On the smallness and the 1－bridge genus of knots

by
Kanji Morimoto
Department of Information Science and Mathematics
Konan University
Higashinada－ku Okamoto 8－9－1
Kobe 658，Japan
e－mail ：morimoto＠konan－u．ac．jp

Abstract

Let K be a knot in S^{3} and $g_{1}(K)$ the 1－bridge genus of K．Then P．Hoidn showed that $g_{1}\left(K_{1} \# K_{2}\right) \geq g_{1}\left(K_{1}\right)+g_{1}\left(K_{2}\right)-1$ for any small knots K_{1}, K_{2} ，where a knot is small if the exterior contains no closed essential surfaces．In the present article，we show that Hoidn＇s estimate is best possible，i．e．，there are infinitely many pairs of small knots K_{1}, K_{2} sucht that $g_{1}\left(K_{1} \# K_{2}\right)=g_{1}\left(K_{1}\right)+g_{1}\left(K_{2}\right)-1$ ．

1．Introduction

Let S^{3} be the 3－dimensional sphere，and K a knot in S^{3} ．We say that $\left(V_{1}, V_{2}\right)$ is a Heegaard splitting of S^{3} if $S^{3}=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}$ and both V_{1} and V_{2} are handlebodies．The genus of $V_{1}\left(=\right.$ the genus of $\left.V_{2}\right)$ is called the genus of the Heegaard splitting and the surface $\partial V_{1}=\partial V_{2}$ is called the Heegaard surface of the Heegaard splitting．Then for any knot K in S^{3} it is well known that there is a Heegaard splitting（ V_{1}, V_{2} ）of S^{3} such that K intersects V_{i} in a single trivial arc in V_{i} for both $i=1,2$ ．Hence we define the 1－bridge genus $g_{1}(K)$ of K as the minimal genus among all such Heegaard splittings（ V_{1}, V_{2} ）of S^{3}（c．f．［Ho］and［MSY］）．

For two knots K_{1}, K_{2} in S^{3} ，we denote the connected sum of K_{1} and K_{2} by $K_{1} \# K_{2}$ ．Then by a little ovservation，we immediately see the following ：

Fact 1．1 For any two knots K_{1} and K_{2} in $S^{3}, g_{1}\left(K_{1} \# K_{2}\right) \leq g_{1}\left(K_{1}\right)+g_{1}\left(K_{2}\right)$ ．
Let $N(K)$ be a regular neighborhood of a knot K in S^{3} and $E(K)=c l\left(S^{3}-N(K)\right)$ the exterior of K ．A surface F（＝a connected 2－manifold ）properly embedded in $E(K)$ is essential if F is incompressible and is not parallel to $\partial E(K)$ or to a subsurface of $\partial E(K)$ ，and it is meridional if $\partial F \neq \emptyset$ and each component of ∂F is a meridian of K ．Then we say that K is small if $E(K)$ conatins no closed essential
surfaces and that K is meridionally small if $E(K)$ conatins no meridional essential surfaces. We note that if a knot in S^{3} is small then it is meridionally small by [CGLS, Theorem 2.0.3].

On the problem to esitimate the lower bound of $g_{1}\left(K_{1} \# K_{2}\right)$, P.Hoidn showed :
Theorem 1.2 ([Ho, Theorem]) Let K_{1}, K_{2} be two knots in S^{3}. If both K_{1} and K_{2} are small, then $\left.g_{1}\left(K_{1} \# K_{2}\right) \geq g_{1}\left(K_{1}\right)+g_{(} K_{2}\right)-1$.

In the present article, we show this esitimate is best possible :
Theorem 1.3 There are infinitely many pairs of small knots K_{1}, K_{2} in S^{3} with $\left.g_{1}\left(K_{1} \# K_{2}\right)=g_{1}\left(K_{1}\right)+g_{(} K_{2}\right)-1$.

Moreover, as a generalization of Hoidn's theorem, we show :
Theorem 1.4 Let K_{1}, K_{2} be two knots in S^{3}. If both K_{1} and K_{2} are meridionally small, then $\left.g_{1}\left(K_{1} \# K_{2}\right) \geq g_{1}\left(K_{1}\right)+g_{(} K_{2}\right)-1$.

Remark 1.5 (1) By [Mo1, Proposition 1.6], we see that for any integer $n>0$ there are infinitely many knots K such that (i) $g_{1}(K)>n$, (ii) K is meridionally small, (iii) K is not small. This shows that Theorem 1.4 properly includes Theorem 1.2. (2) Since a small knot is meridionally small as mentioned before, the estimate in Theorem 1.4 is best possible by Theorem 1.3.

Let $t(K)$ be the tunnel number of a knot K in S^{3}, i.e., $t(K)$ is the minimal number of mutually disjoint arcs $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{t}$ properly embedded in $E(K)$ such that $\operatorname{cl}\left(E(K)-N\left(\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{t}\right)\right)$ is a handlebody. Then by a little observation we have :

Fact $1.6 \quad t(K) \leq g_{1}(K) \leq t(K)+1$ for any knot K.
By the above inequality, we have $g_{1}(K)=t(K)$ or $t(K)+1$. Let K_{1} and K_{2} be small knots in S^{3}, and suppose $g_{1}\left(K_{i}\right)=t\left(K_{i}\right)$ for both $i=1,2$. Then by Fact 1.1, Fact 1.6 and [MS Theorem], we have $g_{1}\left(K_{1}\right)+g_{1}\left(K_{2}\right) \geq g_{1}\left(K_{1} \# K_{2}\right) \geq t\left(K_{1} \# K_{2}\right) \geq$ $t\left(K_{1}\right)+t\left(K_{2}\right)=g_{1}\left(K_{1}\right)+g_{1}\left(K_{2}\right)$. Hence $g_{1}\left(K_{1} \# K_{2}\right)=g_{1}\left(K_{1}\right)+g_{1}\left(K_{2}\right)$. This tells that to show Theorem 1.3 we need to find small knots K with $g_{1}(K)=t(K)+1$.

Let p, q be coprime integers, and r an arbitrally integer. Then we consider the knot obtained by adding r full twists with mutually paralle 2 -strands to the (p, q) torus knot as illustrated in Figure 1, and denote it by $K(p, q ; r)$ (cf. [MSY]).

[Figure 1]

Then to get the canditates for Theorem 1.3, we show the following proposition and most of the present article will be devoted into the proof of this proposition.

Proposition 1.7 For any $p, q, r, K(p, q ; r)$ is small.
Throughout the present article, we work in the piecewise linear category. For a manifold X and subcomplex Y in X, we denote a regular neighborhood of Y in X by $N(Y, X)$ or $N(Y)$ simply.

2. Proof of Theorem 1.4

To show Theorem 1.4, we need the following :
Theorem 2.1 ([Mo1, Corollary 1.2]) Let K_{1} and K_{2} be two knots in S^{3}. If both K_{1} and K_{2} are meridionally small, then $t\left(K_{1} \# K_{2}\right) \geq t\left(K_{1}\right)+t\left(K_{2}\right)$.

Theorem 2.2 ([Mo2, Theorem 1.6]) Let K_{1} and K_{2} be two meridionally small knots in S^{3}. Then $t\left(K_{1} \# K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$ if and only if $g_{1}\left(K_{i}\right)=t\left(K_{i}\right)+1$ for both $i=1,2$.

Suppose both K_{1} and K_{2} are meridionally small. Recall that $g_{1}\left(K_{i}\right)=t\left(K_{i}\right)$ or $t\left(K_{i}\right)+1$ for $(i=1,2)$ by Fact 1.6.

First suppose at least one of K_{1} and K_{2}, say K_{1}, satisfies the equality $g_{1}\left(K_{1}\right)=$ $t\left(K_{1}\right)$. Then $t\left(K_{2}\right) \geq g_{1}\left(K_{2}\right)-1$. Since both K_{1} and K_{2} are meridionally small, by the above Theorem 2.1, $t\left(K_{1} \# K_{2}\right) \geq t\left(K_{1}\right)+t\left(K_{2}\right)$. Hence by Fact 1.6, $g_{1}\left(K_{1} \# K_{2}\right)$ $\geq t\left(K_{1} \# K_{2}\right) \geq t\left(K_{1}\right)+t\left(K_{2}\right) \geq g_{1}\left(K_{1}\right)+g_{1}\left(K_{2}\right)-1$.

Next suppose $g_{1}\left(K_{i}\right)=t\left(K_{i}\right)+1$ for both $(i=1,2)$. Then by the above Theorem $2.2, t\left(K_{1} \# K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$. Hence by Fact 1.6, $g_{1}\left(K_{1} \# K_{2}\right) \geq t\left(K_{1} \# K_{2}\right)=$ $t\left(K_{1}\right)+t\left(K_{2}\right)+1=\left(g_{1}\left(K_{1}\right)-1\right)+\left(g_{1}\left(K_{2}\right)-1\right)+1=g_{1}\left(K_{1}\right)+g_{1}\left(K_{2}\right)-1$. This completes the proof of Theorem 1.4.

3. Proof of Theorem 1.3 under Proposition 1.7

To show Theorem 1.3, we need the following :

Lemma 3.1 ([Mo3, Proposition 1.7]) Let K be a knot in S^{3}. If $g_{1}(K)=$ $t(K)+1$, then $g_{1}\left(K \# K^{\prime}\right) \leq g_{1}(K)$ for any 2-bridge knot K^{\prime}.

For convenience to the readers, we show the above lemma here. Let $\left(V_{1}, V_{2}\right)$ be a Heegaard splitting of a 3 -sphere S_{1}^{3} which realizes the tunnel number of K, i.e., V_{1} contains K as a core of a handle of V_{1} and $g\left(V_{1}\right)=t(K)+1=g_{1}(K)$. Let $\left(B_{1}, \gamma_{1} \cup \delta_{1}\right)$ and ($B_{2}, \gamma_{2} \cup \delta_{2}$) be a 2-bridge decomposition of K^{\prime} in another 3 -sphere S_{2}^{3}, i.e., $\left(B_{i}, \gamma_{i} \cup \delta_{i}\right)$ is a 2 -string trivial tangle ($i=1,2$) and $K^{\prime}=\gamma_{1} \cup \gamma_{2} \cup \delta_{1} \cup \delta_{2} \subset$ $B_{1} \cup B_{2}=S_{2}^{3}$.

Let D be a meridian disk of V_{1} which intersects K in a single point and $N(D)$ a regular neighborhood of D in V_{1}. Put $N(D)=D \times[0,1]$ and $N(D) \cap K=x \times[0,1]$, where x is a point in $\operatorname{Int} D$. Let $N\left(\delta_{2}\right)$ be a regular neighborhood of δ_{2} in B_{2}. Put $N\left(\delta_{2}\right)=D^{\prime} \times[0,1]$ and $\delta_{2}=y \times[0,1]$, where D^{\prime} is a disk and y a point in $\operatorname{Int} D^{\prime}$.

Let $K \# K^{\prime}$ be the connectd sum of K and K^{\prime}. Then $K \# K^{\prime}$ is a knot in the 3 sphere $S^{3}=c l\left(S_{1}^{3}-N(D)\right) \cup_{\partial N(D)=\partial N\left(\delta_{2}\right)} c l\left(S_{2}^{3}-N\left(\delta_{2}\right)\right)$. Put $W_{1}=c l\left(V_{1}-N(D)\right)$. Then, since $N(D) \cap W_{1}=\partial N(D) \cap \partial W_{1}=D \times\{0,1\}$ and since $N\left(\delta_{2}\right) \cap B_{1}=$ $\partial N\left(\delta_{2}\right) \cap \partial B_{1}=D^{\prime} \times\{0,1\}$, we can put $U_{1}=W_{1} \cup_{D \times\{0,1\}=D^{\prime} \times\{0,1\}} B_{1}$. Then U_{1} is a genus $g_{1}(K)$ handlebody and $\left(K \# K^{\prime}\right) \cap U_{1}$ is a trivial arc in U_{1} because $\left(K \# K^{\prime}\right) \cap W_{1}$ is a trivial arc in W_{1} and $\left(K \# K^{\prime}\right) \cap B_{1} \subset B_{1}$ is a 2 -string trivial arc in B_{1}.

On the other hand, put $W_{2}=c l\left(B_{2}-N\left(\delta_{2}\right)\right)$. Then, since $N(D) \cap V_{2}=\partial N(D) \cap$ $\partial V_{2}=\partial D \times[0,1]$ and since $N\left(\delta_{2}\right) \cap W_{2}=\partial N\left(\delta_{2}\right) \cap \partial W_{2}=\partial D^{\prime} \times[0,1]$, we can put $U_{2}=V_{2} \cup_{\partial D \times[0,1]=\partial D^{\prime} \times[0,1]} W_{2}$. Then U_{2} is a genus $g_{1}(K)$ handlebody and $\left(K \# K^{\prime}\right) \cap U_{2}$ is a trivial arc in U_{2} because δ_{2} is a trivial arc in B_{2} and $\left(K \# K^{\prime}\right) \cap W_{2}$ is a trivial arc in W_{2}.

Hence $\left(U_{1}, U_{2}\right)$ is a genus $g_{1}(K)$ Heegaard splitting of S^{3} which gives a 1-bridge decomposition of $K \# K^{\prime}$. This implies $g_{1}\left(K \# K^{\prime}\right) \leq g_{1}(K)$ and completes the proof of Lemma 3.1.

Now let's prove Theorem 1.3 under Proposition 1.7. Let m be an integer and consider the knot $K_{1}=K(7,17,5 m-2)$. Then by Proposition 1.7, K_{1} is small, and by [MSY, Theorem 2.1], $t\left(K_{1}\right)=1$ and $g_{1}\left(K_{1}\right)=2$. Let K_{2} be a (non-trivial) 2-bridge knot in S^{3}. Then K_{2} is small and $g_{1}\left(K_{2}\right)=1$. Then by the above Lemma 3.1, $g_{1}\left(K_{1} \# K_{2}\right) \leq g_{1}\left(K_{1}\right)=2$. On the other hand, $g_{1}\left(K_{1} \# K_{2}\right) \geq 2$ because 1bridge genus one knots are prime by [No, Sc] and Fact 1.6. Thus $g_{1}\left(K_{1} \# K_{2}\right)=2$ and $g_{1}\left(K_{1} \# K_{2}\right)=g_{1}\left(K_{1}\right)+g_{1}\left(K_{2}\right)-1$ for the small knots K_{1}, K_{2}. This completes
the proof of Theorem 1.3.

4. Preliminaries for the proof of Propositions 1.7

Put $K=K(p, q ; r), N(K)$ a regular neighborhood of K in S^{3} and $E(K)=$ $c l\left(S^{3}-N(K)\right)$ the exterior. If $r=0$, then K is a (p, q)-torus knot and is small. Hence hereafter we assume that $r \neq 0$. Let $\left(W_{1}, W_{2}\right)$ be a genus two Heegaard splitting of S^{3} and $\left(D_{1}, D_{2}\right) \subset\left(W_{1}, W_{2}\right)$ a cancelling disk pair, i.e., D_{i} is a nonseparating disk of $W_{i}(i=1,2)$ and $D_{1} \cap D_{2}=\partial D_{1} \cap \partial D_{2}=$ a single point. Let $N\left(D_{1}\right)$ be a regular neighborhood of D_{1} in W_{1}, and regard $N\left(D_{1}\right)$ as a product space $D_{1} \times[0,1]$ with $D_{1}=D_{1} \times\left\{\frac{1}{2}\right\}$. Put $D_{1}^{0}=D_{1} \times\{0\}, D_{1}^{1}=D_{1} \times\{1\}$, $V_{1}=c l\left(W_{1}-N\left(D_{1}\right)\right)$ and $V_{2}=W_{2} \cup N\left(D_{1}\right)$. Then $V_{1} \cap N\left(D_{1}\right)=D_{1}^{0} \cup D_{1}^{1}$, and we can put $\partial D_{2}=\gamma_{1} \cup \gamma_{2}$, where $\partial D_{2} \cap V_{1}=\gamma_{1}$ and $\partial D_{2} \cap N\left(D_{1}\right)=\gamma_{2}$.

Consider the knot K as a simple closed curve in $\partial W_{1}=\partial W_{2}$ so that those r full twists are in $\partial \dot{N}\left(D_{1}\right)$ as illustrated in Figure 2. Then we may assume that $D_{1} \cap K=\partial D_{1} \cap K=$ two points and $D_{2} \cap K=\gamma_{2} \cap K=|2 r|$ points.
[Figure 2]

To show Proposition 1.7, we show that K is small and meridionally small simultaneously. Suppose, for a contradiction, $E(K)$ contains a meridional essential surface or a closed essential surface, say \check{F}. Let F be a closed surface obtained from \check{F} by adding meridian disks of $N(K)$ to each component of $\partial \check{F}$. Note that $F=\check{F}$ if \check{F} is closed. Hereafter we consider F instead of \check{F}. Then F intersects K in several points (possibly $F \cap K=\emptyset$), $F-K$ is incompressible in $S^{3}-K$ and F is not a 2-sphere which bounds a 3-ball intersecting K in a trivial arc. By general position argument, we may assume that $D_{1} \cap K \cap F=\emptyset$, and hence $N\left(D_{1}\right) \cap K \cap F=\emptyset$. Then by the incompressibility of $F-K$, we may assume that $D_{1} \cap F$ consists of n arcs for some integer $n \geq 0$ and $N\left(D_{1}\right) \cap F$ consists of n rectangles, where each arc of $D_{1} \cap F$ separates the two points $D_{1} \cap K$ as illustrated in Figure 3. We assume that n is minimal among all such meridional or closed essential surfaces in $E(K)$.

[Figure 3]

Put $F \cap V_{1}=F_{1}, F \cap N\left(D_{1}\right)=F_{2}$ and $F \cap W_{2}=F_{3}$, then $F \cap W_{1}=F_{1} \cup F_{2}$. By the incompressibility of $F-K$ in $S^{3}-K$ and the irreducibility of $S^{3}-K$, we may assume that F_{1} is incompressible in V_{1}. Put $K \cap V_{1}=c l\left(K-N\left(D_{1}\right)\right)=k_{1} \cup k_{2}=$ two arcs in ∂V_{1}.

Lemma 4.1 (1) There is no pair of a subarc α of $k_{1} \cup k_{2}$ and an arc β properly embedded in F_{1} such that $\alpha \cap \beta=\partial \alpha=\partial \beta$ and $\alpha \cup \beta$ bounds a disk in V_{1}. (2) There is no 2-gon in $\left(k_{1} \cup k_{2}\right) \cup \partial F_{1}$, which bounds a disk in ∂V_{1}.

Proof. (1) Suppose there is such a pair α, β, and let Δ be the disk in V_{1} with $\partial \Delta=\alpha \cup \beta$. Let $N(\Delta)$ be a regular neighborhood of Δ in S^{3} such that $N(\Delta) \cap F$ is a disk which is a regular neighborhood of β in F, denote it by $N(\beta, F)$. Put $c=\partial N(\beta, F)$. Then, since c is a loop in $\partial N(\Delta), c$ bounds a disk in $S^{3}-K$. If c is essential in $F-K$, then $F-K$ is compressible in $S^{3}-K$, a contradiction. If c is inessential in $F-K$, then F is a 2 -sphere which bounds a 3-ball intersecting K in a trivial arc, a contradiction. Hence there is no such pair.
(2) If there is such a 2 -gon in $\left(k_{1} \cup k_{2}\right) \cup \partial F_{1}$, then we can find a subarc $\alpha \subset k_{1} \cup k_{2}$ and an $\operatorname{arc} \beta \subset F_{1}$ satisfying the condition (1), a contradiction. Hence there is no such 2-gon.

By noting the incompressibility of $F-K$ in $S^{3}-K$, we have the next two lemmas.
Lemma $4.2 \quad n>0$, where n is the number of the arcs $D_{1} \cap F=D_{1} \cap F_{2}$.
Lemma 4.3 Each component of $F_{3} \cap D_{2}$ is an arc connecting γ_{1} and γ_{2}, and there are exactly two outermost arc components each of which cuts off a disk intersect K in a single point and contains a point of $\partial \gamma_{1}=\partial \gamma_{2}$ as in Figure 5. Hence the number of the points $\gamma_{1} \cap \partial F_{1}$ is $(2|r|-1) n$.
[Figure 4]

Since F_{1} is incompressible in the solid torus V_{1}, each component of F_{1} is a ∂ parallel disk, a ∂-parallel annulus or a meridian disk of V_{1}. Recall the notations
$D_{1}^{0}, D_{1}^{1}, k_{1}$ and k_{2}. Then by several arguments we have :
Lemma 4.4 Let G be a ∂-parallel disk component of F_{1} and G^{\prime} a disk in ∂V_{1} to which G is parallel. Then one of the following folds:
(1) G^{\prime} is a small regular neighborhood of k_{i} in $\partial V_{1}(i=1,2)$,
(2) $G^{\prime \prime}$ is a small regular neighborhood of D_{1}^{i} in $\partial V_{1}(i=0,1)$,
(3) G^{\prime} is a small regular neighborhood of $D_{1}^{0} \cup k_{i} \cup D_{1}^{1}$ in $\partial V_{1}(i=1,2)$.

Lemma 4.5 Let G be a ∂-parallel annulus component of F_{1} and G^{\prime} an annulus in ∂V_{1} to which G is parallel. Then G^{\prime} is a small regular neighborhood of $D_{1}^{0} \cup k_{1} \cup D_{1}^{1} \cup k_{2}$ in ∂V_{1}.

Moreover, concerning ∂-parallel disk components of F_{1} in V_{1}, we get a stronger result than that of Lemma 4.4 as follows :

Lemma 4.6 Let G be a ∂-parallel disk component of F_{1} and $G^{\prime} a$ disk in ∂V_{1} to which G is parallel. Then G^{\prime} is a small regular neighborhood of k_{1} or of k_{2} in ∂V_{1}, and all such disks are mutually parallel.

5. Sketch Proof of Proposition 1.7

Recall the notations in section 4, and recall that each component of F_{1} is a ∂ parallel disk, a ∂-parallel annulus or a meridian disk in V_{1}. Then we have the two cases. Case I : F_{1} contains no meridian disks and Case II : F_{2} contains a meridian disk.

Suppose we are in Case I. In this case, by Lemmas 4.5 and 4.6, F_{1} consists of mutually parallel ∂-paralle disks and mutually parallel ∂-parallel annuli. Let $\tilde{E}=E_{1} \cup E_{2} \cup \cdots \cup E_{n}$ be the disks each of which is parallel to a small regular neighborhood of k_{1} in ∂V_{1} and $\tilde{A}=A_{1} \cup A_{2} \cup \cdots \cup A_{\ell}$ the annuli each of which is parallel to a small regular neighborhood of $D_{1}^{0} \cup k_{1} \cup D_{1}^{1} \cup k_{2}$ in ∂V_{1}. Note that n is the number of the arcs $D_{1} \cap F$ and $2 \ell=(2|r|-1) n$ by Lemma 4.3 (see Figure 5). Let D_{3} be a meridian disk of W_{2} such that ∂D_{3} is a longitude of V_{1}. Since $D_{1}^{0} \cap k_{1} \cap D_{1}^{1}$ can be homotopic to a point in ∂V_{1}. We may assume that $\partial D_{3} \cap\left(D_{1}^{0} \cup k_{1} \cup D_{1}^{1}\right)=\emptyset$, and hence $\partial D_{3} \cap \tilde{E}=\emptyset$. A schematic picture of ($\left.\partial \tilde{E}, \partial \tilde{A}, \partial D_{3}, D_{1}^{0}, D_{1}^{1}, \gamma_{1}, k_{1}, k_{2}\right)$ on ∂V_{1} is illustrated in Figure 5.

[Figure 5]

Since we may assume that there is no 2 -gon in $\partial D_{3} \cup k_{1} \cup k_{2} \cup \partial F_{1}$, the arrangement of the points $\partial D_{3} \cap\left(k_{1} \cup k_{2} \cup \partial F_{1}\right)$ on ∂D_{3} is as in Figure 6, where the big points are the points of $\partial D_{3} \cap\left(k_{1} \cup k_{2}\right)$ and the small points are the points of $\partial D_{3} \cap \partial F_{1}=\partial D_{3} \cap \partial \tilde{A}$. We note that there are some small points between any two successive big points because of $\tilde{A} \neq \emptyset$ by $2 \ell=(2|r|-1) n>0$.
[Figure 6]

By the incompressibility of F in $S^{3}-K$ we may assume that each component of $D_{3} \cap\left(F \cap W_{2}\right)=D_{3} \cap F_{3}$ is an arc. Let α be an outermost arc component of $D_{3} \cap F_{3}$ in D_{3} and β the corresponding arc in ∂D_{3} with $\alpha \cap \beta=\partial \alpha=\partial \beta$. Then we have the two subcases. Case I-a : $\beta \cap\left(k_{1} \cup k_{2}\right) \neq \emptyset$ and Case I-b: $\beta \cap\left(k_{1} \cup k_{2}\right)=\emptyset$.

Suppose we are in Case I-a. In this case, α meets a single component of \tilde{A}, say A_{1}. Then we can take an arc, say α^{\prime} properly embedded in A_{1}, with $\alpha \cap \alpha^{\prime}=\partial \alpha=\partial \alpha^{\prime}$. Since $\alpha^{\prime} \cup \beta$ bounds a boundary compressing disk for A_{1} in V_{1}, together with the outer most disk for α in $D_{3}, \alpha \cup \alpha^{\prime}$ bounds a disk, say Δ, which intersects K in a single point. Perform a 2 -surgery for F along Δ, and let \tilde{F} be the surface after the surgery. Then $c l(\tilde{F}-N(K))$ is a meridional essential surface properly embedded in $E(K)$, and A_{1} is changed to the disk in conclusion (3) of Lemma 4.4. This contradicts Lemma 4.6. Hence Case I-a does not occur.

Suppose we are in Case I-b. In this case, α connects two components of \tilde{A}, say A_{1}, A_{2}. Perform a boundary compression of F_{3} along the outermost disk for α. Let b be the band in V_{1} produced by the boundary compression. Then $A_{1} \cup b \cup A_{2}$ is a disk with two holes, and one component of $\partial\left(A_{1} \cup b \cup A_{2}\right)$ bounds a disk in ∂V_{1} because A_{1} and A_{2} are mutually parallel. Then by the incompressibility of $F-K$, we can eliminate the components A_{1}, A_{2}, and we can decrease the number n becasuse of $2 \ell=(2|r|-1) n$, a contradiction. Hence Case I-b does not occur and this completes the proof of Case I.

Suppose we are in Case II. In this case, by Lemmas 4.5 and $4.6, F_{1}$ consists of mutually parallel ∂-parallel disks and mutually parallel meridian disks. Let $\tilde{E}=$
$E_{1} \cup E_{2} \cup \cdots \cup E_{r}$ be the ∂-parallel disks each of which is parallel to a small regular neighborhood of k_{1} in ∂V_{1} and $\tilde{M}=M_{1} \cup M_{2} \cup \cdots \cup M_{s}$ the meridian disks. In this case $r \geq 0$ and $s>0$. Let D_{3} be a meridian disk of W_{2} such that ∂D_{3} is a longitude of V_{1}. Since $M_{1}, M_{2}, \cdots, M_{s}$ are all mutually parallel, we can take an annulus, say A, in ∂V_{1} such that A contains $\partial \tilde{M}$ and each $\partial M_{i}(i=1,2, \cdots, s)$ is a central loop of A. Then we may assume that ∂D_{3} intersect A in a single essential arc properly embedded in A and ∂D_{3} intersects each ∂M_{i} in a single point. Then, since we may assume that $\partial D_{3} \cap \tilde{E}=\emptyset$, the arrangement of the intersection $\partial D_{3} \cap\left(k_{1} \cup k_{2} \cup D_{1}^{0} \cup D_{1}^{1} \cup \partial F_{1}\right)$ on ∂D_{3} is as in Figure 7 , where the big points are the points of $\partial D_{3} \cap\left(k_{1} \cup k_{2}\right)$, fat arcs are the arcs of $\partial D_{3} \cap\left(D_{1}^{0} \cup D_{1}^{1}\right)$ and the small points are the points of $\partial D_{3} \cap \partial F_{1}=\partial D_{3} \cap \partial \tilde{M}$.

[Figure 7]

Let α be an outermost arc component of $D_{3} \cap F_{3}$ in D_{3} and β the corresponding arc in ∂D_{3} with $\alpha \cap \beta=\partial \alpha=\partial \beta$. Perform a boudary compression for F_{3} along the outermost disk for α, and let b be the band in V_{1} produced by the boundary compression. Then we may assume that b connects M_{1} and M_{2}, and by observing the upper side of b, we have the five cases (i) - (v) illustrated in Figure 8.

[Figure 8]

Suppose, for example, we are in case (i). In this case, we can find a pair of arcs α, β as in Lemma 4.1, a contradiction. In the other cases, we get contradictions similarly. Hence Case II does not occur and this completes the proof of Proposition 1.7 and Theorem 1.3.

References

[CGLS] M. Culler, C. McA. Gordon, J. Lueke and P. B. Shalen, Dehn surgery on knots, Ann. of Math. 115 (1987) 237-300
[Ho] P. Hoidn, On 1-bridge genus of small knots, Topology Appl. 106, (2000) 321-335
[Mo1] K. Morimoto, Tunnel number, connected sum and meridional essential surfaces, Topology 39 (2000) 469-485
[Mo2] , On the super additivity of tunnel number of knots, Math. Ann. 317 (2000) 489-508
[Mo3] \qquad , Characterization of composite knots with 1-bridge genus two, J. Knot Rami. 10 (2001) 823-840
[MSY] K. Morimoto, M. Sakuma and Y. Yokota, Examples of tunnel number one knots which have the property" $1+1=3$ ", Math. Proc. Camb. Phil. Soc. 119 (1996) 113-118
[MS] K. Morimoto, J. Schultens, The tunnel number of small knots do not go down under connected sum, Proc. A. M. S. 128, (2000) 269-278
[No] F. H. Norwood, Every two generator knot is prime, Proc. A. M. S. 86, (1982) 143-147
[Sc] M. Scharlemann, Tunnel number one knots satisfy the Poenaru conjecture, Topology Appl. 18, (1984) 235-258

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6
Figure 7

(iv)

(v)

Figure 8

