A SURVEY OF KNOWN RESULTS ON 1－GENUS 1－BRIDGE KNOTS

日本女子大学 理学部 林忠一郎 CHUICHIRO HAYASHI FACULTY OF SCIENCE JAPAN WOMEN＇S UNIVERSITY

We recall the definition of 1－genus 1－bridge knots．A properly imbedded $\operatorname{arc} t$ in a solid torus V is called trivial if it is boundary parallel，that is，there is a disc C imbedded in V such that $t \subset \partial C$ and $C \cap \partial V=\mathrm{cl}(\partial C-t)$ ．We call such a disc a cancelling disc of the trivial arc t ．Let M be a closed connected orientable 3－manifold，and K a knot in M ．The knot K is called a 1－genus 1－ bridge knot in M if M is a union of two solid tori V_{1} and V_{2} glued along their boundary tori ∂V_{1} and ∂V_{2} and if K intersects each solid torus V_{i} in a trivial $\operatorname{arc} t_{i}$ for $i=1$ and 2 ．The splitting $(M, K)=\left(V_{1}, t_{1}\right) \cup_{H}\left(V_{2}, t_{2}\right)$ is called a 1－genus 1－bridge splitting of (M, K) ，where $H=V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}$ ，the torus．We call also the splitting torus H a 1－genus 1－bridge splitting．We say（ 1,1 ）－knots and（ 1,1 ）－splitting for short．

1－genus 1－bridge knots are very important in light of Heegaard splittings and Dehn surgeries as shown in the theorems below．

Theorem 0．1．（T．Kobayashi［15］）Let M be a closed orientable connected 3 －manifold of genus 2．Suppose that M admits a non－trivial torus decom－ position．Then either（i）M is a union os an exterior of $a(1,1)$－knot and a Seifert fibered manifold over a disc with 2－exceptional fibers，or（ii）－（v）， which we omit here．

CHUICHIRO HAYASHI

Let $(M, K)=\left(V_{1}, t_{1}\right) \cup_{H}\left(V_{2}, t_{2}\right)$ be a $(1,1)$-splitting. If there are an essential simple closed curve ℓ in the torus H and cancelling discs C_{i} of t_{i} in V_{i} for $i=1$ and 2 such that $C_{i} \cap \ell=\emptyset$, then we say that the $\operatorname{knot}(M, K)$ has a satellite diagram on the $(1,1)$-splitting torus H. At this time, the knot K has a 1-bridge diagram on an annulus in H. We say that the satellite diagram is of meridional (resp. longitudinal) slope if ℓ is of meridional (resp.longitudinal) slope of V_{1} or V_{2}.

Theorem 0.2. (K. Morimoto and M. Sakuma [19]) Let K be a satellite knot in the 3 -sphere S^{3} of tunnel number one. Then K is a satellite $(1,1)$-knot such that K has a satellite diagram of non-meridional and non-longitudinal slope on the $(1,1)$-splitting torus.

It is well-known that all the $(1,1)$-knots are of tunnel number one.
Theorem 0.3. (D. Gabai [4]) Let V be a solid torus, and K a knot in the interior of V. Suppose that a Dehn surgery on K yields a solid torus. Then K is a 1-bridge braid, that is, isotopic to a union of an arc α on ∂V and a trivial arc in a meridian disc D of V such that all the intersection points of α and ∂D are of the same sign.

Note that K forms a (1,1)-knot when we imbed the 1-bridge braid (V, K) in a standard manner in a 3-manifold of genus 1 .

Theorem 0.4. (A. Thompson [27]) Let M be a closed connected orientable 3 -manifold, and $M=W_{1} \cup_{H} W_{2}$ a Heegaard splitting of genus 2. Suppose that this splitting has the disjoint curve property, that is, there are an essential simple closed curve ℓ in H and essential discs D_{i} of the handlebody W_{i} such that $\ell \cap\left(D_{1} \cap D_{2}\right)=\emptyset$ Then M is non-hyperbolic or a result of a Dehn surgery on a $(1,1)$-knot.

A SURVERY OF KNOWN RESULTS ON 1-GENUS 1-BRIDGE KNOTS

These theorems show that (1,1)-knots are important. There are many researches on $(1,1)$-knots as below. In the following, we assume that M is not homeomorphic to $S^{2} \times S^{1}$ for simplicity.

Let V be a solid torus, and t a trivial arc in V. We call a disc D properly imbedded in V a t-compressing disc if D is disjoint from t and ∂D is essential in $\partial V-\partial t$.

Let $(M, K)=\left(V_{1}, t_{1}\right) \cup_{H}\left(V_{2}, t_{2}\right)$ be a $(1,1)$-splitting. The splitting is called K-reducible if there are t_{i}-compressing D_{i} in $\left(V_{i}, t_{i}\right)$ for $i=1$ and 2 such that $\partial D_{1}=\partial D_{2}$ in H.

Theorem 0.5. (H. Doll [3]) Let M be a closed connected orientable 3manifold of genus 1 , and $(M, K) a(1,1)-k n o t$. Then the next three conditions are equivalent.
(1) The knot K is split, that is, the exterior of K contains an essential 2-sphere.
(2) The (1, 1)-splitting is K-reducible.
(3) K is the trivial knot, that is, it bounds an imbedded disc in M.

He has studied more general case of g-genus n-bridge knots.
Theorem 0.6. ([9]) Let $\left(S^{3}, K\right)$ be a (1,1)-knot. Then K is a trivial knot if and only if the $(1,1)$-splitting is K-reducible.

Theorem 0.7. ([9], [13], [11]) Let (M, K) be a (1,1)-knot. Then K is a core knot, that is, the exterior is a solid torus if and only if for $(i, j)=(1,2)$ or $(2,1)$ there are a meridian disc D of V_{i} such that $D \cap t_{i}=\emptyset$ and a cancelling disc C of t_{j} in V_{j} such that ∂C intersects ∂D transversely in a single point.

Let V be a solid torus, and t a trivial arc in V. We call a meridian disc D of V a meridionally compressing disc if D intersects t transversely in a single point.

CHUICHIRO HAYASHI

Let $(M, K)=\left(V_{1}, t_{1}\right) \cup_{H}\left(V_{2}, t_{2}\right)$ be a (1,1)-splitting. The splitting is called weakly K-reducible if there are properly imbedded discs D_{i} in V_{i} for $i=1$ and 2 such that $\partial D_{1} \cap \partial D_{2}=\emptyset$ in H.

Lemma 0.8. ([10]) Let (M, K) be a (1,1)-knot. Suppose that the $(1,1)$ splitting is weakly K-reducible. Then either (1) K is a core knot in a lens space, (2) K is a (maybe trivial) 2-bridge knot in S^{3} or (3) K is a composite knot of a core knot and a 2-bridge knot.

Theorem 0.9. (H. Doll [3]) Let K be a (1,1)-knot. If K is a composite knot, then the $(1,1)$-splitting is weakly K-reducible.
Theorem 0.10. (T. Kobayashi and O. Saeki [16]) Let K be a 2-bridge knot in the 3 -sphere S^{3}. Then any $(1,1)$-splitting of K is weakly K-reducible.

Theorem 0.11. (K. Morimoto [18]) Let K be a non-trivial non-core torus knot, where "torus" knot means that K can be isotoped into a Heegaard splitting torus. Then any $(1,1)$-splitting of K is cancellable, that is, there are cancelling discs C_{i} of t_{i} in V_{i} for $i=1$ and 2 such that $\partial C_{1} \cap \partial C_{2}=$ $\partial t_{1}=\partial t_{2}$.

We can push K along the discs C_{1} and C_{2} into the splitting torus.
Theorem 0.12. ([9]) Let (M, K) be a $(1,1)$-knot. Suppose that K is a cabled knot, that is, there is a solid torus V in M such that $K \subset \partial V$ and that any meridian disc of V intersects K in two or more points. Then either (1) the (1,1)-splitting is K-reducible or weakly K-reducible, (2) K is a torus knot, or (3) K has a 1-bridge diagram on an annulus A in the splitting torus H such that each bridge is an essential arc in A.

Theorem 0.13. ([10]) Let (M, K) be a $(1,1)$-knot. Note that M may be a lens space. If K is a satellite knot, then the (1,1)-split admits a satellite diagram of a non-meridional non-longitudinal slope.

A SURVERY OF KNOWN RESULTS ON 1-GENUS 1-BRIDGE KNOTS

Theorem 0.14. (H. Matsuda [17]) Let $\left(S^{3}, K\right)$ be a non-trivial (1,1)-knot. Suppose that K bounds a Seifert surface F of genus 1. Then either (1) K is a 2-bridge knot and F is a plumbing sum of two twisted unknotted annulus or (2) F is obtained from an essential annulus A in the (1,1)-splitting torus H by adding a twisted band along an essential arc in $H-\partial A$.

Theorem 0.15. (M. Hirasawa and C. Hayashi [12]) Let $(M, K)=\left(V_{1}, t_{1}\right) \cup_{H}$ $\left(V_{2}, t_{2}\right)$ be a $(1,1)$-splitting. Let F^{\prime} be a closed connected orientable surface of genus 2 imbedded in M such that K is contained in F^{\prime} and that F intersects the knot exterior in an incompressible and boundary incompressible surface. Then F^{\prime} can be isotoped to intersect each solid torus V_{i} in zero or some number of ∂-parallel annuli disjoint from K and one of the surfaces of four types (a)-(b) as below :
(a) ∂-parallel once punctured torus which contains the arc t_{i},
(b) an annulus A which is parallel to an annulus A^{\prime} in ∂V, contains the arc t_{i}, and added a non-twisted band B along an essential arc in A^{\prime}, so that $A \cup B$ forms a once punctured torus,
(c) a pair of pants P such that P is ∂-parallel in ∂V_{i}, that P contains the arc t_{i}, that precisely two components of ∂P is essential in ∂V, and that ∂t_{i} is contained in the other component of ∂P,
(d) an annulus Z which is parallel to an annulus Z^{\prime} in ∂V, contains the arc t_{i}, and added a non-twisted band C along an inessential arc in A^{\prime}, so that $Q=Z \cup C$ forms a pair of pants and that the inessential component of ∂Q contains ∂t_{i}.

These theorems are on $(1,1)$-splittings of special $(1,1)$-knots. How about $(1,1)$-splittings of general $(1,1)$-knots?

Following theorem helps study of $(1,1)$-splittings. This is a generalization of a result by H. Rubinstein and M.Scharlemann [22].

CHUICHIRO HAYASHI

Theorem 0.16. (T. Kobayashi and O. Saeki [16]) Let M be a closed connected orientable 3-manifold. Let L be a link in M. Suppose that M has a 2-fold branched covering with the branched set L. Let H_{i} be a $\left(g_{i}, n_{i}\right)$ splitting of (M, L) for $i=1$ and 2 . Suppose that the splittings are not weakly L-reducible. Then after an adequate isotopy H_{1} and H_{2} intersect each other transversely in a non-empty collection of L-essential loops, that is, none of the loops $H_{1} \cap H_{2}$ bounds a disc D in H_{1} or H_{2} such that D is disjoint from L or intersects L in a single point.

There are some notes on the above theorem.
(1) A (1,1)-splitting is a special case of a (g, n)-splitting.
(2) The condition "non-empty" is very important because we can isotope H_{1} and H_{2} to be disjoint from each other.
(3) The projective space $\mathbb{R} P^{3}$ does not have a branched covering with the branched set a core knot, for example.
(4) The author expect that the above theorem holds when there is not such a branched covering.
Theorem 0.17. ([11]) Let M be the 3 -sphere S^{3} or a lens space. Let K be a knot in M. Let H_{1} and H_{2} be $(1,1)$-splitting tori of (M, K). Suppose that H_{1} and H_{2} intersect each other transversely in a non-empty collection of K-essential loops. Then after an adequate isotopy either
(1) H_{1} and H_{2} are isotopic to each other in (M, K),
(2) one of the splittings H_{1} and H_{2} is weakly K-reducible,
(3) K is a satellite knot, or
(4) H_{1} and H_{2} intersect each other transversely in 1 or $2 K$-essential loops.

Theorem 0.18. ([11]) In case (4) in the previous theorem, after an adequte isotopy at least one of the next four conditions (a)-(d) holds.
(a) One of (1)-(3) in the conclusion of the previous theorem holds.
(b) (M, K) is a sum of two tangles (B, T) and (X, S) as below. (B, T)

A SURVERY OF KNOWN RESULTS ON 1-GENUS 1-BRIDGE KNOTS

is a trivial 2-string tangle. X is a once punctured lens space and S is a disjoint union of two arcs s_{1} and s_{2} properly imbedded in X such that $E_{i}=c l\left(X-N\left(s_{i}\right)\right)$ is a solid torus and that s_{j} is parallel to the boundary ∂E_{i} for $(i, j)=(1,2)$ or $(2,1)$. The $(1,1)$-splitting torus H_{i} is obtained from ∂X by applying a tubing operation along the arc s_{i} for $i=1$ and 2.
(c) One of the splittings H_{1} and H_{2} admits a satellite diagram of a longitudinal slope.
(d) There is a solid torus V in M as below. The exterior of the solid torus is also a solid torus. The knot K intersects V in two arcs. There are disjoint union of two discs D_{1} and D_{2} in ∂V as below. There are disjoint union of two balls B_{1} and B_{2} such that $B_{i} \cap V=D_{i}$, that $K \cap B_{i}$ is an arc, that K intersects the solid torus $V \cup B_{i}$ in a trivial arc, and that H_{i} is isotopic to $\partial V \cap B_{i}$ for $i=1$ and 2.

In case (c), the knot K is obtained from a component L_{1} of a 2-bridge link $L_{1} \cup L_{2}$ by a Dehn surgery on the other component L_{2}.

The author is not satisfied with the conclusion (d).

References

1. J. Berge The knots in $D^{2} \times S^{1}$ with non-trivial Dehn surgery yielding $D^{2} \times S^{1}$, Topology Appl. 38 (1991) 1-19
2. D. H. Choi and K. H. Ko On 1-bridge torus knots, preprint
3. H. Doll, A generalized bridge number for links in 3-manifolds, Math. Ann. 294 (1992) 701-717.
4. D. Gabai Surgery on knots in solid tori, Topology 28 (1989) 1-6
5. D. Gabai 1-bridge braids in solid tori, Topology Appl. 37 (1990) 221-235
6. H. Goda and C. Hayashi Genus two Heegaard splittings of exteriors of 1-genus 1bridge knots, preprint
7. H. Goda, C. Hayashi and N. Yoshida Genus two Heegaard splittings of exteriors of knot and the disjoint curve property, to appear in Kobe J. Math.

CHUICHIRO HAYASHI

8. L. Grasselli and M. Mulazzani Genus one 1-bridge knots and Dunwoody mainfolds, to appear in Forum Math.
9. C. Hayashi, Genus one 1-bridge positions for the trivial knot and cabled knots, Math. Proc. Camb. Phil. Soc. 125 (1999), 53-65.
10. C. Hayashi Genus one 1-bridge positions for the trivial knot and cabled knots, Math. Proc. Camb. Phil. Soc. 125 (1999) 53-65
11. C. Hayashi Satellite knots in 1-genus 1-bridge positions, Osaka J. Math. 36 (1999) 203-221
12. C. Hayashi and M. Hirasawa Essential positions on Heegaard splitting genus two surface for 1-genus 1-bridge knots, in preparation
13. J. Hempel 3-manifolds as viewed from the curve complex, Topology 40 (2001), 631657
14. P. Hoidn On 1-bridge genus of small knots, preprint
15. T. Kobayashi Structures of the Haken manifolds with Heegaard splitting of genus two, Osaka J. Math. 21 (1984) 437-455
16. T. Kobayashi and O. Saeki Rubinstein-Scharlemann graphic of 3-manifold as the discriminant set of a stable map, Pacific J. Math. 195 (2000) 101-156
17. H. Matsuda Genus one knots which admit (1,1)-decompositions, to appear in Proc. Am. Math. Soc.
18. K. Morimoto On minimum genus Heegaard splittings of some orientable closed 3manifolds, 321-355 (1989) 12 No. 2 Tokyo J. Math.
19. K. Morimoto and M. Sakuma On unknotting tunnels for knots, Math. Ann. 289 (1991) 143-167
20. K. Morimoto, M. Sakuma and Y.Yokota Examples of tunnel number one knots which have the property ' $1+1=3$ ', Math. Proc. Camb. Phil. Soc. 119 (1996) 113-118
21. M. Mulazzani Cyclic presentations of groups and branched cyclic coverings of $(1,1)$ knots, preprint
22. H. Rubinstein and M. Scharlemann, Comparing Heegaard splittings of non-Haken 3-manifolds, Topology 35 (1996), 1005-1026.
23. T. Saito Genus one 1-bridge knot as viewed from the curve complex, in preparation
24. H. J. Song Dunwoody $(1,1)$-decomposable knots, preprint
25. H. J. Song and K. H. Ko Spatial θ-curve associated with Dunwoody (1,1)decomposable knots, preprint

A SURVERY OF KNOWN RESULTS ON 1－GENUS 1－BRIDGE KNOTS

26．H．J．Song and S．H．Kim Dunwoody 3－manifolds and（1，1）－decomposible knots， preprint
27．A．Thompson The disjoint curve property and genus 2 manifolds，Topology Appl． 97 （1999）237－279
28．Y－Q．Wu ∂－reducing Dehn surgeries and 1－bridge knots Math．Ann． 295 （1992）319－ 331
29．Y－Q．Wu Incompressible surfaces and Dehn surgery on 1－bridge knots in handlebod－ ies，Math．Proc．Cambridge Phil．Soc． 120 （1996）687－696

〒112－8681
東京都文京区目白台 $2-8-1$
日本女子大学理学部数物科学科
林忠一郎
Chuichiro Hayashi：
Department of Mathematical and Phisical Sciences，Faculty of Science， Japan Women＇s University，
Mejiro，Toshima－ku，Tokyo，171－8588，Japan．
e－mail ：hayashic＠fc．jwu．ac．jp

