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Abstract

We construct two infinite families of knots each of which admits a
Seifert fibered surgery with none of these surgeries coming from Dean’s
$\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{S}\mathrm{e}\mathrm{i}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{t}$ -fibered construction. This disproves aconjecture that
all Seifert fibered surgeries arise from Dean’s construction. The starting
point is the (-3, 3, 5) pretzel knot which belongs to both of the infinite
families.

1Introduction

Let $K$ be aknot in the 3-sphere $S^{3}$ . Then we denote by $(K;\gamma)$ the 3-manif0ld
obtained by $\gamma$ surgery on $K$ , i.e., by attaching asolid torus to $S^{3}-\mathrm{i}\mathrm{n}\mathrm{t}N(K)$ in
such away that $\gamma$ bounds ameridian disk of the filling solid torus, Using the
preferred meridian-longitude pair of $K\subset S^{3}$ , we parametrize slopes $\gamma$ of $K$ by
$r\in \mathbb{Q}\cup\{\infty\}$ ;then we also write $(K;r)$ for $(K;\gamma)$ .

We begin by recalling Berge’s [1] construction, an explicit construction
which yields several infinite families of knots each admitting alens space Dehn
surgery.

Let $K$ be aknot contained in agenus two Heegaard surface $F$ for $S^{3}$ , i.e.,
$S^{3}=H \bigcup_{F}H’$ , where $H$ and $H’$ denote genus two handlebodies. Suppose that
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K is nontrivial and that the manifolds $H(K)$ and $H’(K)$ are both solid tori,

where $H(K)$ (resp. $H’(K)$ ) is obtained by attaching a2-handle to $H$ (resp.
$H’)$ along $K$ . The isotopy class in $\partial N(K)$ of the curve(s) in $\partial N(K)\cap F$ is
called the surface slope of $K$ with respect to $F$ . Then by performing Dehn
surgery on $K$ along the surface slope $\gamma$ , we obtain a3-manifold $(K;\gamma)=$

$H(K)\cup H’(K)$ , which is alens space. It cannot be $S^{2}\cross S^{1}$ by [9], nor $S^{3}$ by
[12]. This construction is called Berge’s construction or the $pr\cdot mitive/pr\cdot mitive$

construction and such aknot $K$ is said to be $primitive/pr\cdot mitive$ with respect
to $F$ .

In [1] Berge suggested the following. See also [11].

Conjecture 1.1 If (K; $\gamma)$ is a lens space, then this surgery arises from Berge’s
construction.

Dean [6] made anatural modification to Berge’s construction; suppose that
$K$ is as before except that $H’(K)$ is now aSeifert fiber space over the disk with
two exceptional fibers. Then for the surface slope $\gamma$ , (if; $\gamma$) is aSeifert fiber
space over $S^{2}$ with at most three exceptional fibers or aconnected sum of
two lens spaces. If $K$ is hyperbolic, then the cabling conjecture [10] states
that the latter cannot occur. This construction is called Dean’s construction
or the $pr\cdot mitive/Seife\hslash$-fibered construction and such aknot $K$ is said to be
$pt\dot{\tau}mitive/Seife\hslash$-fibered with respect to $F$ .

The notion of $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{S}\mathrm{e}\mathrm{i}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{t}$-fibered construction has been slightly gen-
eralized by allowing the possibility that $H’(K)$ is aSeifert fiber space over the
M\"obius band with one exceptional fiber [8], [16]. In the following, we use the
term $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{S}\mathrm{e}\mathrm{i}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{t}$-fibered construction (or knot) in this generalized sense.

In analogy with Conjecture 1.1, Dean [6] and Gordon [11] asked:

Question 1.2 If (K; $\gamma)$ is a Seifert fiber space other than a lens space, then
does this surgery arise from a $primitive/Seifert$-fibered $constmction^{\mathit{9}}$

Many examples of Seifert fibered surgeries (see, for example, [3], [4], [7]
and [8]) have been constructed using the Montesinos trick ([17], [2]). Recently
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in [8], $\mathrm{E}\mathrm{u}\mathrm{d}\mathrm{a}\mathrm{v}\mathrm{e}- \mathrm{M}\mathrm{u}\tilde{\mathrm{n}}\mathrm{o}\mathrm{z}$ has shown that all known examples of Seifert fibered
surgeries constructed by the Montesinos trick can be explained by Dean’s con-
struction. Furthermore, Seifert fibered surgeries on twisted torus knots in [15]
can also be explained by such constructions [16].

On the other hand, in the present note we demonstrate the following which
answers the question above in the negative.

Theorem 1.3 There is an infinite family of non-strongly invertible knots each

of which admits a Seifert fibered surgery with none of these surgeries arising

from the $primitive/Seife\hslash$-fibered construction.

2Examples

We shall say that aSeifert fiber space is of type $S^{2}(n_{1}, n_{2}, n_{3})$ if it has aSeifert
fibration over $S^{2}$ with three exceptional fibers of indices $n_{1}$ , $n_{2}$ and $n_{3}(n_{i}\geq 2)$ .

Example 1. Let $IC$ $\cup t_{1}$ be the two component link of Figure 1. Here $K$ is
the Montesinos knot given by the triple of rational tangles (1/3, -1/3, -1/5),
which is often called the (-3, 3, 5)-pretzel knot. Let $K_{n}$ be the knot obtained
from $K$ by performing $-1/n$ surgery on $t_{1}$ . Equivalently, $K_{n}$ is obtained by
doing $n$-twisting along $t_{1}$ . Then $K_{n}$ enjoys the following properties.

(1) $K_{n}$ is ahyperbolic knot,

(2) $K_{n}$ has cyclic period 2, but is not strongly invertible,

(3) the tunnel number of $K_{n}$ is 2, and

(4) $(K_{n};1)$ is aSeifert fiber space of type $S^{2}(3,5, |15n+4|)$ .

Before verifying properties (1)$-(4)$ we observe that $\{K_{n}\}$ is the family of
Theorem 1.3.

Proof of Theorem 1.3. Properties (2) and (4) show that $K_{n}$ is not strongly
invertible and admits aSeifert fibered surgery. Since a $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{S}\mathrm{e}\mathrm{i}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{t}$ fibered
knot is of tunnel number one, such aknot is strongly invertible by [19, Lemm$\mathrm{a}$
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5]. Hence, property (2) also implies that the Seifert fibered surgery does not
come from the $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{S}\mathrm{e}\mathrm{i}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{t}$-fibered construction. $\mathrm{D}(\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}$1.3)

Claim 2.1 $K_{n}$ has cyclic period 2.

Proof. As shown in Figure 1, let $f$ : $S^{3}arrow S^{3}$ be the $\pi$-rotation about $C$ such
that $f(K)=K$ and $f(t_{1})=t_{1}$ . The axis $C$ is disjoint from $K$ and intersects
$t_{1}$ in exactly two points. Hence, $f|S^{3}-\mathrm{i}\mathrm{n}\mathrm{t}N(t_{1})$ extends to an involution $\overline{f}$ of
$(t_{1};-1/n)\cong S^{3}$ about an axis $\overline{C}$ such that $\overline{f}(K_{n})=K_{n}$ and $K_{n}\cap\overline{C}=\emptyset$ . It
follows that $K_{n}$ has cyclic period 2. $\square (\mathrm{C}\mathrm{l}\mathrm{a}\mathrm{i}\mathrm{m}2.1)$

Claim 2.2 $(K_{n};1)$ is a Seifert fiber space of type $S^{2}(3,$ 5,$|15n+4|)$ .

Proof. Let $(K\cup t_{1}; 1, -1/n)$ denote the manifold obtained by performing a
surgery on the link $K\cup t_{1}$ with surgery slopes 1for $K\mathrm{a}\mathrm{n}\mathrm{d}-1/n$ for $t_{1}$ . We will
show that $(K\cup t_{1}; 1, -1/n)$ is aSeifert fiber space of type $S^{2}(3,5, |15n+4|)$ .

To proye this we form the quotient by the involution $f$ : $S^{3}arrow S^{3}$ to obtain
the factor knot $K_{f}$ , the branched knot $c$ which is the image of $C$ , and the
arc $\tau_{1}$ which is the image of $t_{1}$ and connects two points in $c$ (Figure 1). As
shown in Figure 1, the factor knot $K_{f}$ is unknotted in $S^{3}/f\cong S^{3}$ . Note that
1-surgery on $K$ corresponds to 1/2-surgery on the factor knot $K_{f}$ which is
equivalent to (-2)-twisting along $K_{f}$ because $K_{f}$ is unknotted; see Figure 2.
We denote the image of $c$ after (-2)-twisting along $K_{f}$ by $d$ . Note also that
by the Montesinos trick ([17], [2]), $-1/n$ surgery on $t_{1}$ corresponds $\mathrm{t}\mathrm{o}-1/\mathrm{n}$)

untangle surgery on $d$ along $\tau_{1}$ as indicated in Figure 4. In order to correctly
perform the untangle surgery, we keep track of the framing. This can be done
by indicating aband $\beta$ whose core is $\tau_{1}$ ; see Figure 1. (For simplicity, we
indicate the band $\beta$ in only two places: just after taking the quotient by the
involution $f$ , and just before performing the untangle surgery.) By an isotopy
as in Figures 2and 3, we see that $d$ is the Montesinos knot given by the triple of
rational tangles (2/5, -3/4, 1/3). Denote the result $\mathrm{o}\mathrm{f}-1/n$-untangle surgery
on $d$ by $d_{n}$ (Figure 4). Then $d_{n}$ is the Montesinos knot given by the triple of
rational tangles $(2/5, (11n+3)/(-15n-4), 1/3)$ , and the branched coverin$\mathrm{g}$
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space $(K\cup t_{1}; 1, -1/n)$ of $S^{3}$ branched along $c_{n}$’is aSeifert fiber space of type
$S^{2}(3,5, |15n+4|)$ . Since the linking number of $K$ and $t_{1}$ is zero, the 1-slope of
$K$ corresponds to the 1-slope of $K_{n}$ , and hence $(K\cup t_{1}; 1, -1/n)\cong(K_{n};1)$ . It
follows that $(K_{n};1)$ is aSeifert fiber space of type $S^{2}(3,5, |15n+4|)$ as required.

$\square (\mathrm{C}\mathrm{l}\mathrm{a}\mathrm{i}\mathrm{m}2.2)$

Claim 2.3 $K_{n}$ is a hyperbolic knot.

Proof. The knot $K$ bounds an obvious Seifert surface $S$ of genus one. Since
$t_{1}$ can be isotoped off $S$ , after doing $n$-twisting along $t_{1}S$ becomes aSeifert
surface for $K_{n}$ . By Claim 2.2, $K_{n}$ is anontrivial knot and thus $g(K_{n})$ , the
genus of $K_{n}$ , is equal to one.

Assume for acontradiction that $K_{n}$ is asatellite knot. Then since $(K_{n};1)$

is atoroidal, $K_{n}$ has acompanion solid torus $V$ whose core is asimple knot
$\overline{K_{n}}$ such that $K_{n}$ is a0or 1-bridge braid in $V$ ([14, Proposition 2.2(1)]). From
Schubert’s formula [21] ([5, Proposition 2.10]) we have $g(K_{n})\geq wg(\overline{K_{\mathrm{t}},})_{:}$ where
$w$ denotes the winding number of $K_{n}$ in $V$ . Since $w\geq 2$ and $g(\overline{K_{n}})\geq 1$ , we
have $g(I\zeta_{n})\geq 2$ , acontradiction. If $K_{n}$ is atorus knot, then since the genus
is one, $K_{n}$ is a(i2, 3)-torus knot $T_{\pm 2,3}$ . However $(T_{2,3};1)$ (resp. $(T_{-2,3};1)$ ) is
aSeifert fiber space of type $S^{2}(2,3,5)$ (resp. $S^{2}(2,3,7)$ ), contradicting Claim
2.2. It follows that $K_{n}$ is ahyperbolic knot. $\square (\mathrm{C}\mathrm{l}\mathrm{a}\mathrm{i}\mathrm{m}2.3)$

Claim 2.4 $K_{n}$ is not strongly invertible.

Proof. Recall that $K_{n}$ has cyclic period 2and that $(K_{n};1)$ is aSeifert fiber
space of type $S^{2}(3,5, |15n+4|)$ (Claim 2.2). Since $|15n+4|>2$ and $|15n+4|\neq$

$3,5$ , if $K_{n}$ is strongly invertible, then by [20, Theorem 1.7(1)], $K_{n}$ is atorus
knot or acable of atorus knot. This contradicts $K_{n}$ being hyperbolic (Claim
2.3). Therefore $K_{n}$ is not strongly invertible. $\square (\mathrm{C}\mathrm{l}\mathrm{a}\mathrm{i}\mathrm{m}2.4)$
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Claim 2.5 The tunnel number of $K_{n}$ is two.

Proof. Let $H$ be ahandlebody in $S^{3}$ which is obtained by thickening the
obvious genus one Seifert surface for $K$ . Then $F=\partial H$ is agenus 2Heegaard
surface for $S^{3}$ which contains $K$ . Since $t_{1}$ is acore of ahandlebody $H$ , $H$

remains ahandlebody $\mathrm{a}\mathrm{f}\mathrm{t}\mathrm{e}\mathrm{r}-1/n$ -surgery on $t_{1}$ . It follows that $K_{n}$ is embedded
in agenus 2Heegaard surface $F$ . Then, by [18, Fact on p.138] the tunnel
number of $K_{n}$ is less than or equal to 2. On the other hand, since atunnel
number one knot is strongly invertible ([19, Lemma 5]), Claim 2.4 implies that
the tunnel number of $K_{n}$ is two. $\square (\mathrm{C}\mathrm{l}\mathrm{a}\mathrm{i}\mathrm{m}2.5)$

Example 2. The second example is avariant of Example 1. Let us consider
the trivial knot $t_{2}$ of Figure 5below, instead of $t_{1}$ of Figure 1. Let $K_{n}’$ be
the knot obtained from $K$ by doing $n$-twisting along $t_{2}$ . Then the argument
in the proof of Claim 2.2 shows that $(K_{n}’$ ;1 $)$ is aSeifert fiber space of type
$S^{2}(3,4, |12n+5|)$ ;see Figures 5-8. The arguments in the proofs of Claims 2.1,
2.3, 2.4 and 2.5 show that the $K_{n}’$ also enjoy the same properties as in Example
1, and that the Seifert fibered surgeries do not come from the primitive/Seifert-
fibered construction.

In [15] it has been conjectured that if $(K;r)$ is aSeifert fiber space, then
it admits aSeifert fibration such that one of its fibers is unknotted in (the
original) $S^{3}$ . For our knots $K_{n}$ (resp. $K_{n}’$), the trivial knot $t_{1}^{*}$ which is the
dual of $t_{1}$ (i.e., the core knot $\mathrm{o}\mathrm{f}-1/n$-filling along $t_{1}$ ) (resp. $t_{2}^{*}$ which is the
dual of $t_{2}$ ) becomes an exceptional fiber of index $|15n+4|$ in $(K_{n};1)$ (resp.
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an exceptional fiber of index $|12n+5|$ in $(K_{n}’$ ;1 $)$ ). Thus the Dehn surgeries

described in Examples 1and 2satisfy the conjecture.

We also mention ageometric aspect of Seifert fibered surgeries on hyper-

bolic knots. It was observed in [15, Section 7] that short closed geodesies in the

knot complements are often unknotted in $S^{3}$ and become Seifert fibers in the

resulting Seifert fiber spaces. An experiment via Weeks’ computer program
SnapPea [22] suggests the table below. Recall that $(K;1)$ is aSeifert fiber
space of type $S^{2}(3,4,5)$ .

The second shortest geodesic is unknotted in $S^{3}$ , but it does not become a

fiber in $(K;1)$ . In fact it is hyperbolic in $(K;1)$ .

Although the knots given in Examples 1and 2cannot be primitive/Seifert-

fibered for any genus two Heegaard surface, they are still embedded in agenus
two Heegaard surface for $S^{3}$ . We would like to ask the following question: if
$(K;r)$ is aSeifert fiber space, then is $K$ embedded in agenus two Heegaard

surface for $S^{3}$ ?
In his thesis [13], the first author observed that the (-3, 3, 5)-pretzel knot

has asmall Seifert fibered surgery by experiments via Weeks’ computer pr0-

gram SnapPea. This observation is the starting point of our study.

The first author wishes to thank Steven Boyer and Jinha Jun for helpful

conversations.
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Figure 3.. continued from Figure 2
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Figure 4.. continued from Figure 3
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Figure 6.. continued from Figure 5
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Figure 7.. continued from Figure 6
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Flgure 8.. continued from Figure 7
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