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ABSTRACT. A1-bridge torus knot is aknot drawn on astandard torus in $S^{3}$ with 1-

bridge. We introduce two types of normal forms to parametrize the family of l-bridge

torus knots that are similar to the Schubert’s normal form and the Conway’s normal form

for 2-bridge knots. For agiven Schubert’s normal form we give aclassificatoin of some

sub class of 1-bridge torus knots. We also give adescription of the double brannced cover

of $S^{3}$ branched along any 1-bridge torus knots by using the Conway’s normal form and

obtain an explicit formula for the first homology of the double cover.

1. INTRODUCTION

One of traditions in knot theory is to study afamily of knots satisfying acertain con-

dition. Examples of such families include the family of torus knots studied by Dehn and

Schreier and the family of 2-bridge knots studies by Schubert, Montesinos and Conway.

These classes can be referred as the classes of knots and links indexed by the pairs $(g, b)$

of non-negative integers as defined in [9]. Aknot Ain a3-manifold A# has a $(g, b)-$

decomposition or is called a $(g, b)$ -knot if for some heegaard splitting $M=U\cup V$ of genus

$g$ , each of $K\cap U$ and $K\cap V$ is consisted of trivial $b$ arcs. Acollection of properly embedded

arcs in a3-manifold $W$ with boundary is trivial if arcs $\alpha$ in the collection together with arcs

on $\partial W$ joining the two ends of the arcs bound mutually disjoint disks in $\dagger’V$ . A $(g, b)$ knot

catt be embedded in aheegaard surface of genus $g$ in $M$ except at $b$ over(or under)-bridges

and vice versa. Torus knots are $(1, 0)$-knots and 2-bridge knots are $(0, 2)$ -knots. Clearly the

family of $(g, b)$ -knots becomes strictly larger as $g$ or $b$ increase. Since an over-bridge can

1991 Mathematics Subject Classification. $57\mathrm{M}25,57\mathrm{M}27$ .

Key words and phrases. 1-bridge torus knot, Schubert’s normal form, Schubert’s normal form, double

branched cover.

数理解析研究所講究録 1229巻 2001年 19-32

19



D.H. CHOI AND K.H. KO

be removed by adding ahandle and by embedding the over-bridge into the added handle,

$(g, b)$ -knots are contained in the family of $(g+1, b-1)$ knots.

In this article we study the family of 1-bridge torus knots, that is, $(1, 1)$ knots in $S^{3}$ . This

family contains torus knots and 2-bridge knots and is contained in the family of double

torus knots, that is, $(1, 0)$-knots. Hill and Murasugi studied the family of double torus

knots in $[11, 12]$ and parametrized the family. Non-trivial knots with the trivial Alexander

polynomial was found in the subfamily of double torus knots that separate the double

torus. They also considered non-separating double torus knots and asubfamily of l-bridge

torus knots and found various double torus knots that are fibered.

The 1-bridge torus knot has the tunnel number one, but not all tunnel-number-0ne knots

are 1-bridge torus knots. In [14], Morimoto, Sakuma and Yokota found tunnel-number-0ne

knots that are not 1-bridge torus knots as confirmed by acondition on the Jones polynomial

for aknot to admit a $(g, b)$-decomposition in [18]. In [15], they gave another criteria to

determine whether agiven knot has the tunnel number one and whether it is al-bridge

torus knot.

Besides torus knots and 2-bridge knots, the family of 1-bridge torus knots includes

Berge’s double-primitive knots, 1-bridge braids that were classified by Gabai in $|10|$ all $([$

satellite 1-bridge torus knots. Morimoto and Sakuma studied satellite 1-bridge torus knots

and classified their unknotting tunnels in [13].

FIGURE 1. 1-bridge torus knot

In this article, we parameterize the family of 1-bridge torus knots using two kinds of

normal forms as done for the family of 2-bridge knots. Schubert described a2-bridge knots
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by apair of integers of acertain condition from its top view. In the top view a2-bridge

knots is embedded in aplane except the two bridges. He in fact completely classified

2-bridge knots using this normal form [17]. Since a1-bridge knot can be embedded in a
standard torus except the bridge (See Figure 1), we will describe it by a4-tuple of integers

from this top view. We will call such a4-tuple the Schubert ’s normal fonn of the l-bridge

torus knot determined by the 4-tuple. In Section 2, we introduce the Schubert’s normal

forms of 1-bridge torus knots and classify some subfamily of 1-bridge torus knots expressed

the Schubert’s normal forms.

On the other hand, a2-bridge knot can also be viewed as a4-plats as studied first in

[2]. From this side view, it is easy to see that the composition of homeomorphisms of a

four-punctured sphere that determines the 2-bridge knot. Using this description, Conway

constructed abijection between 2-bridge knots and lens spaces via double branched covers
[8]. Asimilar description using the composition of homeomorphisms on atw0-punctured

torus is possible for 1-bridge torus knots and this will be called the Conway’s normal for $m$.

In Section 3, we construct the double branched cover of $S^{3}$ branched along an l-bridge

torus knot given by the Conway’s normal form and give aformula for the first homology

of the branched double cover.

2. $\mathrm{S}\mathrm{C}\mathrm{H}\mathrm{U}\mathrm{B}\mathrm{E}\mathrm{R}\mathrm{T}’ \mathrm{S}$ NORMAL TORUS

In this section, we introduce anotation describing a1-bridge torus knot which is called

Schubert’s normal form and give aclassification of subfamily of 1-bridge torus knots. The

Schubert’s normal form of a1-bridge torus knot is an analogue of the Schubert’s normal

form of 2-bridge knot or link.

2.1. Schubert’s normal forms.

Theorem 2.1. [6] Any 1-bridge torus knots is represented by a 4-tuple $(r, s, t, \rho)_{\epsilon}$ , where
$r$ , $s$ , $t$ are non-negative integers, $\rho$ is an integer and $\epsilon$ is a $sign\pm 1$ .
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In the Schubert’s normal form of a1-bridge torus knot, $r$, $s$ , $t$ and $\epsilon$ determine the shape

of the knot in the neighborhood of ameridian disk containing the bridge (See Figure 2),

and $\rho$ means the rotation number (See Figure 3).

$\epsilon=+1$ $\epsilon=-1$

FIGURE 2

$\ovalbox{\tt\small REJECT}\rho=\grave{2}$

$\acute{\rho}=-2\ovalbox{\tt\small REJECT}$

FIGURE 3. Schubert’s normal forms of 1-bridge torus knots

Remark 2.2.

(1) $(r, s,t, \rho)_{+1}=(r, t, s,\rho+(2r+1))_{-1}$ (See Figure 3).

(2) A1-bridge torus knot with $(r, s,t,\rho)_{+1}$ is amirror image of a1-bridge torus knot
with $(r, s, t, -\rho)_{-1}$ .

(3) If $r=0$ in the normal form, then it represents a1-bridge braid(See $|1\mathrm{t}$ ) $|)$ .
(4) A $(p,q)$ -torus knot is a1-bridge torus knot $(0, 0,p-1, -q)_{+1}$ or $(0,p-1,0, -q+1)_{-1}$ .

(5) Any 2-bridge knot in $S^{3}$ has aSchubert’s normal form $\mathrm{B}(\mathrm{a},\mathrm{e}/3)$ (See Chapter 3of
[1] $)$ , where

$\alpha>0,0<\beta<\alpha$ , $\epsilon=\pm 1$ , $\mathrm{g}\mathrm{c}\mathrm{d}(\alpha,\beta)=1$, and $\alpha,\beta$ odd
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A2-bridge knot $B(\alpha, \epsilon\beta)$ is a1-bridge torus knot $(\beta-1, \alpha-2\beta+1,0, \epsilon)_{\epsilon}$ (See

Figure 4).

$B(7,+3)$ $(2,2,0,+1)_{+1}$

FIGURE 4

(6) K. Morimoto and M. Sakuma showed that any satellite knot which admits an

unknotting tunnel is equivalent to aknot represented by $K(\alpha, \epsilon\beta;p, q)$ in [13], where

$\alpha$ even integer, $p$ , $q$ positive integers, $\epsilon=\pm 1$ and $0<\beta<\alpha/2$ .

The knot $\mathrm{K}(\mathrm{a}, \epsilon\beta;p, q)$ is a1-bridge torus knot $( \frac{\beta-1}{2}, \frac{\alpha-2\beta}{2}, \frac{\alpha}{2}p, \frac{\alpha}{2}q)_{\epsilon}$ .

FIGURE 5. K $=(3,$ 4,0,$-3)_{-}\mathrm{i}$

2.2. sub-class (r, s,0,$\epsilon(s-1))\mathrm{c}$ of 1-bridge torus knots. Consider (r, s, 0,$\epsilon(s-1))_{\epsilon}$ ,

where $r\geq 0$ , $s>0$ are integers and $\epsilon=\pm 1$ (See Figure 5).

Lemma 2.3. $(r, s, 0, \epsilon(s-1))_{\epsilon}$ is always the Schubert’s nomal form of 1-bridge torus $f_{\vee}\eta lot$ .

Furthermore, $(r, s, 0, -(s-1))_{-1}$ is a mirror image of $(r, s, 0, s-1)_{+1}$ .
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Proof. For $(s-1,0,2(r+1), s)$ , we get “1” ffom Compoment Counting Algorithm in [6],

since $\mathrm{g}\mathrm{c}\mathrm{d}(1,2r+s+1)=1$ . Therefore, $(r, s, 0, \epsilon(s-1))_{\epsilon}$ satisfies the conditions of Schubert’s

normal form. $\square$

Since if $s=1$ then $(r, 1,0,0)_{\epsilon}$ represents the unknot, we may assume that $s>1$ .

Theorem 2.4. [7] $Lei$ $K_{r,s}$ be $a$ 1-bridge torus knot $(r, s, 0, (s-1))_{+1}$ . Then a genus of
$K_{r,s}$ is

$\{$ $\frac{2+s(s}{2}\frac{s(s-3)}{-1)^{2}}$

if $r$ is odd,

if $r$ is even.
Furthermore, $K_{r,s}$ is fibred if and only if $r=0$ or 1.

Using Theorem 2.4, we get the following corollary;

Corollary 2.5. $K_{r,s}$ is not isotopic to $K_{\overline{r},\overline{s}}$ if $r\neq\overline{r}$ or $s\neq\overline{s}$ .

Proof. Suppose $K_{r,s}$ is isotopic to $K_{\overline{r},\overline{s}}$ .
Case 1) r $=\overline{r}$

If $r$ and $\overline{r}$ are odd then by Theorem 2.4,

$2+ \frac{s(s-3)}{2}=g(K_{r,s})=g(K_{\overline{r},\overline{s}})=2+\frac{\overline{s}(\overline{s}-3)}{2}$

Therefore, $s=\overline{s}$ or $s+\overline{s}=3$ . Since $s\neq\overline{s}$ , $s+\overline{s}=3$ and so $s$ or $\overline{s}$ is 1 but this is impossible,

since $s,\overline{s}>1$ .

If $r,\overline{r.}$ are even then similarly, we meet acontradiction.
Case 2) r $\neq\overline{r}$

If $r$ and $\overline{r}$ are even(or odd), then by the method of Case 1, we meet acontradiction. So

we may assume that $r$ is odd and $\overline{r}$ is even.

$2+ \frac{s(s-3)}{2}=\frac{\overline{s}(\overline{s}-1)}{2}$

Then integer solutions of the above equation are

$(\overline{s}=2s=1$ , $($ $\overline{s}=0s=1$ , $($

$s=1$

$\overline{s}=-1$

and $($

$s=2$

$\overline{s}=2$
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Therefore, the only possibility is the last solution. That is, $s=\overline{s}=2$ . Then $K_{r,s}(\mathrm{o}\mathrm{r}\mathrm{A}_{\overline{r},\overline{s}}’)$

is a2-bridge knot $B(2r+s+1,r+1)(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}. \mathrm{B}(2\mathrm{r}+\overline{s}+1,\overline{r}+1))$ (See 5. of Remark 2.2).

Hence, $r=\overline{r}$ . But this is impossible. $\square$

Theorem 2.6. [7]

$\triangle_{r,s}(t)=$
.

$\{$

$\frac{(t-1)(t^{s(s+1)}-1)}{(t^{s}-1)(t^{s+1}-1)}+\frac{r}{2}\frac{(t-1)^{2}(t^{s^{2}-1}-1)}{(t^{s+1}-1)}$ if $r$ is even,

$t^{(s^{2}-3s+4)/2}- \frac{r+1}{2}\frac{(t-1)^{2}(t^{(s-1)^{2}}-1)}{(t^{s-1}-1)}$ if $r$ is odd, $s=2$ or 3,

$\frac{t^{s-1}(t-1)(t^{(s-2)(s-1)}-1)}{(t^{s-2}-1)(t^{s-1}-1)}-\frac{r-\vdash 1}{2}\frac{(t-1)^{2}(t^{(s-1)^{2}}-1)}{(t^{s-1}-1)}$

,

if $r$ is odd, $s\geq 4$ ,

where $\Delta_{r,s}(t)$ is the Alexander polynomial of $K_{r,s}$ .

Corollary 2.7. $K_{r,s}$ is fibred if and only if its Alexander polynomial is monic.

Proof. From Theorem 2.6,

the leading coefficient of $\mathrm{A}\mathrm{r},\mathrm{s}(\mathrm{t})=\{$

$1+ \frac{r}{2}$ if $r$ is even,

$- \frac{r+1}{2}$ if $r$ is odd,

and $K_{r,s}$ is fibred iff $r=0$ or 1by Theorem 2.4. Hence, the proof is complete. $\square$

Recently, K. Murasugi and M. Hirasawa conjectured the above statement for twisted

torus knots. They proved that it is true for the type 1:1 non-separable double torus knots

and M. Hirasawa showed that the statement is also true for the sub-class of twisted torus

knots. Therefore, their conjecture is true for our class.

Theorem 2.8. [7] For $r\geq 0$ , $s\geq 2$ ,

(1) $V_{K_{r,s}}(t)= \frac{t^{3(s-1)\delta_{r}-s(s+1)/2}}{1-t^{2}}(\sum_{i=0}^{r-1}(-t^{-1})^{i}A(t)+(-t^{-1})^{r}B(t))$ if $r\geq 1$ ,

(2) $V_{K_{0,\epsilon}}(t)= \frac{t^{-s(s+1)/2}}{1-t^{2}}B(t)$,

where $A(t)=1-t^{s+2}-t^{2(2-s)}+t^{2-s}$ and $B(t)=1-t^{1-s}-t^{s+2}+t$ .
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Corollary 2.9. [7] $K_{r,s}r\geq 0$ , $s\geq 2$ is non-amphicheiral except for $K_{1,2}$ which is $a$

figure-eight knot.

Corollary 2.5 and Corolary 2.9 give us the classification of the 1-bridge torus knots with
normal forms $(r, s, 0, \epsilon(s-1))_{\epsilon}(r\geq 0, s\geq 2)$ .

Theorem 2.10. For any two 1-bridge torus $j_{v}\eta lots$ $K$ , $K’$ with normal forms $(r, s, 0, \mathrm{c}(s-1 ))_{\epsilon}$

$(r’, s’, 0, \epsilon’(s’-1))_{\epsilon’}$ , respectively,

$K$ is not isotopic to $K’$ if $\epsilon\neq\epsilon’$ , $r\neq r’$ or $s\neq s’$

except for $(1, 2, 0, 1)_{+1}=(1,2,0, -1)_{-1}$ which is a figure-eight knot.

3. CONWAY’S NORMAL FORMS AND DOUBLE BRANCHED COVERS

In this section, we concern about double branched covers of a3-sphere branched along
the 1-bridge torus knots. In order to this, we use an analogue of Conway’s normal form of
the 2-bridge knot (See Chapter 12. in [1] and Chapter 10. in [16]).

3.1. Conway’s normal forms of 1-bridge torus knots. Let Abe a1-bridge torus
knot, $(V_{1}, t_{1})\cup h(V_{2}, t_{2})$ a $(1,1)$-decomposition of $(S^{3}, K)$ and $\overline{t}_{2}$ be an arc on $\partial V_{2}$ such that
$t_{2}\cup\overline{t}_{2}$ bounds adisk in $V_{2}$ . Then $h$ is ahomeomorphism from $\partial V_{2}$ onto $\partial V_{1}$ which is isotopic
to ahomeomorphism $h_{0}$ sending ameridian(resp. longitude) in $\partial V_{2}$ to alongitude(resp.

meridian) in $\partial V_{1}$ , and $t_{1}\cup h(\overline{t}_{2})$ is isotopic to $K$ . Then $\overline{h}=hh_{0}^{-1}$ is ahomeomorphism on
atorus isotopic to the identity.

The mapping class group $M(1, 2)$ of atw0-punctured torus is generated by $d_{m}$ , $d_{\ell}$ ,

$\tau\ell$ , $\tau_{m}$ and $\sigma$ (For exmaple, see Chapter 4. in [5]), where $d_{m}$ ( $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}$ . de) is aDehn-twist
along the meridian(resp. longitude), $\sigma$ is ahomeomorphism exchanging two punctures

and $\tau_{m}$ (resp. $\tau_{\ell}$ ) is ahomeomorphism sliding one of punctures along the meridian (resp.

longitude) as illustrated in Figure 6. By forgetting the punctures, ahomomorphimsm
$j_{*}:$ $M(1,2)arrow M(1,0)$ into the mapping class group of atorus is induced. Then $\overline{h}$ is in
$\mathrm{k}\mathrm{e}\mathrm{r}j_{*}$ . Therefore we can say that an element of $\mathrm{k}\mathrm{e}\mathrm{r}j_{*}$ represents a $(1,1)$-decomposition of
a1-bridge torus knot,
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FIGURE 6

Consider the homoemorphisms $h_{\ell}=\tau\ell\sigma\tau_{\ell}^{-1}$ and $h_{m}=\tau_{m}\sigma^{-1}\tau_{m}^{-1}$ . Then

$\tau_{\ell}^{2}=h_{\ell}\sigma$ and $\tau_{m}^{2}=h_{m}^{-1}\sigma$ .

The homeomorphisms $h_{\ell}$ and $h_{m}$ have an effect on the arc $t_{1}$ in $V_{1}$ as illustrated in Figure 7.

$\mathrm{O}$

$\tau_{\ell}$

$]$
$arrow$

$—..\cdot$

FIGURE 7

For integers $a_{1}$ , $\ldots$ , $a_{m}$ , $b_{1}$ , $\ldots$ , $a_{m}$ ,

(3) $[(a_{1}, b_{1}, a_{2}, b_{2}), (a_{3},b_{3}, a_{4}, b_{4}), \ldots, (a_{m-1}, b_{m-1}, a_{m}, b_{m})]$

represents a1-bridge torus knot in $S^{3}$ that has a $(1,1)$ -decomposition $(V_{1}, t_{1}) \bigcup_{h}(V_{2\prime}t_{2})$

such that $h=\overline{h}h_{0}$ and

$\overline{h}=(h_{\ell^{1}}^{a}\sigma^{b_{1}}h_{m}^{a_{2}}\sigma^{b_{2}})(h_{\ell}^{a_{3}}\sigma^{b_{3}}h_{m}^{a_{4}}\sigma^{b_{4}})\cdots(h_{\ell}^{a_{m-1}}\sigma^{b_{m-1}}h_{m}^{a_{m}}\sigma^{b_{m}})$ .
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The above $(1,1)$-decomposition of a1-bridge torus knot will be called a $C,onway$ ’s nonnal

form of a1-bridge torus knot.

FIGURE 8. Conway’s normal form $[(3,$ 0,1,0), (-1,0,1, $0)]$

Theorem 3.1. [6] Every 1-bridge torus knot has a Conway’s nor$mal$ form.

FIGURE 9

Remark 3.2. A 2-bridge knot has the Conway’s no rmal form [$2a_{1},2a_{2}$ , \ldots ,
$2a_{m}\rfloor$ as il-

lustrated in Figure 9. We choose $a$ $(\mathit{1}, I)$-tunnel $\rho$ as in Figure 9. Then we get $a(\mathit{1}, \mathit{1})-$

decomposition of it and the attaching homeomorphism of the $(\mathit{1}_{\mathrm{Z}}\mathit{1})$ -decomposition is $h_{()}$

$(\tau\ell\sigma^{-1})(\sigma^{-2a_{m}}\tau_{m}^{a_{m-1}})\cdots$ $(\sigma^{-2a_{2}}\tau_{m}^{a_{1}})$ ($See$ Figure 9). By using the relations of $\mathrm{k}\mathrm{e}\mathrm{r}j_{*}$ we can
obtain a Conway’s normal form of 1-bridge to us knot for the given 2-bridge knot.

3.2. Double branched covers along 1-bridge torus knots. Consider adouble branched
cover $\Sigma$ of asolid torus $V$ branched along atrivial arc in $V$ , which is agenus two handlebody
(See Figure 10).

Then from Figure 10 and Figure 11, the following facts are evident
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FIGURE 10. Double branched cover of asolid torus branched along anu arc

(1) The lifting of $\mathrm{h}\mathrm{o},\tilde{h}_{0}$ , is ahomeomophism of $\partial\Sigma$ such that $\tilde{h}_{0}(m_{1})=l_{1},\tilde{h}_{0}(m_{2})=l_{2}$ ,
$\tilde{h}_{0}(l_{1})=m_{1}$ and $\tilde{h}_{0}(l_{2})=m_{2}$ .

(2) The lifting of $\sigma,\tilde{\sigma}$ , is $d_{c_{2}}$ , where $c_{2}$ is acurve as shown in Figure 10.

(3) The lifting of $h_{\ell},\tilde{h}_{\ell}$ , is $d_{c_{1}}^{-1}d_{l_{1}}^{2}d_{l_{2}}^{2}d_{\mathrm{c}_{2}}^{-1}$ ,

(4) The lifting of $h_{m},\tilde{h}_{m}$ , is $d_{c_{3}}^{-1}d_{m_{1}}^{2}d_{m_{1}}^{2}d_{\mathrm{c}_{2}}$ , where $c_{i}(i=1,2,3)$ is acurve depicted at

Figure 10.

FIGURE 11. The lifting of $\sigma$ and the homoemorphisms $h_{\ell}$ , $h_{m}$

Therefore, we can obtain the following theorem;

Theorem 3.3. If $a$ 1-bridge torus knot $K$ has a Conway ’s no rnal $form$

[( $a_{1}$ , $b_{1}$ , a2, $b_{2}$ ), $(a_{3},$ $b_{3}$ , $a_{4},b_{4})$ , $\ldots$ , $(a_{m-1},$ $6$ 1, $a_{m}$ , $b_{m})$ ]
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then the double branched cover $\lambda_{2}’$ of $S^{3}$ branched along $K$ has a genus two $H$

splitting $\Sigma_{1}\bigcup_{\overline{h}}\Sigma_{2}$ such that $\Sigma_{i}(i=1,2)$ is a genus two handlebody and

$\tilde{h}=(\tilde{h}_{\ell}^{a_{1}}\tilde{\sigma}^{b_{1}}\tilde{h}_{m^{2}}^{a}\tilde{\sigma}^{b_{2}})(\tilde{h}_{\ell}^{a_{3}}\tilde{\sigma}^{b_{3}}\tilde{h}_{m^{4}}^{a}\tilde{\sigma}^{b_{4}})\cdots(\tilde{h}_{\ell}^{a_{m-1}}\tilde{\sigma}^{b_{m-1}}\tilde{h}_{m^{m}}^{a}\tilde{\sigma}^{b_{m}})\tilde{h}_{0}\backslash$ .

Lemma 3.4. [6]

$\tilde{h}_{*}([m_{1}])=1/2\approx_{m}[rm_{1}]+(a_{m^{\tilde{k}}m}+1/2(_{\tilde{k}-1}m+1))[l_{1}]$

$-1/2_{\tilde{\sim}m}[m_{2}]-(a_{m^{\tilde{\rho}}m}+1/2(\approx_{m-1}-1))[l_{2}\rfloor$ ,

where $z_{m}$ is a sequence such $that\approx_{m}=2a_{m-1^{\tilde{\mathrm{x}}},m-1}+\tilde{*}m-2,$ $\approx 0=0$ and $z_{1}=1$ .

Proposition 3.5. Let $z_{m}$ be a sequence satisfying the following recursive $fo$ rnula;

$\tilde{‘}m+1=2a_{m}z_{m}+\tilde{k}m-1,z_{0}=0$ and $z_{1}=1$ ,

where 4is a sequence. Then

(4)
$\tilde{k}m+1=2^{m}(a_{1}a_{2}\cdots a_{m})+2^{m-2t}\sum_{\in G_{m}^{\acute{\ell}}}A(j_{1},j_{2}, \ldots,j_{t})t=11\frac{m}{\sum 2}1(j_{1},\ldots j_{t})$ ’

where

$C_{m}^{t}=$ { $(j_{1},$ $\ldots,j_{t})\in \mathrm{N}^{t}|1\leq j_{1}<\cdots<j_{t}<m,$ $j_{k}-j_{k-1}\geq 2$ , A $=1,$ $\ldots,$
$t$ }

$A(j_{1},j_{2}, \ldots,j_{t})=(a_{1}a_{2}\cdots a_{j_{1}-1})(a_{j_{1}+2}\cdots a_{j_{2}-1})\cdots(a_{j_{t}+2}\cdots a_{m})$,

and $A(1,3, \cdots, m-1)=1$ then $m$ is even.

From Lemma 3.4 and Proposition 3.5, we caculate the first homology of $-\mathrm{t}_{2}’$ .

Theorem 3.6. Let $K$ be $a$ 1-bridge torus knot with the Conway ’s normal form

$[(a_{1}, b_{1}, a_{2}, b_{2}), (a_{3}, b_{3},a_{4}, b_{4}), \ldots, (a_{m-1}, b_{m-1}, a_{m}, b_{m})]$ ,

and $X_{2}$ be a double branched cover of $S^{3}$ branched along K. Then $H_{1}$ (X2) $=\mathrm{Z}/|\approx_{1}$

where $z_{m+1}$ is a sequence at the formula (4)
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Proof. By excision, $H_{1}(\lambda_{2}’)\cong H_{1}(\Sigma_{1}\cup(B_{1}\cup B_{2}))$ , where $B_{1},B_{2}$ are the tubular neigh-

borhoods of meridian disks $D_{1}$ , $D_{2}$ of $\Sigma_{2}$ . And by Mayer-Vietoris sequence, $H_{1}(_{\grave{\vee}2}’)=$

$\mathrm{C}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}(f:H_{1}(A_{1}\cup A_{2})arrow H_{1}(\Sigma_{1}))$ , where $A_{:}=\partial D_{i}\cross I(i=1,2)$ . Since $[m_{1}]$ and $[m_{2}]$

generate $H_{1}(A_{1}\cup A_{2})$ and $H_{1}(\Sigma_{1})=\langle l_{i},m:|m_{i}=0, i=1,2\rangle,$ $/([\mathrm{m}\mathrm{i}])=\tilde{h}_{*}([m_{i}])$ , $i=1,2$ .

From Lemma 3.4 and the periodic property of $X_{2}$ ,

$f([m_{1}])=(a_{m}z_{m}+1/2(_{\wedge m-1}^{\sim}+1))[l_{1}]-(a_{m\wedge m}^{\sim}+1/2(_{\tilde{\sim}m-1}-1))[l_{2}]$ ,

$f([m_{2}])=-(a_{m^{\tilde{k}}m}+1/2(_{\tilde{\wedge}m-1}-1))[l_{2}]+(a_{n\mathrm{z}^{\tilde{k}}m}+1/2(\approx_{m-1}+1))[l_{1}]$ .

Therefore, $H_{1}(X_{2})=\langle l_{1}, l_{2}|R\rangle$ , where

$R=\{\begin{array}{llll}(a_{m}z_{m} +1/2(_{\tilde{\wedge}m-1}+1)) -(a_{m}\approx_{m} +1/2(_{\wedgem-1}^{\sim}-1))-(a_{m}z_{m} +1/2(z_{m-1}-1)) (a_{m\wedge m}^{\sim} +1/2(_{\wedge m-1}^{\sim}+1))\end{array}\}$

Hence, the proof is complete since

$R\sim\{$
10

0 $2a_{m^{\tilde{k}}m\tilde{\wedge}m-1}+$

$\sim\{\begin{array}{ll}1 00 \tilde{\epsilon}_{m+1}\end{array}\}$

口

Corollary 3.7. $H_{1}(\lambda_{2}^{r})$ is a finite cyclic group and $|_{\tilde{e}_{m+1}}|=|\Delta_{K}(-1)|$ , where $\triangle_{K}(t)$ is

the Alexander polynomial of $K$ .

Corollary 3.8. Suppose $K$ is $a$ 1-bridge torus knots with the Conway’s nonrmal for $m$

$[(a_{1}, b_{1}, a_{2}, b_{2}), (a_{3}, b_{3}, a_{4}, b_{4}), \ldots, (a_{m-1}, b_{m-1}, a_{nl}, b_{m})]$ .

(1) If $a_{2i}=0$ or $a_{2i-1}=0$ for $i=1$ , $\ldots$ , $m/2$ then $K$ is a trivial hiot.

(2) If $eit/ier$ $a_{i}>0$ or $a_{i}<0$ then $K$ is not a trivial knot.
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