PENTAGONAL EQUATIONS FOR OPERATORS ASSOCIATED WITH INCLUSIONS OF C*-ALGEBRAS (PRELIMINARY VERSION)

大阪女子大学理学部 大内本夫 (MOTO O'UCHI)
OSAKA WOMEN'S UNIVERSITY

1. Introduction

The pentagonal equation (PE) first appeared in the duality theory for locally compact groups. The Kac-Takesaki operator in the theory satisfies the PE (cf. [9], [29]). S. Baaj and G. Skandalis called a unitary operator on a Hilbert space a multiplicative unitary (MU) when it satisfies PE in [2]. They constructed a pair of Hopf C^* -algebras from a regular MU. M. Enock and R. Nest constructed an MU from an irreducible regular depth 2 inclusion of factors. As for measured groupoids, T. Yamanouchi constructed an analogue of the Kac-Takesaki operator in [35]. But this operator does not satisfy the PE. J. M. Vallin showed that it satisfies an equation which is a generalization of the PE in [32]. He called a unitary operator a pseudo-multiplicative unitary (PMU) when it satisfies this generalized PE. Vallin defined the generalized PE using the Connes-Sauvageot's relative tensor products of Hilbert spaces. M. Enock and J. M. Vallin constructed a PMU from a regular depth 2 inclusion of von Neumann algebras in [10]. The basis of the PMU they studied is a (not necessarily commutative) von Neumann algebra. Recently quantum groupoids are studied by many authors. For example, see [3], [7], [18], [20], [27] and [33]. Quantum

Date: May 14, 2001.

¹⁹⁹¹ Mathematics Subject Classification. 46L89.

Key words and phrases. Hilbert C^* -module, inclusion of C^* -algebras, multiplicative oprator.

groupoids are related to inclusions of von Neumann algebras and PMU's. In particular, PMU's in finite-dimension were studied by G. Böhm and K. Szlachányi [3] and by J. M. Vallin [33]. They studied the PMU from the viewpoint of multiplicative isometries. Before their works, Yamanouchi studied a partial isometry which satisfies the PE in [36]. When we deal with PMU's in the theory of C^* -algebras, it is useful to formulate the generalized PE in the frame work of Hilbert C^* -modules. As for the usefulness of Hilbert C^* -modules, for example, see the works of M. A. Rieffel [25], E. C. Lance [16], B. Blackadar [4] and Y. Watatani [34]. The author defined a PMU on a Hilbert C^* -module using interior tensor products in [22]. The base algebra of the PMU defined there is a commutative C^* -algebra. (When PMU is defined on a tensor product of A-modules, we will call A a base algebra. See Definition 3.1.) An analogue of the Kac-Takesaki operator for a topological groupoid becomes a PMU in the sense of [22]. Moreover, if it is a measured groupoid, that is, if it has a quasi-invariant measure, then the PMU constructed in [22] induces the PMU studied by Vallin in [32]. The author constructed in [23] a PMU in the sense of [22] from an inclusion of finite-dimensional C^* -algebras when the inclusion satisfies certain conditions. There we had to assume a condition which implies a commutativity of the base algebra.

In this paper, we will study a PE in full generality. We will not distinguish a PE from a generalization of a PE and we will not distinguish an MU from a PMU. Therefore we will call a PE a generalization of a PE and we will call an operator a multiplicative operator when it satisfies a generalization of a PE. The aim of this paper is to give a definition of a PE in full generality in the framework of Hilbert C^* -module and to give examples of operators which satisfies this PE. Especially, we remove the assumption of the commutativity of the base algebra, which was assumed in [22] and [23]. We meet many difficulties in defining a PE in the framework of Hilbert C^* -modules. For example, we do not in general the following objects; a

flip on an interior tensor product of Hilbert C^* -modules, a tensor product $I \otimes x$ as operator on an interior tensor product of Hilbert C^* -modules for an adjointable operator x on a Hilbert C^* -module and a modular involution on a Hilbert C^* -module. When the base algebra is \mathbb{C} , the multiplicative unitary operator (MUO) defined in this paper coincides with the MU defined by Baaj and Skandalis in [2] modulo the flip. When the base algebra is commutative, the MUO coincides with the PMU studied in [22] and [23] modulo the flip. Note that we cannot define a flip when the base algebra is not commutative.

2. Preliminaries

First, we recall some definitions and notations on Hilbert C^* -modules. For details, we refer the reader to [16]. Let A be a C^* -algebra. A Hilbert A-module is a right A-module E with an A-valued inner product $<\cdot,\cdot>$ such that E is complete with respect to the norm $\|\xi\|=\|<\xi,\xi>\|^{1/2}$. Note that the inner product is linear in its second variable. A Hilbert A-module E is said to be full if the closure of the linear span of $\{<\xi,\eta>;\xi,\eta\in E\}$ is all of A. Let E and F be Hilbert A-modules. We denote by $\mathcal{L}_A(E,F)$ the set of bounded adjointable operators from E to F and we denote by $\mathcal{K}_A(E,F)$ the closure of the linear span of $\{\theta_{\xi,\eta};\xi\in F,\eta\in E\}$, where $\theta_{\xi,\eta}$ is the element of $\mathcal{L}_A(E,F)$ defined by $\theta_{\xi,\eta}(\zeta)=\xi<\eta,\zeta>$ for $\zeta\in E$. We abbreviate $\mathcal{L}_A(E,E)$ and $\mathcal{K}_A(E,E)$ to $\mathcal{L}_A(E)$ and $\mathcal{K}_A(E)$ respectively. We denote by I_E the identity operator on E. We often omit the subscript E for simplicity. A unitary operator U of E to F is an adjointable operator such that $U^*U=I_E$ and $UU^*=I_F$.

Let A and B be C^* -algebras. Suppose that E is a Hilbert A-module and that F is a Hilbert B-module. Let ϕ be a *-homomorphism of A to $\mathcal{L}_B(F)$. Then we can define the interior tensor product $E \otimes_{\phi} F$ ([16], Chapter 4). For $\xi \in E$ and $\eta \in F$, we denote by $\xi \otimes_{\phi} \eta$ the corresponding element of $E \otimes_{\phi} F$. We often omit the subscript ϕ , writing $\xi \otimes \eta = \xi \otimes_{\phi} \eta$ for simplicity. We have $\xi a \otimes \eta = \xi \otimes_{\phi} (a)\eta$

for every $a \in A$. Note that $E \otimes_{\phi} F$ is a Hilbert B-module with a B-valued inner product such that

$$<\xi_{1}\otimes\eta_{1},\xi_{2}\otimes\eta_{2}>=<\eta_{1},\phi(<\xi_{1},\xi_{2}>)\eta_{2}>$$

for $\xi_1, \, \xi_2 \in E$ and $\eta_1, \, \eta_2 \in F$. Let E_i be a Hilbert A_i -module for i = 1, 2, 3 and let ϕ_i be a *-homomorphism of A_{i-1} to $\mathcal{L}_{A_i}(E_i)$ for i = 2, 3. Define a *-homomorphism $\phi_2 \otimes_{\phi_3} \iota$ of A_1 to $\mathcal{L}_{A_3}(E_2 \otimes_{\phi_3} E_3)$ by $(\phi_2 \otimes_{\phi_3} \iota)(a) = \phi_2(a) \otimes I$ for $a \in A_1$. We often omit the subscript ϕ_3 , writing $\phi_2 \otimes \iota = \phi_2 \otimes_{\phi_3} \iota$ for simplicity. Then we have

$$(E_1 \otimes_{\phi_2} E_2) \otimes_{\phi_3} E_3 = E_1 \otimes_{\phi_2 \otimes \iota} (E_2 \otimes_{\phi_3} E_3).$$

We denote the above tensor product by $E_1 \otimes_{\phi_2} E_2 \otimes_{\phi_3} E_3$.

For i=1,2, let E_i be a Hilbert A-module, let F_i be a Hilbert B-module and let ϕ_i be a *-homomorphism of A to $\mathcal{L}_B(F_i)$. We denote by $\mathcal{L}_B((F_1,\phi_1),(F_2,\phi_2))$ the set of elements x of $\mathcal{L}_B(F_1,F_2)$ such that $x\phi_1(a)=\phi_2(a)x$ for all $a\in A$. We abbreviate $\mathcal{L}_B((F_1,\phi_1),(F_1,\phi_1))$ to $\mathcal{L}_B(F_1,\phi_1)$. We define $\mathcal{K}_B((F_1,\phi_1),(F_2,\phi_2))$ and $\mathcal{K}_B(F_1,\phi_1)$ similarly. The following proposition is useful in later arguments.

Proposition 2.1 ([22]). For $x \in \mathcal{L}_A(E_1, E_2)$ and $y \in \mathcal{L}_B((F_1, \phi_1), (F_2, \phi_2))$, there exists an element $x \otimes_{\phi_1} y$ of $\mathcal{L}_B(E_1 \otimes_{\phi_1} F_1, E_2 \otimes_{\phi_2} F_2)$ such that $(x \otimes_{\phi_1} y)(\xi \otimes \eta) = (x\xi) \otimes (y\eta)$ for $\xi \in E_1$ and $y \in F_1$.

We often omit the subscript ϕ_1 , writing $x \otimes y = x \otimes_{\phi_1} y$ for simplicity.

3. Pentagonal equations for operators on Hilbert C^* -modules

Let A be a C^* -algebra, let E be a Hilbert A-module and let ϕ and ψ be *-homomorphisms of A to $\mathcal{L}_A(E)$. We assume that ϕ and ψ commute, that is, $\phi(a)\psi(b)=\psi(b)\phi(a)$ for all $a,b\in A$. We can define *-homomorphisms $\iota\otimes_{\phi}\phi$ and $\iota\otimes_{\phi}\psi$ of A to $\mathcal{L}_A(E\otimes_{\phi}E)$ by $(\iota\otimes_{\phi}\phi)(a)=I\otimes_{\phi}\phi(a)$ and $(\iota\otimes_{\phi}\psi)(a)=I\otimes_{\phi}\psi(a)$ respectively. We often omit the subscript ϕ , writing $\iota\otimes\phi=\iota\otimes_{\phi}\phi$ and $\iota\otimes\psi=\iota\otimes_{\phi}\psi$ for simplicity. We can also define *-homomorphisms $\iota\otimes_{\psi}\phi$ and $\iota\otimes_{\psi}\psi$ of A to $\mathcal{L}_A(E\otimes_{\psi}E)$.

We often omit the subscript ψ . Let W be an operator in $\mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$. We assume that W satisfies the following equations;

$$(3.1) W(\iota \otimes_{\psi} \phi)(a) = (\phi \otimes_{\phi} \iota)(a)W,$$

$$(3.2) W(\psi \otimes_{\psi} \iota)(a) = (\iota \otimes_{\phi} \psi)(a)W,$$

$$(3.3) W(\phi \otimes_{\psi} \iota)(a) = (\psi \otimes_{\phi} \iota)(a)W$$

for all $a \in A$. Then, by Proposition 2.1, we can define following operators;

$$W \otimes_{\psi} I \in \mathcal{L}_{A}(E \otimes_{\psi} E \otimes_{\psi} E, E \otimes_{\phi} E \otimes_{\psi} E),$$

$$I \otimes_{\phi \otimes_{\iota}} W \in \mathcal{L}_{A}(E \otimes_{\phi} E \otimes_{\psi} E, E \otimes_{\psi} E \otimes_{\phi} E),$$

$$W \otimes_{\phi} I \in \mathcal{L}_{A}(E \otimes_{\psi} E \otimes_{\phi} E, E \otimes_{\phi} E \otimes_{\phi} E),$$

$$I \otimes_{\psi \otimes_{\iota}} W \in \mathcal{L}_{A}(E \otimes_{\psi} E \otimes_{\psi} E, E \otimes_{\iota \otimes \psi} (E \otimes_{\phi} E)),$$

$$I \otimes_{\iota \otimes \phi} W \in \mathcal{L}_{A}(E \otimes_{\iota \otimes \phi} (E \otimes_{\psi} E), E \otimes_{\phi} E \otimes_{\phi} E).$$

Since ϕ and ψ commute, there exists an isomorphism Σ_{12} of $E \otimes_{\iota \otimes \psi} (E \otimes_{\phi} E)$ onto $E \otimes_{\iota \otimes \phi} (E \otimes_{\psi} E)$ as Hilbert A-modules such that

$$\Sigma_{12}(x_1 \otimes (x_2 \otimes x_3)) = x_2 \otimes (x_1 \otimes x_3)$$

for $x_i \in E$ (i = 1, 2, 3). Then we can define a pentagonal equation.

Definition 3.1. Let W be an element of $\mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$. Assume that W satisfies the equations (3.1), (3.2) and (3.3). An operator W is said to be multiplicative if it satisfies the pentagonal equation

$$(3.4) (W \otimes_{\phi} I)(I \otimes_{\phi \otimes \iota} W)(W \otimes_{\psi} I) = (I \otimes_{\iota \otimes \phi} W) \Sigma_{12}(I \otimes_{\psi \otimes \iota} W).$$

We will call A the base algebra of the multiplicative operator W.

Example 3.2. Suppose that $A = \mathbb{C}$. Then E = H is a usual Hilbert space and $\mathcal{L}_{\mathbb{C}}(E) = \mathcal{L}(H)$ is the C^* -albebra of bounded linear operators on H. Let $\phi = \psi = id$,

where $id(\lambda) = \lambda I_H$ for $\lambda \in \mathbb{C}$. Then $E \otimes_{id} E$ is the usual tensor product $H \otimes H$. Let $\Sigma \in \mathcal{L}(H \otimes H)$ be the flip, that is, $\Sigma(\xi \otimes \eta) = \eta \otimes \xi$. Let W be an element of $\mathcal{L}(H \otimes H)$. Then the pentagonal equation (3.4) has the following form:

$$(3.5) (W \otimes I)(I \otimes W)(W \otimes I) = (I \otimes W)(\Sigma \otimes I)(I \otimes W).$$

Defin an operator \widetilde{W} by $\widetilde{W} = W\Sigma$. Then W satisfies the pentagonal equation (3.5) if and only if \widetilde{W} satisfies the usual pentagonal equation;

$$\widetilde{W}_{12}\widetilde{W}_{13}\widetilde{W}_{23} = \widetilde{W}_{23}\widetilde{W}_{13}.$$

Example 3.3. In Example 3.2, if $W = \Sigma$, then the equation (3.5) is the Yang-Baxter equation for the flip ([15]);

$$(\Sigma \otimes I)(I \otimes \Sigma)(\Sigma \otimes I) = (I \otimes \Sigma)(\Sigma \otimes I)(I \otimes \Sigma).$$

Example 3.4. Let G be a locally compact Hausdorff group and ν be a right Haar measure on G. Set $H = L^2(G, \nu)$. Defin an operator W on $H \otimes H$ by $(W\xi)(g, h) = \xi(h, gh)$ for $\xi \in C_c(G \times G)$ and $g, h \in G$. Then W satisfies the pentagonal equation (3.5). The operator \widetilde{W} in Example 3.2 is given by $(\widetilde{W}\xi)(g, h) = \xi(gh, h)$, which is the Kac-Takesaki operator and satisfies the usual pentagonal equation (3.6).

Suppose that A=C is an abelian C^* -algebra. Let E be a Hilbert C-module and ϕ be a *-homomorphism of C to $\mathcal{L}_C(E)$. Define a *-homomorphism ψ of C to $\mathcal{L}_C(E)$ by $\psi(c)\xi=\xi c$ for $\xi\in E$ and $c\in C$. In this situation, we have defined a generalized pentagonal equation and we have called a unitary operator pseudo-multiplicative if it satisfies the generalized pentagonal equation in [22]. We will describe the relation between the pentagonal equation (3.4) defined in this paper and the generalized pentagonal equation defined in [22]. We wrote $E\otimes_C E$ for $E\otimes_\psi E$ in [22]. Let \widetilde{W} be a unitary operator in $\mathcal{L}_C(E\otimes_\psi E, E\otimes_\phi E)$. Suppose that \widetilde{W} satisfies the following

$$(3.7) \widetilde{W}(\iota \otimes_{\psi} \phi)(c) = (\iota \otimes_{\phi} \phi)(c)\widetilde{W},$$

$$(3.8) \widetilde{W}(\phi \otimes_{\psi} \iota)(c) = (\phi \otimes_{\phi} \iota)(c)\widetilde{W}$$

for $c \in C$. There exists an isomorphism σ_1 of $E \otimes_{\iota \otimes \psi} (E \otimes_{\phi} E)$ onto $E \otimes_{\iota \otimes \phi} (E \otimes_{\psi} E)$ such that $\sigma_1(\xi \otimes (\eta \otimes \zeta)) = \eta \otimes (\xi \otimes \zeta)$ and there exists an isomorphism σ_2 of $E \otimes_{\psi} E \otimes_{\phi} E$ onto $E \otimes_{\iota \otimes \phi} (E \otimes_{\phi} E)$ such that $\sigma_2(\xi \otimes \eta \otimes \zeta) = \eta \otimes (\xi \otimes \zeta)$. We define an operator \widetilde{W}_{13} in $\mathcal{L}_C(E \otimes_{\iota \otimes \psi} (E \otimes_{\phi} E), E \otimes_{\psi} E \otimes_{\phi} E)$ by $\widetilde{W}_{13} = \sigma_2^* (I \otimes_{\iota \otimes \phi} \widetilde{W}) \sigma_1$. In [22], the generalized pentagenal equation was defined as follows;

$$(3.9) \qquad (\widetilde{W} \otimes_{\phi} I)\widetilde{W}_{13}(I \otimes_{\iota \otimes \psi} \widetilde{W}) = (I \otimes_{\phi \otimes \iota} \widetilde{W})(\widetilde{W} \otimes_{\psi} I).$$

There exists the flip Σ_{ψ} in $\mathcal{L}_{C}(E \otimes_{\psi} E)$ such that $\Sigma_{\psi}(\xi \otimes \eta) = \eta \otimes \xi$. Then we have the following;

Proposition 3.5. Let W be an element of $\mathcal{L}_C(E \otimes_{\psi} E, E \otimes_{\phi} E)$. Set $\widetilde{W} = W \Sigma_{\psi}$. Then W satisfies the equation (3.4) if and only if \widetilde{W} satisfies the equation (3.9).

Example 3.6. Let G be a second countable locally compact Hausdorff groupoid. We denote by s (resp. r) the source (resp. range) map of G. We denote by $G^{(0)}$ the unit space of G and by $G^{(2)}$ the set of composable pairs. We set $G_u = s^{-1}(u)$ for $u \in G^{(0)}$. Let $\{\lambda_u; u \in G^{(0)}\}$ be a right Haar system of G. As for groupoids and groupoid C^* -algebras, see Renault [24]. (See also [19] and [22] for notations and definitions used here.) For an arbitrary topological space X, we denote by $C_c(X)$ the set of complex-valued continuous functions on X with compact supports and by $C_0(X)$ the abelian C^* -algebra of continuous functions on X vanishing at infinity with the supremum norm $\|\cdot\|_{\infty}$. Let G be the abelian G^* -algebra $G_0(G^{(0)})$ and let G be the linear space $G_c(G)$. Then G is a right G-module with the right G-action defined by G(G)(X) = G(G)(G)(G) for G is a right G-module with the right G-action

inner product of \widetilde{E} by

$$<\xi,\eta>(u)=\int_G \overline{\xi(x)}\eta(x)\,d\lambda_u(x)$$

for ξ , $\eta \in \widetilde{E}$ and $u \in G^{(0)}$. We denote by E the completion of \widetilde{E} by the norm $\|\xi\| = \|<\xi,\xi>\|^{1/2}$. Then E is a full right Hilbert C-module. Define non-degenerate injective *-homomorphisms ϕ and ψ of C to $\mathcal{L}_C(E)$ by $(\phi(c)\xi)(x) = c(r(x))\xi(x)$ and $\psi(c)\xi = \xi c$ respectively for $c \in C$, $\xi \in \widetilde{E}$ and $x \in G$. Set $G^2(ss) = \{(x,y) \in G^2; s(x) = s(y)\}$. We define C-valued inner products of $C_c(G^2(ss))$ and $C_c(G^{(2)})$ by

$$< f_1, g_1 > (u) = \iint_{G^2(ss)} \overline{f_1(x,y)} g_1(x,y) d\lambda_u(x) d\lambda_u(y),$$

 $< f_2, g_2 > (u) = \iint_{G^{(2)}} \overline{f_2(x,y)} g_2(x,y) d\lambda_{r(y)}(x) d\lambda_u(y)$

respectively for $u \in G^{(0)}$, f_1 , $g_1 \in C_c(G^2(ss))$ and f_2 , $g_2 \in C_c(G^{(2)})$. Then $C_c(G^2(ss))$ and $C_c(G^{(2)})$ are dense pre-Hilbert C-submodules of $E \otimes_{\psi} E$ and $E \otimes_{\phi} E$ respectively. Define a unitary operator W in $\mathcal{L}_C(E \otimes_{\psi} E, E \otimes_{\phi} E)$ by $(W\xi)(x,y) = \xi(y,xy)$ for $\xi \in C_c(G^2(ss))$, $(x,y) \in G^{(2)}$. Set $\widetilde{W} = W\Sigma_{\psi}$. We have $(\widetilde{W}\xi)(x,y) = \xi(xy,y)$ for $\xi \in C_c(G^2(ss))$, $(x,y) \in G^{(2)}$. It follows from [22] that \widetilde{W} satisfies the equation (3.9). By Proposition 3.5, W satisfies the pentagonal equation (3.4). When G is a measured groupoid, that is, when there exists a quasi-invariant measure on $G^{(0)}$, we discussed in [22] the relation between the operator \widetilde{W} constructed above and the fundamental operator studied by Yamanouchi in [36, §2] and by Vallin in [32, §3].

4. Coproducts for Hilbert C^* -modules

It is known that multiplicative unitary operators give coproducts in several situations (cf. [2], [35], [31], [32], [10], [21], [22]). In this section, we study a coproducts for a Hilbert C^* -module associated with a multiplicative unitary operator and a fixed vector with a certain property. First we introduce a notion of coproducts for Hilbert C^* -modules. We denote by E a Hilbert A-module and by ϕ a *-homomorphism of A to $\mathcal{L}_A(E)$.

Definition 4.1. Let δ be an operator in $\mathcal{L}_A(E, E \otimes_{\phi} E)$. We say that E is a coproduct of (E, ϕ) if δ satisfies the following equations;

(4.10)
$$\delta\phi(a) = (\phi \otimes \iota)(a)\delta \quad \text{for all } a \in A$$

$$(4.11) (\delta \otimes I_E)\delta = (I_E \otimes \delta)\delta$$

The triplet (E, ϕ, δ) is called a Hopf Hilbert A-module.

Suppose that δ is coproduct for E. For ξ , $\eta \in E$, we define a product $\xi \eta$ in E by $\xi \eta = \delta^*(\xi \otimes \eta)$. It follows from (4.11) that this product is associative. Then E is a right A-algebra with this product. Note that we have $\|\xi \eta\| \leq \|\delta\| \|\xi\| \|\eta\|$. Therefore, if $\|\delta\| \leq 1$, then E is a Banach algebra.

Let ψ be a *-homomorphism of A to $\mathcal{L}_A(E)$ such that ϕ and ψ commute and let $W \in \mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ be a multiplicative unitary operator. For an element ξ_0 of E, we say that ξ_0 has the property (E1) if it satisfies the following conditions;

- (i) $\|\xi_0\| = 1$.
- (ii) $W(\xi_0 \otimes_{\psi} \xi_0) = \xi_0 \otimes_{\phi} \xi_0$.
- (iii) For every $\xi \in E$, there exists an element $\pi_{\xi_0}(\xi)$ of $\mathcal{L}_A(E)$ such that

$$<\eta,\pi_{\xi_0}(\xi)\zeta>=< W(\xi_0\otimes_{\psi}\eta),\xi\otimes_{\phi}\zeta>$$

for every $\eta, \zeta \in E$.

We fix an element ξ_0 with the property (E1). Define an operator $\delta = \delta_{\xi_0}$ in $\mathcal{L}_A(E, E \otimes_{\phi} E)$ by $\delta(\eta) = W(\xi_0 \otimes \eta)$. Then we have $||\delta|| \leq 1$ and $\delta^*(\xi \otimes \eta) = \pi_{\xi_0}(\xi)\eta$. Since W satisfies the pentagonal equation, we can show that (E, ϕ, δ) is a Hopf Hilbert A-module. We denote by $\xi \bullet \eta$ the product of ξ and η associated with δ . Then we have $\pi_{\xi_0}(\xi)\eta = \xi \bullet \eta$. Moreover the map π_{ξ_0} of E to $\mathcal{L}_A(E)$ is a representation of the Banach algebra (E, \bullet) . We denote by $B(\xi_0)$ the closed linear subspace

generated by elements of the form $\pi_{\xi_0}(\xi)$ with $\xi \in E$. Then $B(\xi_0)$ is a Banach subalgebra of $\mathcal{L}_A(E)$. We denote by $C^*(B(\xi_0))$ the C^* -subalgebra of $\mathcal{L}_A(E)$ generated by $B(\xi_0)$.

For an element η_0 of E, we say that η_0 has the property (E2) if it satisfies the following conditions;

- (i) $||\eta_0|| = 1$.
- (ii) $W(\eta_0 \otimes_{\psi} \eta_0) = \eta_0 \otimes_{\phi} \eta_0$.
- (iii) For every $\xi \in E$, there exists an element $\widehat{\pi}_{\eta_0}(\xi)$ of $\mathcal{L}_A(E)$ such that

$$<\eta,\widehat{\pi}_{\eta_0}(\xi)\zeta>=< W^*(\eta_0\otimes_{\phi}\eta),\xi\otimes_{\psi}\zeta>$$

for every $\eta, \zeta \in E$.

We fix an element η_0 with the property (E2). Define an operator $\widehat{\delta} = \widehat{\delta}_{\eta_0}$ in $\mathcal{L}_A(E, E \otimes_{\psi} E)$ by $\widehat{\delta}(\eta) = W^*(\eta_0 \otimes \eta)$. Since W satisfies the pentagonal equation, we can show that $(E, \psi, \widehat{\delta})$ is a Hopf Hilbert A-module. We denote by $\xi \diamond \eta$ the product of ξ and η associated with $\widehat{\delta}$. Then we have $\widehat{\pi}_{\eta_0}(\xi)\eta = \xi \diamond \eta$. Moreover the map $\widehat{\pi}_{\eta_0}$ of E to $\mathcal{L}_A(E)$ is a representation of the Banach algebra (E, \diamond) . We denote by $\widehat{B}(\eta_0)$ the closed linear subspace generated by elements of the form $\widehat{\pi}_{\eta_0}(\xi)$ with $\xi \in E$. Then $\widehat{B}(\eta_0)$ is a Banach subalgebra of $\mathcal{L}_A(E)$. We denote by $C^*(\widehat{B}(\eta_0))$ the C^* -subalgebra of $\mathcal{L}_A(E)$ generated by $\widehat{B}(\eta_0)$.

In the following examples, we consider a finite groupoid, an r-discrete groupoid and a compact groupoid. Let G be a second countable locally compact Hausdorff groupoid. We keep the notations in Example 3.6 except for $C_0(G^{(0)})$. Here we denote by A the C^* -algebra $C_0(G^{(0)})$. Let $W \in \mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ be the multiplicative unitary operator constructed in Example 3.6. Then we have $(W\xi)(x,y) = \xi(y,xy)$ for $\xi \in C_c(G^2(ss))$ and $(x,y) \in G^{(2)}$. Note that we have $(W^*\xi)(x,y) = \xi(yx^{-1},x)$ for $\xi \in C_c(G^{(2)})$ and $(x,y) \in G^2(ss)$. We denote by $C_r^*(G)$ the reduced groupoid

 C^* -algebras. (As for the definition of the reduced groupoid C^* -algebra, see [19], [22].)

Example 4.2. Let G be a finite groupoid and let $\{\lambda_u\}$ be a right Haar system such that λ_u is a counting measure on G_u . Then we have $A = C(G^{(0)})$ and E = C(G). The A-valued inner product of E is given by $\langle \xi, \eta \rangle (u) = \sum_{x \in G_u} \overline{\xi(x)} \eta(x)$. We have $E \otimes_{\psi} E = C(G^2(ss))$ and the A-valued inner product of $E \otimes_{\psi} E$ is given by

$$<\xi,\eta>(u)=\sum_{s(x)=s(y)=u}\overline{\xi(x,y)}\eta(x,y).$$

We have $E \otimes_{\phi} E = C(G^{(2)})$ and the A-valued inner product of $E \otimes_{\phi} E$ is given by

$$<\xi,\eta>(u)=\sum_{\substack{s(x)=r(y)\r(y)=u}}\overline{\xi(x,y)}\eta(x,y).$$

We set $M = \max\{|G_u|; u \in G^{(0)}\}$, where $|G_u|$ is the number of elements of G_u . We define an element ξ_0 of E by $\xi_0(x) = M^{-1/2}$ for all $x \in G$. Then ξ_0 has the properties (E1) and (E2). We have $\pi_{\xi_0}(\xi)\zeta = \xi * \zeta$, where $\xi * \zeta$ is the convolution product defined by

$$(\xi * \zeta)(x) = \sum_{y \in G_{s(x)}} \xi(xy^{-1})\zeta(y).$$

Therefore we have $B(\xi_0) = C_r^*(G)$. Since we have $\widehat{\pi}_{\xi_0}(\xi) = M^{1/2}\theta_{\xi,\xi_0}$, we have $C^*(\widehat{B}(\xi_0)) = \mathcal{K}_A(E)$. We define an element η_0 of E by $\eta_0 = \chi_{G^{(0)}}$, where $\chi_{G^{(0)}}$ is the characteristic function of $G^{(0)}$. Then η_0 has the properties (E1) and (E2). Since we have $\pi_{\eta_0}(\xi) = \theta_{\xi,\eta_0}$, we have $C^*(B(\eta_0)) = \mathcal{K}_A(E)$. We have $\widehat{\pi}_{\eta_0}(\xi) = m(\xi)$, where $m(\xi)$ is the multiplication operator on E defined by $(m(\xi)\zeta)(x) = \xi(x)\zeta(x)$. Therefore we have $\widehat{B}(\eta_0) = C(G)$.

Example 4.3. Let G be an r-discrete groupoid [24, I.2.6]. Note that $G^{(0)}$ is open and closed in G and that G_u is discrete for every $u \in G^{(0)}$. Let $\{\lambda_u\}$ be a right Haar system such that λ_u is the counting measure on G_u . Since we have $\|\xi\|_{\infty} \leq \|\xi\|_E$ for $\xi \in C_c(G)$, E is a subspace of $C_0(G)$. Fix an element f of A such that $\|f\|_{\infty} = 1$. We

define an element η_0 of E by $\eta_0 = f\chi_{G^{(0)}}$. Then η_0 has the properties (E1) and (E2). We have $\pi_{\eta_0}(\xi) = \theta_{\xi,\eta_0}$. If the support of f is $G^{(0)}$, then we have $C^*(B(\eta_0)) = \mathcal{K}_A(E)$. We have $\widehat{\pi}_{\eta_0}(\xi) = m(\phi(\overline{f})\xi)$, where $m(\eta)$ is the multiplication operator on E. If f is real-valued, then we have $\widehat{\pi}_{\eta_0}(\xi)^* = \widehat{\pi}_{\eta_0}(\overline{\xi})$. Therefore, if f is real-valued and the support of f is $G^{(0)}$, then we have $\widehat{B}(\eta_0) = C_0(G)$.

Example 4.4. Let G be a compact groupoid and let $\{\lambda_u\}$ be a right Haar system such that $\lambda_u(G) = 1$ for all $u \in G^{(0)}$. We define an element ξ_0 of E by $\xi_0(x) = 1$ for all $x \in G$. Then ξ_0 has the properties (E1) and (E2). Note that C(G) is a dense subspace of E. For $\xi, \zeta \in C(G)$, we have $\pi_{\xi_0}(\xi)\zeta = \xi * \zeta$, where $\xi * \zeta$ is the convolution product defined by

$$(\xi * \zeta)(x) = \int \xi(xy^{-1})\zeta(y) d\lambda_{s(x)}(y).$$

Therefore we have $B(\xi_0) = C_r^*(G)$. Since we have $\widehat{\pi}_{\xi_0}(\xi) = \theta_{\xi,\xi_0}$, we have $C^*(\widehat{B}(\xi_0)) = \mathcal{K}_A(E)$.

5. Operators associated with inclusions of C^* -algebras

Let A_1 be a C^* -algebra and let A_0 be a C^* -subalgebra of A_1 . In this section, we do not assume that A_1 and A_0 are unital. Let E_1 be a Hilbert A_0 -module and let ϕ_1 be a *-homomorphism of A_1 to $\mathcal{L}_{A_0}(E_1)$. We denote by ϕ_0 the restriction of ϕ_1 to A_0 . Define $E_2 = E_1 \otimes_{\phi_0} E_1$ and define a *-homomorphism ϕ_2 of A_1 to $\mathcal{L}_{A_0}(E_2)$ by $\phi_2 = \phi_1 \otimes \iota$. In general, we define $E_n = E_{n-1} \otimes_{\phi_0} E_1$. We denote by A the C^* -algebra $\mathcal{L}_{A_0}(E_1, \phi_1)$ and by E the normed space $\mathcal{L}_{A_0}((E_1, \phi_1), (E_2, \phi_2))$. We define on E a structure of a right A-module by $(xa)(\xi) = x(a\xi)$ for $x \in E$, $a \in A$ and $\xi \in E_1$ and define on E an A-valued inner-product by $(x_0, y_0) = x^*y$ for $x_0, y_0 \in E$. Then E becomes a Hilbert A-module. We define *-homomorphisms ϕ and ψ of A to $\mathcal{L}_A(E)$ by $(\phi(a)x)(\xi) = (a \otimes I)x(\xi)$ and $(\psi(a)x)(\xi) = (I \otimes a)x(\xi)$ respectively for $a \in A$, $x \in E$ and $\xi \in E_1$. We denote by i the inclusion map of A into $\mathcal{L}_{A_0}(E_1)$.

Proposition 5.1. There exists an A_0 -linear bounded map U of $E \otimes_i E_1$ to E_2 such that $U(x \otimes \xi) = x(\xi)$ for $x \in E$ and $\xi \in E_1$. Moreover the following equalities hold:

$$< U\alpha, U\beta> = <\alpha, \beta> \qquad for \ \alpha, \ \beta \in E \otimes_i E_1,$$
 $U(\phi(a) \otimes I) = (a \otimes I)U \qquad for \ a \in A,$ $U(\psi(a) \otimes I) = (I \otimes a)U \qquad for \ a \in A,$ $U(I \otimes \phi_1(a)) = \phi_2(a)U \qquad for \ a \in A.$

The proof is straightforward and we omit it. Note that U may not be adjointable. We can define the following A_0 -linear bounded operators;

$$I \otimes_{\phi \otimes \iota} U : E \otimes_{\phi} E \otimes_{i} E_{1} \longrightarrow E \otimes_{i \otimes \iota} E_{2},$$

$$U \otimes_{\phi_{0}} I : E \otimes_{i \otimes \iota} E_{2} \longrightarrow E_{3},$$

$$I \otimes_{\psi \otimes \iota} U : E \otimes_{\psi} E \otimes_{i} E_{1} \longrightarrow E \otimes_{\iota \otimes \iota} E_{2},$$

$$I \otimes_{\iota \otimes \phi_{0}} U : E_{1} \otimes_{\iota \otimes \phi_{0}} (E \otimes_{i} E_{1}) \longrightarrow E_{3}.$$

There exists an isomorphism S of $E \otimes_{\iota \otimes i} E_2$ onto $E_1 \otimes_{\iota \otimes \phi_0} (E \otimes_i E_1)$ as Hilbert A_0 -modules such that $S(x \otimes (\xi \otimes \eta)) = \xi \otimes (x \otimes \eta)$ for $x \in E$ and $\xi, \eta \in E_1$. Define an A_0 -linear bounded operator V of $E \otimes_{\phi} E \otimes_i E_1$ of E_3 by

$$V = (U \otimes_{\phi_0} I)(I \otimes_{\phi \otimes \iota} U),$$

and define an A_0 -linear bounded operator \widetilde{V} of $E \otimes_{\psi} E \otimes_i E_1$ of E_3 by

$$\widetilde{V} = (I \otimes_{\iota \otimes \phi_0} U) S(I \otimes_{\psi \otimes \iota} U).$$

We summarize the properties of V and \widetilde{V} in the following proposition. The proof is easy and we omit it.

Proposition 5.2. The operators V and \widetilde{V} satisfies the following equalities;

$$< V \alpha, V \beta > = < \alpha, \beta > \quad \text{for } \alpha, \beta \in E \otimes_{\phi} E \otimes_{i} E_{1},$$
 $< \widetilde{V} \alpha, \widetilde{V} \beta > = < \alpha, \beta > \quad \text{for } \alpha, \beta \in E \otimes_{\psi} E \otimes_{i} E_{1},$ $V(x \otimes y \otimes \xi) = (x \otimes_{\phi_{0}} I_{E_{1}}) y(\xi) \quad \text{for } x, y \in E \text{ and } \xi \in E_{1},$ $\widetilde{V}(x \otimes y \otimes \xi) = (I_{E_{1}} \otimes_{\phi_{0}} x) y(\xi) \quad \text{for } x, y \in E \text{ and } \xi \in E_{1}.$

In the rest of this section, we will prove the following theorem.

Theorem 5.3. Let U, V and \widetilde{V} be as above. Suppose that U is unitary and suppose that there exists an element W of $\mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ such that $V^*\widetilde{V} = W \otimes I_{E_1}$. Then W is a multiplicative unitary operator.

Since U is unitary, V and \widetilde{V} are also unitary operators. By straightforward calculation, we have, for every $a \in A$,

$$V(\phi(a) \otimes I_{E} \otimes I_{E_{1}}) = (a \otimes I_{E_{1}} \otimes I_{E_{1}})V,$$

$$V(I_{E} \otimes \psi(a) \otimes I_{E_{1}}) = (I_{E_{1}} \otimes I_{E_{1}} \otimes a)V,$$

$$V(\psi(a) \otimes I_{E} \otimes I_{E_{1}}) = (I_{E_{1}} \otimes a \otimes I_{E_{1}})V,$$

$$\tilde{V}(I_{E} \otimes \phi(a) \otimes I_{E_{1}}) = (a \otimes I_{E_{1}} \otimes I_{E_{1}})\tilde{V},$$

$$\tilde{V}(\psi(a) \otimes I_{E} \otimes I_{E_{1}}) = (I_{E_{1}} \otimes I_{E_{1}} \otimes a)\tilde{V},$$

$$\tilde{V}(\phi(a) \otimes I_{E} \otimes I_{E_{1}}) = (I_{E_{1}} \otimes a \otimes I_{E_{1}})\tilde{V}.$$

Therefore W satisfies the equations (3.1), (3.2) and (3.3). For $n \geq 2$, we set

$$E^{\otimes_{\phi}n} = E \otimes_{\phi} \cdots \otimes_{\phi} E \quad (n \text{ times })$$

and we define $E^{\otimes_{\psi} n}$ similary. It follows from Proposition 5.1 that we have $U(\phi \otimes \iota)(a) = (i \otimes \iota)(a)U$ for $a \in A$. Therefore we can define the following operators;

$$I_{E} \otimes I_{E} \otimes U \in \mathcal{L}_{A_{0}}(E^{\otimes_{\phi}^{3}} \otimes_{i} E_{1}, E^{\otimes_{\phi}^{2}} \otimes_{i \otimes \iota} E_{2}),$$

$$I_{E} \otimes U \otimes I_{E_{1}} \in \mathcal{L}_{A_{0}}(E^{\otimes_{\phi}^{2}} \otimes_{i \otimes \iota} E_{2}, E \otimes_{i \otimes \iota \otimes \iota} E_{3}),$$

$$U \otimes I_{E_{1}} \otimes I_{E_{1}} \in \mathcal{L}_{A_{0}}(E \otimes_{i \otimes \iota \otimes \iota} E_{3}, E_{4}).$$

We define an element U_3 in $\mathcal{L}_{A_0}(E^{\otimes_{\phi} 3} \otimes_i E_1, E_4)$ by

$$U_3 = (U \otimes I_{E_1} \otimes I_{E_1})(I_E \otimes U \otimes I_{E_1})(I_E \otimes I_E \otimes U).$$

Since U is unitary by the assumption, U_3 is also a unitary operator. To prove Theorem 5.3, it is enough to prove the following proposition.

Proposition 5.4. Set

$$W_1 = (W \otimes_{\phi} I)(I \otimes_{\phi \otimes \iota} W)(W \otimes_{\psi} I),$$

$$W_2 = (I \otimes_{\iota \otimes \phi} W) \Sigma_{12}(I \otimes_{\psi \otimes \iota} W).$$

Then the following equation holds;

$$U_3(W_1 \otimes_i I_{E_1})(x \otimes y \otimes z \otimes \xi)$$

$$= U_3(W_2 \otimes_i I_{E_1})(x \otimes y \otimes z \otimes \xi)$$

$$= (I_{E_1} \otimes I_{E_1} \otimes x)(I_{E_1} \otimes y)z\xi.$$

for $x, y, z \in E$ and $\xi \in E_1$.

In the rest of this section, we will prove Proposition 5.4. Let

$$S_{\psi}: E \otimes_{\psi} E \otimes_{\iota \otimes i} E_2 \longrightarrow E_1 \otimes_{\iota \otimes \iota \otimes \phi_0} (E \otimes_{\psi} E \otimes_i E_1)$$

be an isomorphism defined by $S_{\psi}(x \otimes \xi \otimes \eta) = \xi \otimes (x \otimes \eta)$ for $x \in E \otimes_{\psi} E$ and $\xi, \eta \in E_1$, and let

$$S_{\phi}: E \otimes_{\phi} E \otimes_{\iota \otimes i} E_2 \longrightarrow E_1 \otimes_{\iota \otimes \iota \otimes \phi_0} (E \otimes_{\phi} E \otimes_i E_1)$$

be an isomorphism defined by $S_{\phi}(x \otimes \xi \otimes \eta) = \xi \otimes (x \otimes \eta)$ for $x \in E \otimes_{\phi} E$ and $\xi, \eta \in E_1$. Set $U^{(13)} = (I \otimes_{\iota \otimes \phi_0} U)S$.

Lemma 5.5. We have the following equalities for $x, y, z \in E$ and $\xi \in E_1$.;

$$(5.12)$$

$$U_3((W \otimes_{\phi} I) \otimes_{\mathbf{i}} I_{E_1}) = (\widetilde{V} \otimes_{\phi_0} I_{E_1})(I_{E \otimes_{\mathbf{i}} E} \otimes_{\phi \otimes_{\mathbf{i}}} U),$$

$$((I \otimes_{\phi \otimes \iota} W) \otimes_{i} I_{E_{1}})((W \otimes_{\psi} I) \otimes_{i} I_{E_{1}})(x \otimes y \otimes z \otimes \xi)$$

$$= (I_{E} \otimes_{\iota \otimes i \otimes \iota} V^{*})(I_{E} \otimes_{\phi \otimes \iota} U^{(13)})S_{\phi}^{*}(I_{E_{1}} \otimes_{\phi_{0} \otimes \iota \otimes \iota} V^{*})(I_{E_{1}} \otimes I_{E_{1}} \otimes x)(I_{E_{1}} \otimes y)z\xi,$$

(5.14)

$$(I_E \otimes_{\iota \otimes i \otimes \iota} V^*)(I_E \otimes_{\phi \otimes \iota} U^{(13)}) S_{\phi}^* (I_{E_1} \otimes_{\phi_0 \otimes \iota \otimes \iota} V^*)$$
$$= (I_{E \otimes_{\psi} E} \otimes_{i \otimes \iota} U^*)(\widetilde{V}^* \otimes_{\phi_0} I_{E_1})$$

Lemma 5.6. We have the following equalities for $x \in E$ and $\xi_i \in E_1$ (i = 1, 2, 3);

$$(5.15) W_2 \otimes I_{E_1} = (I_E \otimes_{\iota \otimes \phi \otimes \iota} V^* \widetilde{V})(\Sigma_{12} \otimes_i I_{E_1})(I_E \otimes_{\psi \otimes \iota \otimes \iota} V^* \widetilde{V}),$$

$$(5.16) U_3(I_E \otimes_{i \otimes \iota \otimes \iota} V^*) = U \otimes I_{E_1} \otimes I_{E_1},$$

$$(5.17) (I_E \otimes_{\iota \otimes \phi \otimes \iota} \widetilde{V})(\Sigma_{12} \otimes I_{E_1})(I_E \otimes_{\iota \otimes \iota \otimes \iota} V^*)(x \otimes (\xi_1 \otimes \xi_2 \otimes \xi_3))$$
$$= U^*(\xi_1 \otimes \xi_2) \otimes x\xi_3,$$

Proof of Proposition 5.4. Let x, y, z be elements of E and let ξ be an element of E_1 . It follows from Lemma 5.5 that we have

$$U_{3}(W_{1} \otimes_{i} I_{E_{1}})(x \otimes y \otimes z \otimes \xi)$$

$$= U_{3}((W \otimes_{\phi} I) \otimes_{i} I_{E_{1}})((I \otimes_{\phi \otimes \iota} W) \otimes_{i} I_{E_{1}})((W \otimes_{\psi} I) \otimes_{i} I_{E_{1}})(x \otimes y \otimes z \otimes \xi)$$

$$= U_{3}((W \otimes_{\phi} I) \otimes_{i} I_{E_{1}})(I_{E \otimes_{\psi} E} \otimes_{i \otimes \iota} U^{*})(\widetilde{V}^{*} \otimes_{\phi_{0}} I_{E_{1}})(I_{E_{1}} \otimes I_{E_{1}} \otimes x)(I_{E_{1}} \otimes y)z\xi$$

$$= (I_{E_{1}} \otimes I_{E_{1}} \otimes x)(I_{E_{1}} \otimes y)z\xi.$$

It follows from (5.16) and (5.17) that we have

$$U_{3}(I_{E} \otimes_{\iota \otimes \phi \otimes \iota} V^{*}\widetilde{V})(\Sigma_{12} \otimes_{i} I_{E_{1}})(I_{E} \otimes_{\iota \otimes \iota \otimes i} V^{*})(x \otimes \xi_{1} \otimes \xi_{2} \otimes \xi_{3})$$

$$= (U \otimes I_{E_{1}} \otimes I_{E_{1}})(U^{*}(\xi_{1} \otimes \xi_{2}) \otimes x\xi_{3})$$

$$= (I_{E_{1}} \otimes I_{E_{1}} \otimes x)(\xi_{1} \otimes \xi_{2} \otimes \xi_{3}).$$

for $\xi_i \in E_1$ (i = 1, 2, 3). Then by using (5.15) we have

$$U_{3}(W_{2} \otimes_{i} I_{E_{1}})(x \otimes y \otimes z \otimes \xi)$$

$$= U_{3}(I_{E} \otimes_{\iota \otimes \phi \otimes \iota} V^{*}\widetilde{V})(\Sigma_{12} \otimes_{i} I_{E_{1}})(I_{E} \otimes_{\psi \otimes \iota \otimes \iota} V^{*}\widetilde{V})(x \otimes y \otimes z \otimes \xi)$$

$$= U_{3}(I_{E} \otimes_{\iota \otimes \phi \otimes \iota} V^{*}\widetilde{V})(\Sigma_{12} \otimes_{i} I_{E_{1}})(I_{E} \otimes_{\iota \otimes \iota \otimes \iota} V^{*})(x \otimes \{(I_{E_{1}} \otimes y)z\xi\})$$

$$= (I_{E_{1}} \otimes I_{E_{1}} \otimes x)(I_{E_{1}} \otimes y)z\xi.$$

6. Inclusions of index finite-type

In this section, we study a multiplicative unitary operator associated with an iclusion of C^* -algebras when the inclusion is of index-finite type in the sense of Watatani [34]. Let A_1 be a C^* -algebra with the identity 1, let A_0 be a C^* -subalgebra of A_1 which contains 1 and let $P_1: A_1 \longrightarrow A_0$ be a faithful positive conditional

expectation. We assume that P_1 is of index-finite type, that is, there exists a family $u_i \in A_1 \ (i = 1, \dots, n)$ such that

$$\sum_{i=1}^{n} u_i P_1(u_i^* a) = \sum_{i=1}^{n} P_1(au_i) u_i^* = a$$

for every $a \in A_1$ [34, 1.2.2, 2.1.6]. Then the index of P_1 is given by Index $P_1 = \sum_i u_i u_i^*$ which is an element of the center of A_1 . We denote by E_1 a right A_0 -module A_1 whose right A_0 -action is the product in A_1 . Define an A_0 -valued inner product E_1 by $\langle a,b \rangle = P_1(a^*b)$ for $a,b \in E_1$. It follows from [34, 2.1.5] that there exists a positive number λ such that

$$\lambda ||a||_{A_1} \leq ||a||_{E_1} \leq ||a||_{A_1}$$

for every $a \in E_1 = A_1$, where $\|\cdot\|_{A_1}$ and $\|\cdot\|_{E_1}$ denote the norms of A_1 and E_1 respectively. Therefore E_1 is complete and is a Hilbert A_0 -module. Define a unital injective *-homomorphism $\phi_1: A_1 \longrightarrow \mathcal{L}_{A_0}(E_1)$ by $\phi_1(a)b = ab$ for $a \in A_1$ and $b \in E_1$, where ab is the product in A_1 . Then we can construct A, E, ϕ and ψ as in Section 5. Moreover we can construct the operators U, V and \widetilde{V} .

We denote by A_2 the C^* -algebra $\mathcal{K}_{A_0}(E_1)$ (cf. [34, 2.1.2, 2.1.3]). Note that we have $\mathcal{K}_{A_0}(E_1) = \mathcal{L}_{A_0}(E_1)$. In fact, we have $I = \sum_{i=1}^n \theta_{u_i,u_i}$ in $\mathcal{L}_{A_0}(E_1)$. We identify $\phi(A_1)$ with A_1 and we have inclusions $A_0 \subset A_1 \subset A_2$, which is the basic construction ([34, 2.2.10], see also [11, Chapter 2]). Let $P_2 : A_2 \longrightarrow A_1$ be the dual conditional expectation of P_1 , that is, $P_2(\theta_{a,b}) = (\operatorname{Index} P_1)^{-1}ab^*$ for $a, b \in A_1$ [34, 2.3.3]. Note that P_2 and $P_1 \circ P_2$ are of index-finite type [34, 1.7.1, 2.3.4]. We denote by F_2 a right A_0 -module A_2 whose right A_0 -action is the product in A_2 . Define an A_0 -valued inner product of F_2 by $\langle \xi, \eta \rangle = P_1 \circ P_2(\xi^*\eta)$ for $\xi, \eta \in F_2 = A_2$. Then F_2 is a Hilbert A_0 -module. Define a unital injective *-homomorphism $\widetilde{\phi}_2 : A_1 \longrightarrow \mathcal{L}_{A_0}(F_2)$ by $\widetilde{\phi}_2(a)\xi = a\xi$ for $a \in A_1$ and $\xi \in F_2$, where $a\xi$ is the product in A_2 . Define a

linear map $\Phi: E_2 \longrightarrow F_2$ by

$$\Phi(a \otimes b) = \theta_{a,b^*} \phi_1((\text{ Index } P_1)^{1/2})$$

for $a, b \in E_1$. Then Φ is an isomorphism between the Hilbert A_0 -modules. Moreover we have $\Phi(\phi_2(a_1)\xi) = \widetilde{\phi}_2(a_1)\Phi(\xi)$ for $a_1 \in A_1$ and $\xi \in E_2$.

We denote by $A'_0 \cap A_2$ the C^* -algebra $\{a \in A_2; ab = ba \text{ for every } b \in A_0\}$ and denote by $\overline{\lim} A_1(A'_0 \cap A_2)$ the closed linear subspace of A_2 generated by elements ab with $a \in A_1$ and $b \in A'_0 \cap A_2$. For $a \in A_1$, we denote by C(a) the norm closure of the convex hull of the set consisting of elements uau^* with unitary elements u of a. We consider the following two conditions:

- $(P1) A_2 = \overline{\lim} A_1(A_0' \cap A_2).$
- (P2) $A'_0 \cap C(a) \neq \emptyset$ for every $a \in A_1$.

Remark. It seems that (P1) is equivalent to the condition that the inclusion $A_0 \subset A_1$ is of depth 2. The latter condition is assumed by Enock and Vallin in [10]. But I cannot prove the equivalence yet.

In the following theorem, we show that the conditions (P1) and (P2) imply the assumptions of Theorem 5.3. Thus we have a multiplicative unitary operator when these conditions are satisfied.

Theorem 6.1. (1) The operator U is uniatry if and only if the condition (P1) is satisfied.

(2) Suppose that U is unitary and that the condition (P2) is satisfied. Then there exists an elment W of $\mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ such that $V^*\widetilde{V} = W \otimes I_{E_1}$.

Corollary 6.2. Suppose that the conditions (P1) and (P2) are satisfied. Then there exists a multiplicative unitary operator W in $\mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ such that $V^*\widetilde{V} = \mathbb{C}$

Corollary 6.3. Suppose that A_0 is finite-dimensional and that the codition (P1) is satisfied. Then there exists a multiplicative unitary operator W in $\mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ such that $V^*\widetilde{V} = W \otimes I_{E_1}$.

The following proposition is useful to prove Theorem 6.1.

Proposition 6.4. (1) There exists a bijection q_1 of $A'_0 \cap A_1$ onto A such that $q_1(a)b = ba$ for $a \in A'_0 \cap A_1$ and $b \in E_1$, where ba is the product of A_1 .

(2) There exists a bijection q_2 of $A'_0 \cap A_2$ onto E such that $q_2(a)b = \Phi^{-1}(ba)$ for $a \in A'_0 \cap A_2$ and $b \in E_1$, where ba is the product of A_2 .

7. Crossed products by finite groups

Let A_0 be a unital C^* -algebra, let G be a finite group and let α be an action of G on A. We denote by A_1 the crossed product $A_0 \rtimes_{\alpha} G$. Then we have the inclusion $A_0 \subset A_1$ and the canonical conditional expectation P_1 of A_1 onto A_0 . Note that Index $P_1 = |G|$. In this section, we will show that the above inclusion satisfies the condition (P1) and the assumption of Theorem 5.3. Therefore we have a multiplicative unitary operator W associated with the inclusion $A_0 \subset A_0 \rtimes_{\alpha} G$. We can give a formula for W.

REFERENCES

- S. Baaj and G. Skandalis, C*-algèbres de Hopf et théorie de Kasparov équivariante, K-Theory
 2(1989), 683-721.
- [2] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. École. Norm. Sup. 26(1993), 425-488.
- [3] G. Böhm and K. Szlachányi, Weak C*-Hopf algebras and multiplicative isometries, preprint.
- [4] B. Blackadar, K-theory for operator algebras (second edition), Cambridge University Press, Cambridge, 1998.
- [5] E. Blanchard, Déformations de C*-algèbres de Hopf, Bull. Soc. Math. France 124(1996), 141-

- [6] J. Cuntz, "Regular actions of Hopf algebras on the C*-algebra generated by a Hilbert space" in Operator algebras, Mathematical Physics, and Low Dimensional Topology, Res. Notes Math 5, A. K. Peters, Wellesley, Mass., 1993, 87-100.
- [7] M. Enock, Inclusions of von Neumann algebras and quantum groupoids II, J. Funct. Analysis 178(2000), 156-225.
- [8] M. Enock and R. Nest, Irreducible inclusions of factors, multiplicative unitaries and Kac algebras J. Funct. Analysis, 137(1996), 446-543.
- [9] M. Enock and J. M. Schwartz, Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992.
- [10] M. Enock and J. M. Vallin, Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Analysis 172(2000), 249-300.
- [11] F. M. Goodmann, P. de la Harpe and V. F. R. Jones, Coxeter graphs and towers of algebras, Springer-Verlag, New York, 1989.
- [12] M. Izumi, Subalgebras of infinite C*-algebras with finite Watatani indices, II: Cuntz-Krieger algebras, Duke Math. J. 91(1998), 409-461.
- [13] V. F. R. Jones, Index for subfactors, Invent. Math. 72(1983), 1-25.
- [14] V. Jones and V. S. Sunder, *Introduction to subfactors*, Cambridge University Press, Cambridge, 1997.
- [15] C. Kassel, Quantum groups, Springer-Verlag, New York, 1995.
- [16] E. C. Lance, Hilbert C*-modules, Cambridge University Press, Cambridge, 1995.
- [17] R. Longo, A duality for Hopf algebras and for subfactors. I, Comm. Math. Phys. 159(1994), 151-174.
- [18] J. H. Lu, Hopf algebroids and quantum groupoids, International J. Math. 7(1996), 47-70.
- [19] M. Macho-Stadler and M. O'uchi, Correspondence of groupoid C*-algebras, J. Operator Theory 42(1999), 103-119.
- [20] D. Nikshych and L. Vainerman, "Algebraic versions of a finite-dimensional quantum groupoid", Lecture Notes in Pure and Appl. Math., Vol. 209, 2000, 189-221.
- [21] M. O'uchi, On coproducts for transformation group C*-algebras, Far East J. Math. Sci. 2(2000), 139-148.
- [22] M. O'uchi, Pseudo-multiplicative unitaries on Hilbert C*-modules, preprint.
- [23] M. O'uchi, Pseudo-multiplicative uniatries associated with inclusions of finite dimensional C*-algebras, preprint

- [24] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. 793, Springer-Verlag, Berlin, 1980.
- [25] M. A. Rieffel, Induced representations of C*-algebras, Advances Math. 13(1974), 176-257.
- [26] N. Sato, Fourier transform for paragroups and its application to the depth two case, Publ. Res. Inst. Math. Sci. 33(1997), 189-222.
- [27] K. Szlachányi, Finite quantum groupoids and inclusions of finite type, preprint, 2000.
- [28] W. Szymański, Finite index subfactors and Hopf algebra crossed products, Proc. Amer. Math. Soc. 120(1994), 519-528.
- [29] N. Tatsuuma, Duality theorem for locally compact groups, Kinokuniya, Tokyo, 1994, (Japanese).
- [30] J. M. Vallin, C*-algèbres de Hopf et C*-algèbres de Kac, Proc. London Math. Soc.(3) 50 (1985), 131-174.
- [31] J. M. Vallin, Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory 35(1996), 39-65.
- [32] J. M. Vallin, Unitaire pseudo-multiplicatif associé à un groupoïde applications à la moyennabilité, J. Operator Theory 44(2000), 347-368.
- [33] J. M. Vallin, Groupoids quantiques finis, preprint.
- [34] Y. Watatani, Index for C*-subalgebras, Memoir Amer. Math. Soc. 424(1990).
- [35] T. Yamanouchi, Duality for actions and coactions of measured groupoids on von Neumann algebras, Memoir Amer. Maht. Soc. 484(1993).
- [36] T. Yamanouchi, Duality for generalized Kac algebras and a characterization of finite groupoid algebras, J. Algebra 163(1994), 9-50.

DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF SCIENCE, OSAKA WOMEN'S UNI-VERSITY, SAKAI CITY, OSAKA 590-0035, JAPAN

E-mail address: ouchi@appmath.osaka-wu.ac.jp