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ABSTRACT. We give an overview of the proof ([Sc]) that the only
knots that are both tunnel number one and genus one are those
that are already known: 2-bridge knots obtained by plumbing t0-
gether two unknotted annuli and the satellite examples classified
by Eudave-Mufioz and by MorimotO-Sakuma.

1. PRELIMINARIES

Definition 1.1. A graph $\Gamma\subset S^{3}$ is a Heegaard spine if it has a regular
neighbor.hood H $\subset S^{3}$ so that $S^{3}$ -interior(H) is a handlebody.

Note that $\Gamma$ is aHeegaard spine if and only if the decomposition
$S^{3}=H\cup\partial_{H}$ ( $S^{3}$ -interior(#)) is aHeegaard splitting of $S^{3}$ .

Definition 1.2. A theta-graph $0\subset S^{3}$ is an embedded graph consisting
of two vertices and three edges, each edge incident to both vertices. $A$

knot $K\subset S^{3}$ has tunnel number one if there is a theta-graph 0CI $S^{3}$

so that
$\bullet$ 0 is a Heegaard spine
$\bullet$ for some edge $\tau$ CI 0, $K=$ ( $0$ -interior(r))
The edge $\tau$ is called the unknotting tunnel for $\mathrm{A}’$ .

Definition 1.3. A knot $K$ has genus one $if.ther\cdot e$ is a $PL$ on e-punctured
torus $F\subset S^{3}$ so that $K=\partial$’F. That is, $\mathrm{A}’$ has $a$ Seifert surface $F$ of
genus one.

Both sorts of knots, those of tunnel number one and those of genus
one, have pleasant and useful properties. Although each type can be
quite complicated (as measured, for example, by crossing number),
each is in some sense the first and easiest collection of knots under
one natural index of complexity (the tunnel number or the genus). It’s
therefore of interest to determine which knots are simple in both senses.
That is, which knots have both tunnel number one and genus one.
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FIGURE 1

The answer, as earlier conjectured by Goda and Teragaito [GT] is
this:

Theorem 1.4. [Sc] Suppose $K\subset S^{3}$ has tunnel number one and genus
one. Then either

1. K is a satellite knot or
2. K is a 2-bridge knot.

This theorem is useful because of tlle historical background: 2-bridge
knots all have tunnel number one and those of genus one are easily
described ( $\mathrm{c}\mathrm{f}[\mathrm{B}\mathrm{Z}$ , Proposition 12.25]) and, indeed, they are easily pic-
tured: see Figure 1.

On the other hand, Morimoto and Sakuma [MS] and independently
Eudave-Mufioz [EM] classified all satellite knots which have tunnel
number one. These knots have aconcrete description and can be nat-
urally indexed by a4-tuple of integers. In [GT], Goda and Teragaito
determined which of these satellite knots have genus one and made the
conjecture that these knots complete the list of knots that have both
genus one and tunnel number one. In other words, they conjectured
that Theorem 1.4 is true.

The proof that the conjecture is true, as given in [Sc], is long and
intricate but much of the energy and length is required by arguments
that are in some sense technical. $\prime \mathrm{p}\mathrm{h}\mathrm{e}$ intention here is to give an
overview of the proof that focuses on general strategy. The hope is
that the reader will understand how the proof follows arather natural
course, not one that is as contrived as it might first appear
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2. THE MATHEMATICAL BACKGROUND

Matsuda had verified the Goda-Teragaito conjecture (Theorem 1.4)
for an important class of knots, and we will need his result. Auseful
way to state it for our purposes is this:

Theorem 2.1. [Ma] Suppose that $\tau$ is an unknotting tunnel for the
genus one knot $K$ and one of the cycles in the theta-graph $K\cup\tau$ is the
unknot. Then $K$ is either a satellite knot or a 2-bridge knot.

This special case is more general than it might seem. Suppose, for
example, that $H$ is aregular neighborhood of atheta-curve Heegaard
spine 0, so $H$ is agenus two handlebody. Associated to each edge $e$

in 0is ameridian disk $\mu_{e}\subset H$ that intersects $e$ in asingle point. We
have this corollary of Matsuda’s theorem:

Corollary 2.2. Suppose that $K$ is a genus one knot lying on $\partial H$ that
intersects $\mu_{e}$ in a single point. Suppose further that $0-/\cdot(e)$ is the
unknot. Then $K$ is either a satellite knot or. a 2-bridge knot.

Proof. Apply the “vacuum cleaner trick” to the 1-handle in $H$ corre-
sponding to the edge $\mathrm{e}$ . That is, think of $K$ as the union of two arcs:
one arc $\alpha$ runs exactly once over the 1-handle, and the other arc $\beta$ lies
on the boundary of the unknotted solid torus $W=H-$ ( $l$ -handle)and
$\beta$ connects the ends of $\alpha$ in $\partial’W$ . Slide the ends of the 1-handle along
the arc $\beta$ , vacuuming it up onto the 1-handle until $K$ has been made
disjoint from ameridian disk $\mu$ of $W$ . At this point, $H$ can be viewed
as the regular neighborhood of another 0-graph, namely $K\cup\tau$ , where
$\tau$ is an edge intersecting $\mu$ in asingle point $(\mathrm{i}. \mathrm{e}. \mu=\mu_{\tau})$ . Since $W$

is an unknotted torus, the corresponding cycle in 0is unknotted and
Theorem 2.1 applies. $\square$

An unexpected application of Corollary 2.2 arises from work of Eudave
Muiioz and Uchida. Suppose that $H$ is aregular neighborhood of a
theta curve 0that is aHeegaard spine. Let $X=S^{3}$ -interior(//), a
genus two handlebody. Suppose that $F$ is aproperly imbedded incom-
pressible genus one surface in $X$ with $\partial P^{1}=\mathrm{A}’=F\cap\partial H$ .

Proposition 2.3. Let $A\subset X$ be an incompressible annulus obtained
$f.r\cdot or\tau\iota$ $F$ by $\partial$-compressing $F$ to $\partial H=\partial$’X. Suppose $ther\cdot e$ is an edge $e$

of 0so that $|\mu_{e}\cap’\partial A|=1=|\mu_{\mathrm{e}}\cap K|$ . Then $K$ is either a satellite knot
or$\cdot$ a 2-br idge knot.

Proof. $\partial’A$ has two components which we denote $\partial_{\pm}’A$ and we take $\partial_{-}A$

to be the component that intersects $\mu_{e}$ . Take two parallel copies of
$\mu_{e}$ and band them together along the part of d-A that does not lie
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between them. The result is adisk $E\subset H$ that is $\mathrm{d}\mathrm{i}\dot{\mathrm{q}}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}$ from $\partial’A$

and separates $H$ , leaving one of $\partial_{\pm}’A$ in the boundary of each of the
solid tori components of $H$ - $E$ . Label these solid tori correspondingly
$L_{\pm}$ and denote by $L$ the link whose core circles are $L_{-}\cup L_{+}$ . Note that
$\partial_{-}A$ is alongitude of $L_{-}$ and $\partial_{+}A$ is a $(p, q)$ cable of $L_{+}$ , for some
$(p, q)$ .

The link $L$ visibly has an incompressible annulus (namely $A$ ) in its
complement. Moreover, $L$ has tunnel number one: attaching to $L$ an
edge dual to $E$ gives agraph $\Gamma$ whose regular neighborhood is $H$ , so $\Gamma$

is aHeegaard spine. Tunnel number one links with essential annuli in
their complement have been classified by $\mathrm{E}\mathrm{u}\mathrm{d}\mathrm{a}\mathrm{v}\mathrm{e}- \mathrm{M}\mathrm{u}\tilde{\mathrm{n}}\mathrm{o}\mathrm{z}$ and Uchida
(cf. [EU]). In particular, $L_{+}$ is the unknot. But $L_{+}$ can also be viewed
as the cycle in 0obtained by removing $e$ (equivalently, the core of the
torus obtained by removing $\mu_{e}$ ). Since $|\mu_{e}\cap K|=1$ , the result follows
from Corollary 2.2. $\square$

Aspecial case of this proposition is independently useful:

Corollary 2.4. Suppose $\tau$ is an unknotting tunnel for $K$ and $\tau$ lies
on a genus one Seifert surface $F$’for K. $\prime \mathit{1}^{1}henK$ is either a satellite
knot or a 2-bridge knot.

Proof. $\tau$ can’t be parallel to asubarc of $K$ , else $K$ would itself be
unknotted. So $\tau$ is an essential arc in $F$ , and so $F^{\tau}-\eta(\tau)$ is an annulus.
Let $H$ be aregular neighborhood of the theta-graph $K\cup\tau$ and $\mu$ be a
meridian disk for $K$ , considered also as ameridian dual to an edge of
the graph $K\cup\tau$ . Then $F$ -interior(iZ) is an incompressible annulus
$A$ that satisfies the hypotheses of Proposition 2.3. $\square$

The last proposition and its corollary begin to suggest astrategy for
trying to prove the conjecture: Let $0=K\cup\tau$ . Try to arrange that $\tau$ is
disjoint from agenus one Seifert surface $F$ for $K$ , so that we can think
of $F$ as lying in the closed complement $X$ of $H=\eta(\mathit{0})$ in $S^{3}$ . This
makes $F\cap \mathrm{d}\mathrm{H}$ auseful copy of $K$ lying on $\partial’$H. $1^{1}\mathrm{r}\mathrm{y}$ to show that some
boundary-compressing disk for $F$ in $X$ crosses ameridian of $\tau$ exactly
once or, alternatively, is disjoint from ameridian corresponding to one
of the two edges $K-\tau\subset \mathit{0}$ . If the former happens then, with some
work, $\tau$ can be isotoped onto $F$ and Corollary 2.4 applies. If the latter
happens then we can invoke Proposition 2.3.

Such astrategy requires an understanding of potential boundary-
compressing disks for $F$ in $X$ , once $\tau$ is made disjoint from $F$ . A
natural source for such disks are the outermost disks cut off by $F$ from
meridians of the handlebody $X$ . That is, if $E^{1}$ is ameridian disk of $X$ ,
then an outermost arc of $E\cap F$ in $E$ cuts off adisk $E_{0}$ . Moreover, $E\circ$

90



FIGURE 2

lies on one side of $F$ , so the arc $\omega$ $=E_{0}\cap\partial H$ has both ends incident to
the same side of A. Consider the meridians pg of $H$ corresponding to
the two edges of $0=\mathrm{A}’\cup\tau$ coming from $\mathrm{A}’$ and the meridian $\mu^{t}$ coming
from the edge $\tau$ . If $\omega$ is disjoint from either of the meridians $\mu\pm$ then we
are done by Proposition 2.3. If $\omega$ intersects both these meridians, then
some subarc $\omega_{0}$ of $\omega$ cut off by $\mu\pm \mathrm{i}\mathrm{s}$ an arc in the 4-punctured sphere
$\partial H-\mu\pm$ running from acopy of $\mu_{-}$ to $\mu_{+}$ . Arcs in a4-punctured sphere
are easy to understand -each roughly corresponds to arational number
given by its slope, viewing the 4-punctured sphere as apillowcase with
holes in the corners. See Figure 2Since $\omega_{0}$ is disjoint from the vertical
( $\mathrm{i}$ . $\mathrm{e}$ . slope $\infty$ ) arcs $K\cap\Sigma$ , it determines anon-zero integral slope which
(by appropriate choice of slope 0) we may take to be 1. In other words,
we are done unless the meridian disks of $X$ intersect the 4-punctured
sphere $\partial H-\mu\pm \mathrm{i}\mathrm{n}$ arcs of one particular slope.

Of course the genus two handlebody $X$ has many meridians, so it
seems that it would be difficult to say much about the slopes of arcs
determined by these meridians. But it is aremarkable fact (see [ST1])
that, if we restrict to simple closed curves in $\partial H$ that bound meridians
in both $H$ and $X$ , the slope is determined (up to only asmall ambiguity)
by $\mathrm{A}’$ and $\tau$ , as long as $K$ is not 2-bridge. We are done anyway if $K$ is 2-
bridge, so the upshot is that right from the beginning there is only one
troublesome case to deal with -when the slope given by ameridian of
$X$ , ameridian whose boundary also bounds ameridian of $E$ , is simply
1. The argument here is more rigorously presented in [ST1] (where
what we here call the “slope” is there the invariant $p\in \mathbb{Q}/2\mathbb{Z}$ ).

This completes the proof of the Goda-Teragaito conjecture for all
but the case $p=1$ . But this final case seems to require asubstantial
broadening of our strategy which we now describe. Roughly, we start
with $H=\eta(\mathrm{A}’\cup\tau)$ but find simpler and simpler spines for $H$ , allowing
$\mathrm{A}^{\nearrow}$ to appear more complex on $\partial’H$ with respect to these simpler spines.
The hope is to do this in such acontrolled manner that much of the
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argument above can still be applied and, moreover, the process does
not stop until one of the cycles in the spine is the unknot.

3. THE PSYCHOLOGICAL BACKGROUND - THIN POSITION AND ITS
successes

The notion of thin position for knots goes back to early work of
Gabai ([G]). In outline, the idea is this: Think of $S^{3}$ as swept out
by an interval’s worth of 2-spheres. More concretely, choose aheight
function $h$ : $S^{3}arrow[-1,1]$ with exactly two critical points: amaximum
and aminimum at heights $\pm 1$ . It is possible to associate anatural
number, called the width, to any generic positioning of aknot $K$ in
$S^{3}$ . This can be done so that the width is unchanged by isotopies of $K$

that do not create or destroy critical points or change the ordering of
the heights of the critical points. In fact, width stays unchanged if the
height of two adjacent maxima or two adjacent minima are switched. It
will go down if amaximum is pushed below aminimum or amaximum
and aminimum are cancelled. When the width is minimized, the knot
is said to be in thin position.

To illustrate the usefulness of thin position, consider aknot $K\subset S^{3}$

in thin position and suppose $F$ is an incompressible Seifert surface
for $K$ . Suppose some level 2-sphere $P$ (ie $P=h^{-1}(t)$ , $t\in(-1,1)$ ) is
transverse to $F$ and among the components of $F-P$ are apair of disks,
say cut off by arc components of $P\cap F$ , one disk lying above $P$ and
one below $P$ . Then those disks would describe away to simultaneously
push amaximum of $\mathrm{A}’$ below $P$ and aminimum of $K$ above $P$ , reducing
the width. We conclude that no such pair of disks occurs.

On the other hand, as we imagine level spheres $P_{t}=h^{-1}(t)$ sweeping
across $F$ from top to bottom, at first there must be adisk cut off from
$F$ that lies above $P_{t}$ and just before the end of the sweep there must be
adisk from $F$ that lies below $P_{t}$ . Since there can’t simultaneously be
both types of disks, as we havejust seen, there must be some height at
which there are no disks of either type, so in fact for $P$ at this height,
all components of $P\cap F^{\urcorner}$ are essential in $F$ .

If $F$ is of genus one, then essential 1-manifolds in $F$ are easy to
describe. For example, if all components of the 1-manifold are arcs
then these arcs lie in at most three different parallelism classes.

In [GST] we presented asimilar notion of thin position that works
well for trivalent graphs in $S|.3$ . That is, just as for knots, it is possible
to define the width of ageneric positioning of atrivalent graph Iin $S^{3}$

in such away that the width is unchanged by isotopies of $K$ that do not
create or destroy critical points or change the ordering of the heights
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of the critical points, where here “critical point” is enlarged to include
vertices of the graph. Moreover, and this is the delicate point, the width
stays unchanged if the height of two adjacent maxima or two adjacent
minima are switched. Here the delicacy arises because the maxima
(and minima) can be of two different types: one type is the standard
maximum of an arc, but the second type is that of aA-vertex, $\mathrm{i}$ . $\mathrm{e}$ . a
vertex incident to two ends of edges lying below it and one above. The
last crucial property of the width is that, just as in the case of knots, the
width of $\Gamma$ will go down if amaximum is pushed below aminimum or
amaximum and aminimum are cancelled, or aA-vertex and adjacent
standard minimum become a $\mathrm{Y}$-vertex(or, symmetrically, aK-vertex
and adjacent standard maximum become aA-vertex). To summarize
briefly: If $\Gamma$ is in thin position then, without affecting width, minima
can be pushed past other minima and maxima past other maxima but
no maximum can be pushed below any minimum.

It turns out that any theta-curve Heegaard spine in $S^{3}$ has auseful
property when it is put in thin position.

Definition 3.1. A trivalent graph $\Gamma\subset S^{3}$ is in bridge position with
respect to a height function $h$ : $S^{3}arrow[-1, +1]$ if there is a level sphere
$P\subset S^{3}$

.
so that all maxima of $\mathrm{I}^{\urcorner}$ lie above $P$ and all minima lie below.

Such a sphere $P$ is called $a$ dividing sphere.

Theorem 3.2. [ST2] Suppose $\mathit{0}\subset S^{3}$ is a theta-curve Heegaard spine
that is in thin position in $S^{3}$ . Then 0is in bridge position and some
edge of $\Gamma$ is disjoint from a dividing $spher\cdot e$ .

With this in mind, we try to extend the application of thin position
given above to the following: Suppose 0is atheta-curve Heegaard spine
with regular neighborhood $H$ and the Seifert surface $F$ is properly
embedded in $X=S^{3}$ –interior(H). Suppose 0is in thin position
and $\mathrm{A}’$ doesn’t “back-track” along any edge in 0. That is, Adoesn’t
intersect twice in arow the meridian corresponding to any one edge of
0. Then, just as in the case for thin position of knots, there is alevel
sphere $P$ that intersects $F$ only in essential curves. It turns out that
the following example of this situation (the motivation will come abit
later) is crucial:

Definition 3.3. Suppose 0is a theta-curve in $S^{3}$ with edges $e^{+}$ , $e^{-}$ , $e^{[perp]}$ .
$ln$ $H=\eta(0)_{f}$ denote the corresponding meridians by $\mu^{+}$ , $\mu^{-}$ , $\mu^{[perp]}$ . Sup-
pose $K\subset\partial’H$ is a primitive curve in $\partial’H(i.$ $e$ . it intersects some essen-
tial disk in $H$ in a single point) and $\mathrm{A}’$ intersects each of the meridians

$\mu^{+}$ , $\mu^{-},\mu^{[perp]}$ always with the same orientation and so that some minimal
genus Seifert surface $F$ for $\mathrm{A}’$ intersects $H$ only in $\mathrm{A}’=\partial$’F. Arrang$e$
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the labelling and orientations of the edges and meridians so that, ge0-
metrically as well as algebraically,

$\bullet K\cap\mu^{-}=q\geq 1$

$\bullet K\cap\mu^{+}=p\geq q$

$\bullet K\cap\mu^{[perp]}=p+q$ .
Then we say that $K$ (or ( $\mathrm{A}’$, $F$ )) is presented on 0as $a(p, q)$ quasi-

cable.

Our remarks above then show that if 0is in thin position and $(K, F)$

is presented on 0as a $(p, q)$ quasi-cable then some level sphere $P$ in-
tersects $F$ in a1-manifold that is essential in $F$ . If $F$ is of genus one
then the components of $F\cap P$ fall into at most three parallelism classes
in $F$ . It is not obvious, but is not difficult to show, that this greatly
constrains the kind of $(p, q)$ quasi-cabling that can give rise to genus
one surfaces. Most importantly (see [Sc, Lemma 2.3]) the constraint
forces $q=1$ . In the context of the strategy outlined above (cf. Corol-
lary 2.2 and Proposition 2.3) establishing that ameridian dual to an
edge intersects $\mathrm{A}’$ exactly once is apromising development indeed. In-
deed, this connection alone suggests that thinking about $K$ as a $(p, q)$

quasi-cable could be quite useful.

Next we show why it is not only useful but also perhaps natural
to think about $K$ as a $(p, q)$ quasi-cable. For this we go back to the
argument of Section 2and consider how we might try to apply thin
position to the only case $(\rho=1)$ in which the argument of Section 2
fails. Recall that $\rho=1$ means that for $E$ any meridian of $X$ , there is
an arc $\omega_{0}\subset\partial E$ running between the pair of meridians $\mu\pm \mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$ that

$\omega_{0}$ is disjoint from $K$ . Now suppose the theta-graph $\mathit{0}=K\cup\tau$ is put
in thin position and, moreover, among all possible ways of sliding $\tau$ on
$K$ , we’ve picked the one that makes 0thinnest. We hope to use the
thin position argument $\mathrm{f}\mathrm{o}$ rmerly applied to the Seifert surface $F$ and
see what happens if we apply it instead to the meridian disk $E$ .

Afirst observation is that, following [GST], we can assume that
$\mathrm{A}’\cup\tau$ is in bridge position and that adividing sphere is disjoint from
the tunnel $\tau$ . Indeed it is shown in [GST] that, with $K$ in bridge
position, the tunnel $\tau$

$\Pi \mathrm{l}\mathrm{a}\mathrm{y}$ be made level with its ends at maxima (or
minima). If, when $\tau$ made level, the ends of the tunnel are at the
same maximum, then the tunnel is unknotted and we can appeal to
Theorem 2.1 to complete the argument. If instead the tunnel $\tau$ has
its ends at different maxima then the small perturbation that makes
$\mathrm{A}’\cup\tau$ generic will leave it in bridge position, with $\tau$ monotonic and
above the dividing sphere
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FIGURE 3

Consider now how level spheres would intersect ameridian disk $E$ of
$X$ as they sweep across 0. We saw that as they sweep across $F$ there
is at least one level at which the intersection with $F$ is an essential
collection of curves in $F$ . Something must go wrong with this argument
when we replace $F$ with $E$ , for it is impossible to have essential arcs in
adisk like $E$ . It’s easy to see what can go wrong: it may be that there
is alevel sphere $P$ that simultaneously cuts off both lower and upper
disks from $E$ , but these disks are incident to $H$ in such acomplicated
way that they can’t be used to make 0thinner. Such acomplicated arc
can only arise when some component of $\partial H-P$ is itself complicated,
eg the 4-punctured sphere component Iof $\partial H-P$ that appears when
$P$ is adividing sphere. (See Figure 3.) In particular, we founder when
two conditions occur: some subarc $\omega_{0}$ of $\partial’E$ is relatively simple in $\Sigma$

(so that $p=1$ ), while another subarc (namely the arc on which an
upper disk is incident to I) is relatively complex. Since these subarcs
are disjoint (for $\partial E$ is embedded) the possibilities are few. In fact, and
this is not obvious, the most difficult case to handle is one in which the
upper disk is so positioned that it defines away in which 0can only
be made thinner by aWhitney move on the edge $\tau$ . This Whitney
move has the effect of placing $K$ on $\partial H$ as a $(1, 1)$-quasi-cable;see [Sc,
Lemma 5.5] and Figure 4. So we naturally move to thinking about $K$

as aquasi-cable on some different spine of $H$ .
This Whitney move begins akind of inductive process. We try to

repeat the argument in the more general setting in which $(K, F)$ is
presented as aquasi-cable on the neighborhood $H$ of atheta-curve
Heegaard spine. The knot $K$ is kept thinly presented thorughout the
process and the strategy is to choose the thinnest possible theta-curve
for such apresentation. If such athinnest theta-curve 0contains an
unknotted cycle, then (essentially) Corollary 2.2 can be applied to finish
the proof. If it doesn’t, then we try to use ameridian $E$ of $X$ to thin
0further and observe that it will do so unless, as previously, 0is in
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FIGURE 4

bridge position, some edge of 0 is disjoint from adividing sphere, and
some such dividing sphere $P$ cuts off both an upper disk $E_{u}$ and alower
disk $E\iota$ from $E$ .

We then consider again how dE intersects the 4-punctured sphere
component $\Sigma\subset\partial H$ of $\partial H$ – $P$ . If a $\partial$-compressing disk $E_{0}$ for $F$ in
$X$ cut off from $E$ by $F$ is incident to $\partial’H$ in an arc $\omega$ so short that $\omega$

lies entirely in $\Sigma$ , then the annulus $A$ resulting from the $\partial$-compression
naturally satisfies the hypothesis of Proposition 2.3, so we would be
done. The remaining possibility is that the arc $\omega$ $\subset\partial E$ to which ?’
$\partial’$-compresses is long. That is, the subarc $\omega$ of $\partial E$ is disjoint from $K$ ,
has both its ends on the same side of $\mathrm{A}’$ but passes through $\Sigma$ perhaps
many times. (We can assume that the ends of $\omega$ both lie in E.) The
hope would be that this relatively clear picture of $\omega$ would be enough
to show that the upper and lower disks $E_{u}$ and $E\iota$ could either be used
to thin 0further (a contradiction) or at least would describe how to
perform aWhitney move that would thinly present $K$ as a(possibly
more complicated) quasi-cable on an even thinner theta-graph. If this
last step works (as it did in the simple case $0=K\cup\tau$ ) then when we
reach the thinnest possible theta-graph that presents $(K, F)$ as aquasi-
cable we will be done. Either acycle in the theta-graph is unknotted
and we are done by aversion of Corollary 2.2 or the arc $\omega$ lies entirely
in $\Sigma$ and we are done by Proposition 2.3.

4. REFINEMENTS AND COMBINATORIAL ARGUMENTS

The last step in the program outlined in Section 3is to exploit upper
and lower disks $E_{u}$ and $E’\iota$ cut off from ameridian disk $E$ of $X$ by a
level sphere $P$ . The hope is that $\mathrm{A}_{u}^{1}$ and $E\iota$ can be used either to thin
0, or at least to perform auseful Whitney move on 0. Just about all we
know about the disks $E_{u}$ and $E\iota$ is that they are disjoint from along
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FIGURE 5

arc $\mathrm{w}\mathrm{e}’ \mathrm{v}\mathrm{e}$ called $\omega$ that is itself disjoint from $K$ and has ends incident
to $K$ from the same side. We can also assume (from thin position) that
$P$ lies below an entire edge of 0, so the corresponding component $\Sigma$ of
$\partial H-P$ is a4-punctured sphere.

Things seems rather hopeless, especially if the edge that is disjoint
from $P$ is $e^{[perp]}$ :The definition of quasi-cable means that no subarc of $\mathrm{A}’$

goes directly from $e^{+}$ to $e^{-}$ In particular, an arc in $\mathrm{d}\mathrm{H}$ can “backtrack”
at an end of $e^{[perp]}$ without necessarily intersecting $\mathrm{A}’$ . That is, there is an
essential arc in $\partial H-K$ with both ends on $\mu^{[perp]}$ and with interior disjoint
from both of the other meridians $\mu^{\pm}$ . See Figure 5. This means that,
for all we know, the long arc $\omega$ could traverse $\Sigma$ in acomplicated way,
passing many times across the meridian $\mu^{[perp]}$ and still $\omega$ could be disjoint
from $\mathrm{A}’$ . If $\omega$ can be this complicated, there is nothing to prevent $\partial E_{u}$

from traversing Iin an equally complicated way and so it would be
useless either for thinning or for describing asimple Whitney move.

Here’s an approach to fixing this problem, at least: To ensure that
no arc of $\partial E$ backtracks at an end of $e^{[perp]}$ , somehow guarantee that $\partial E$

dots backtrack at both ends of another edge, one of $e^{\pm}$ , for then no
backtracking arc at an end of $e^{[perp]}$ could be disjoint from $\partial’E$ . Requiring
that $\partial E$ backtracks on one of the other edges $e^{\pm}$ is more reasonable
than it might appear: Recall that $E^{1}$ could have been chosen so that its
boundary also bounds adisk $D\subset H$ . If we consider how $D$ intersects
the meridians $\mu^{\pm}$ , $\mu^{[perp]}$ of $H$ , an outermost arc of intersection on $D$ will
precisely cut off abacktracking arc from $\partial^{r}D=\partial’ E$ . So we know that
there is aback-tracking arc (called awave) on exactly one edge. So
the refinement needed to avoid backtracking at an end of $e^{[perp]}$ is to
insist that we will only consider theta-graphs which present $(K, F)$

as aquasi-cable and which also satisfies the wave condition; that is,
we require that there is awave of $\partial’E$ based at one of the meridians
$e^{\pm}$ . Of course, this restriction means that the inductive step $(\mathrm{i}.$ $\mathrm{e}$ .
the Whitney move) must be shown to preserve the wave condition at
the next stage, including the first stage in which $\mathrm{A}’\cup\tau$ becomes a
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theta graph presenting $(K, F)$ as a $(1, 1)$ cable. Checking this is abit
technical and we only note here that it is shown in [Sc] that it can be
done.

Introducing the wave condition gives unexpectedly useful informa-
tion about the long arc $\omega$ . If, for example, awave is based at the
meridian $\mu^{+}$ of $e^{+}$ then $\omega$ can’t pass directly from an end of $e^{-}$ to
an end of $e^{[perp]}$ since awave is in the way, nor can it backtrack on any
edge, for even in backtracking at an end of $e^{+}$ it would cross A. It
follows, for example, that $\omega$ always crosses each meridian $\mu^{\pm},\mu^{[perp]}$ in the
same direction. Even more (somewhat technical) information is avail-
able about $\omega$ and hence about the boundary of the annulus $A$ that is
obtained from $F$ by $\partial’$-compressing to $\omega$ , but what $\mathrm{w}\mathrm{e}’ \mathrm{v}\mathrm{e}$ described is
enough to give an outline of the rest of the argument.

The first observation is that, if $\alpha_{u}=E_{u}\cap’\partial H$ were actually parallel
to asegment of $\omega\cap\Sigma$ we would be nearly finished: Since $\omega$ doesn’t back-
track along any edge, there are only afew paths it can take through $\Sigma$ ;
if $\alpha_{u}$ also took one of these paths, then it’s relatively easy to show that
$E_{u}$ and $b_{l}’$ describe away either to thin 0or to perform an appropriate
Whitney move (depending on the path). It turns out that, when the
edge of 0that is disjoint from $P$ is the edge that contains the wave,
just knowing that the wave is disjoint from $\omega$ suffices to show there
is an appropriate Whitney move. So, for agood representative of the
hard cases that remain, we assume that it is the edge $e^{[perp]}$ that is disjoint
from the dividing sphere $P$ .

Now abrief digression. We’ve noted above that if $\alpha_{u}$ were parallel to
asegment of $\omega$

$\cap\Sigma$ we would be finished. This suggests (and one can
prove) that there is adividing sphere $P$ that intersects the annulus $A$

only in essential spanning arcs. Roughly, the argument is the standard
thin position argument: if, as $P_{t}$ sweeps across 0there were always
some inessential arc of intersection then at some level there would be
adividing sphere that cut off both an upper and alower disk from $A$ .
But $\partial A$ does follow (roughly) $\omega$ , since $\partial’A$ is obtained by banding $K$

to itself along $\omega$ . Now these two disks could be used, either to thin 0
or to perform an appropriate Whitney move, changing 0to athinner
graph which still presents $(K, F)$ as aquasi-cable.

In this last hard case it appears to be difficult to complete the argu-
ment as planned, using $E_{u}$ and $E\iota$ , simply because the information that
we have ( $\mathrm{i}$ . $\mathrm{e}$ . that $\alpha_{u}$ is disjoint from u) doesn’t seem quite enough
to describe agood Whitney move. Indeed, this information isn’t even
enough to show that $E_{u}$ is disjoint from $K$ so it could hardly be used to
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describe aWhitney move on 0that wouldn’t disrupt the presentation
of $\mathrm{A}’$ . But in the digression and earlier we have seen that in this hard
case the annulus $A$ to which $F\partial$-compresses has some nice properties:
Its boundary is “regular” ( $\mathrm{i}$ . $\mathrm{e}$ . there is no back-tracking) and it’s
relatively easy to describe the type of path its boundary follows, since
each boundary component of $A$ consists of acopy of $\omega$ and part of
$K$ . Moreover, $A\cap P$ consists exclusively of parallel spanning arcs in
$A$ . This suggests that acombinatorial approach might be useful, as at
the beginning when we used adescription of the essential collection of
curves $F\cap P\subset F$ to establish that $q=1$ .

In fact the same sort of combinatorial argument does allow us to
simplify even further the possible paths that $\partial A$ can follow in $\partial H$ , but
again the argument seems to stop just short of completing the proof.
The exceptional case is quite specific. Each component of $\partial A$ can be
described as apath in $\partial H$ simply by writing down aword in letters
$a$ , $b,\overline{a},\overline{b}$ that describe the order in which the curve intersects $\mu^{+}$ and
$\mu^{-}$ If it intersects $\mu^{-}$ with the same orientation that Adoes, write
down $a$ ;it if intersects $\mu^{+}$ with the opposite orientation that $K$ does,
write down $\overline{b}$ . Then it turns out that acombinatorial argument, using
the parallel arcs of intersection of $A\cap P$ in $A$ , eliminates all possibilities
for $\omega$ except aword $w$ that is positive in the letters $a$ and $\overline{b}$ . It also
eliminates all possibilities for $\partial A$ except the words

$\bullet\partial_{-}A\Leftrightarrow wa$

$\bullet\partial_{+}Arightarrow w\overline{b}^{p}$ .

The remarkable regularity of this structure opens another possible
way of eliminating this last remaining possibility: use acombinatorial
argument in the graph formed in $P$ by the arcs $A\cap P$ . That is, consider
the graph Aformed in $P$ by letting intersection points of $e^{\pm}$ with $P$ be
the vertices and the arc components $A\cap P$ be the edges. (The idea of
using such graphs seems to go back at least to [GL].) Remarkable order
can be discerned. There are no inessential loops. If we orient the edges
in $P$ so that the corresponding orientation in $A$ is from $\partial_{+}A$ to $\partial_{-}A$ ,
there cannot be two faces of $P-\Lambda$ (from the same component of $\Lambda$ )
that have their boundaries consistently oriented in opposite directions,
one clockwise and the other counterclockwise. In any case (suppressing
technicalities) the argument now proceeds by showing that such $\mathrm{o}\mathrm{p}\mathrm{P}^{(\succ}$

site pairs of faces must always arise, first by showing that they arise
when $w$ is long, then by successively eliminating all shorter possibilities
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FIGURE 6

5. EPILOGUE -HEEGAARD SPINES THAT ARE EYEGLASS GRAPHS

The argument above is only asketch, but aparticularly important
possibility has been glossed over to smooth the flow of the argument.
This final section gives abrief description of how the case arises and
how it is handled.

As the argument has been described, thin position puts 0in bridge
position with an edge disjoint from adividing sphere. Then asurface
in $X$ ( $\mathrm{e}$ . $\mathrm{g}$ . the annulus $A$ ) is used to find disjoint upper and lower
disks. These disks are used to describe aWhitney move on 0, changing
it to an even thinner theta-graph which still thinly presents $(K, F)$

as aquasi-cable. What we have suppressed is the possibility that the
Whitney move described by the disks changes 0not to another theta-
graph but instead to an “eyeglass” graph -that is, the graph formed
by connecting two loops on different vertices with an edge, called the
bridge edge. See Figure 6. In this epilogue we briefly describe what to
do in this case.

The first important point is that there is agood theory of thin eye-
glass Heegaard spines $\mathrm{i}\dot{\mathrm{n}}S^{3}$ , as there is for theta-graphs, $\mathrm{c}\mathrm{f}[\mathrm{S}\mathrm{T}2]$ . In
particular, when an eyeglass Heegaard spine $\mathrm{N}$ is put in thin position,
either it’s in bridge position with the bridge edge disjoint from adi-
viding sphere, or at least one of the two loops in $\mathrm{N}$ is unknotted. For
our purposes, some further argument is needed to show that the moves
used to thin $\mathrm{N}$ would not destroy the thinness of aknot $K$ sitting
appropriately on the boundary of its regular neighborhood $H$ . The
way in which $K$ sits on $\partial H=\partial\eta(\mathrm{N})$ is easy to describe (it’s called ap-
eyeglass presentation in [Sc, Definition 4.1] $)$ and so it is straightforward
to verify that the thinning moves on $\mathrm{N}$ do not disrupt the thinness of
$K$ . If, once $\mathrm{N}$ is thin, one of the loops is the unknot, the argument
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concludes essentially via Theorem 2.1. If instead all that we know is
that the bridge edge is disjoint from adividing sphere, it’s still easy to
verify also that there is an associated embedding of 0that is no thicker
than N.

The upshot is this: If a $P$-eyeglass presentation is needed because the
wrong sort of Whitney move is given by the upper and lower disks, then
thin position can be applied to the eyeglass curve $\mathrm{N}$ as well, in away
that leads to acontradiction. That is, if aWhitney move converts a
that -graph 0into a $p$-eyeglass presentation on $\mathrm{N}$ , then $\mathrm{N}$ , as imbedded,
is thinner than 0was. Now isotope $\mathrm{N}$ so it is in thin position. This
can be done without affecting the fact that $\mathrm{A}’$ is in thin position and,
afterwards, 0itself could be recovered from $\mathrm{N}$ in away that maintains
the same width as $\mathrm{N}$ , and so actually leaves 0thinner than when it
begain. This is acontradiction, since 0was originally supposed to be
in thin position. So the role of the $p$-eyeglass is merely “catalytic” in
the sense that the eyeglass curve $\mathrm{N}$ appears briefly, and only so that
thin position applied to $\mathrm{N}$ carries the original imbedding of 0to an
even thinner imbedding of 0. But it’s appearance is consistent with
and indeed reinforces the central theme of the argument: thin position
for Heegaard spines is auseful tool to understand the geometry and
topology of knots that lie on their corresponding Heegaard surfaces.
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