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\S 1. Introduction

We shall discuss the analysis of random complex systems which have close connections
with quantum dynamics. In particular, we analyse stochastic processes $X(t)$ and random
fields $X(C)$ , in asystematic manner. Actually, our aim is to study those systems by using
white noise analysis.

The idea of the analysis is that we first provide abasic and standard system of random
variables and to express the given system as afunction of the system provided in adavance.
Naturally follows the analysis of the function. The system of variables where we start
involves idealized elemental random variables (abbr. i.e.r.v.). To take such asystem is in
line with the

Reductionism.

This thought seems to be similar to the atomism in physics. We may refer to the lecture
given by $\mathrm{P}.\mathrm{W}$ . Anderson at University of Tokyo in 1999. The title of his lecture included
Emergence together with Reductionism.

The next step is to form afunction of the elemental elements obtained by the reduction;

namely

Synthesis.

The goal has to be the analysis of the function (may be called functional) to identify the

random complex system in question.
The first step of taking suitable system of i.e.r.v.’s has been influenced by the way

how to understand the notion of astochastic process. We therefore have aquick review

of the definition of astochastic process starting from the idea of J. Bernoulli and L\’evy on

the definition of astochastic process, where we are suggested to consider the innovation
of astochastic process. It is viewed as asystem of i.e.r.v. ’s, which will be specified to be

awhite noise.
The analysis of white noise functional$\mathrm{s}$ has many significant characteristics which are

fitting for investigation of quantum mechnical phenomena. Thus, we shall be able to show

examples to which white noise theory is efficintly applied.

\S 2. Review of defining astochastic process and white noise analysis

There is atraditional, and in fact original way of defining astochastic process. Let

us refer to L\’evy’s definition of astochastic process given in his book [3] Chapt. $\mathrm{I}\mathrm{I}$ . $\zeta$ “une

fonction al\’eatoire $X(t)$ du temps $t$ dans lequel le hasard intervient \‘a chaque instant” . The

hasard is expressed as an infinitesimal random variable $\mathrm{Y}(t)$ which is independent of the
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observed values of $X(s)$ , $s\leq t$ , in the past. The random variable $\mathrm{Y}(t)$ is nothing but the
innovation of the process $X(t)$ .

Formally speaking the $\mathrm{Y}(t)$ , which is usually an infiniotesimal random variable, con-
tains the information that was gained by the $X(t)$ during the time interval $[t, t+dt)$ .

It would be fine if the given process is expressd as afunctional of $\mathrm{Y}(t)$ in the following
manner:

$X(t)=\Psi(\mathrm{Y}(s), s\leq t, t)$ ,

where $\Psi$ is asure (non random) function. Such atrick may be called the reductionism.
The expression is causal in the sense that the $X(t)$ is expressed as afunction of $\mathrm{Y}(s)$ , $s\leq t$ ,
and never uses $\mathrm{Y}(s)$ with $s>t$ .

The collection $\{\mathrm{Y}(s)\}$ is asystem of i.e.r.v.’s so that the above expression is areal-
ization of the synthesis. We are particularly interested in the case where the system of
i.e.r.v. ’s is taken to be awhite noise. We are now ready to discuss white noise analysis.

First we note that the white noise analysis has many advantages.

1) It is an infinite dimensional analysis. Actually, our stochastic analysis can be
systematically done by taking awhite noise as asytem of i.e.r.v.’s to express the given
random complex systems. Indeed, the analysis is essentially infinite dimensional as wili
be seen in what follows.

2) Rotation group. The white noise measure supported by the space $E^{*}$ of generalized
functions on the parameter space $R^{d}$ is invariant under the rotations of $E^{*}$ . Hence a
harmonic analysis arising from the group will naturally be discussed. The group contains
significant subgroups which describes essentially infinite dimensional characters.

3) Random fields $X(C)$ parametrized by $C$ is discussed in the similar manner to $X(t)$

so far as innovation is concerned. For concrete discussion, we assume that $C$ is aclosed
smooth convex manifold like acontour or asurface. Needless to say, $X(C)$ enjoys more
profound characteristic properties.

4) The s0-called $S$-transform applied to white noise functionals provides abridge
connecting white noise functionals and classical functionals of ordinary functions. We
can therefore appeal to the classical theory of functionals established in the first half
of the twentieth century. Differential and integral calculus of white noise functionals,
often generalized functionals, harmonic analysis including Fourie analysis, Laplacians,
complexification and other theories are refered to the monograph [13] and others.

\S 3. Relations to Quantum Dynamics

We now explain briefiy some topics in quantum dynamics to which white noise theory
can be applied.

1) Representation of the canonical commutation relations for Boson field. This topic
is well known. Let $\dot{B}(t)$ be awhite noise and let $\partial_{t}$ denote the $\dot{B}(t)$-derivative. Then it
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is an annihilation operator and its dual operator $\partial_{t}^{*}$ stands for the creation. They satisfy
the commutation relations

$[\partial_{t}, \partial_{s}]=[\partial_{t}^{*}, \partial_{s}^{*}]=0$ ,

$[\partial_{t}, \partial_{s}^{*}]=\delta(t-s)$ .

From these, arepresentation of the canonical commutation relations hold for Bosonic
particle.

2) Reflection positivity ( $\mathrm{T}$-positivity). Astationary multiple Markov (say, TV-ple
Markov) Gaussian process has aspetral density function $f(\lambda)$ of particular type. Namely,

$f( \lambda)=\sum_{1}^{N}\frac{c_{k}}{\lambda^{2}+a_{k}^{2}}$ .

On the other hand, it is proved that

Proposition. The covariance function $\gamma(h)$ of astationary $\mathrm{T}$-positive Gaussian process
is expressed in the form

$\gamma(h)=\int_{0}^{\infty}\exp[-|h|x]dv(x)$ ,

where $v$ is apositive finite measure.

By applying this assertion to the $\mathrm{N}$-ple Markov Gaussian process we claim that T-
positivity requires $c_{k}>0$ for every $k$ . Note that in the strictly $\mathrm{N}$-ple Markov case this
condition is not satisfied. It is our hope that this result would be generalized to the cases
of general stochastic processes of multiple Markov properties.

3) Apath integral formulation. One of the realization of Dirac-Feynman ’s idea of
the path integral may be given by the following method using generalized white noise
functionals. First we establish aclass of possible trajectories when aLagrangian $L(x,\dot{X})$

is given. Let $x$ be the classical trajectory determined by the Lagrangian. As soon as we
come to quantum dynamics we have to consider fluctuating paths $y$ . We propose that
they are given by

$y(s)=x(s)+\sqrt{\frac{\hslash}{m}}B(s)$ .

The average over the paths is replaced with the expectation with respect to the probability
measure for which Brownian motion $B(t)$ is defined. Thus, the propagator $G(y_{1}, y_{2}, t)$ is
given by

$E \{N\exp[\frac{i}{\hslash}\int_{0}^{t}L(y,\dot{y})ds+\frac{1}{2}\int_{0}^{t}\dot{B}(s)^{2}ds]\delta(y(t)-y_{2})\}$ .

With this setup, actual computations have been done to get exact formulae of the prop-
agators. (L. Streit et al.)

4) Dirichlet forms in infinite dimensions. With the help of positive grneralized white
noise functionals we prove criteria for closability of energy forms
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5) Random fields $X(C)$ . We assume that $X(C)$ has acausal representation in terms
of white noise.

5.1) Markov property and multiple Markov properties. We are suggested by Dirac’s
paper [1] to define Markov property. For Gaussian case we are given reasonable definition
(see [14]) by using the canonical representation in terms of white noise. Some attempt-

$\mathrm{s}$ have been made for some non Gaussian fields. It is an interesting question to fine
conditions related to multiple Markov properties.

5.2) Stochastic variational equations of Langevin type. Let $C$ runs through aclass $\mathrm{C}$

of concentric circles. The equation is

$\delta X(C)=-\lambda X(C)\int_{C}\delta n(s)ds+X_{o}\int_{C}v(s)\partial_{s}^{*}\delta n(s)ds$ .

The explicit solution is given by using the $S$-transform and the classical theory of func-
tionals.

5.3) We have made an attempt to define arandom field $X(C)$ , $C\in \mathrm{C}$ which satisfies
conformal invariance. Reversibility can also be discussed.

Q4. Concluding remarks

Some of future directions are proposed.

1. One is concerned with good applications of the L\’evy Laplacian. Its significance is that
it is an operator that is essentially infinite dimensional.

2. Atwo dimensional Brownian path is considered to have some optimality in occupying
the territory. This property should reflect to the construction of amodel of physical
phenomena.

3. Systematic approach to invariance of random fields under transformation group will
be discussed. The reversibility of arandom field discussed in this line would suggest a
generalization of the path integral method discussed in 3) of \S 3.
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