solution of the following quantum stochastic differential equation:
EtZEt(GAt+bAg+CA:+ddt), 50:1

Theorem 18 Let a,b € C and let f be an entire function with Ta'ylor erpansion

f(2)=) a2, ze€C.
n=0
Assume that there exist M > 0 and R > 0 such that
loal < ~ME",  n>0.
n!
Then we have
¢ ! ab ¢ n
f(Qap(t)) = F(0) + | f(Qap(5)dQap(t) + — | f"(Qap(s))ds
0 2 Jo

PROOF. Since Qq(t) = fot (adA; + bdA%), by Lemma 12 we see that
E, =0, = anQa b G, = anZ;l

and

Hy=ab Y Q3F7= n(n - 1)Q5;”

a+f+y=n—2

for each n =1,2,---. Hence by Theorem 14 we complete the proof. B
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