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PENTAGONAL EQU'ATIO‘NS FOR OPERATORS ASSOCIATED
WITH INCLUSIONS OF C*-ALGEBRAS
(PRELIMINARY VERSION)

 KRKFAFEEM  kAER (MOTO O'UCHI)
OSAKA WOMEN’S UNIVERSITY

1. INTRODUCTION

The pentagonal equation (PE) first appeared in the duality theory for locally
compact groups. The Kac-Takesaki operator in the theory satisfies the PE (cf. [9],
[29]). S. Baaj and G. Skandalis called a unitary operator on a Hilbert space a multi-
plicative unitary (MU) when it satisfies PE in [2]. They constructed a pair of Hopf
C*-algebras from a regular MU. M. Enock and R. Nest constructed an MU from
an irreducible regular depth 2 inclusion of factors. As for measured gfoupoids, T.
Yamanouchi constructed an analogue of the Kac-Takesaki operator in [35] But this
operator does not satisfy the PE. J. M. Vallin showed that it satisfies an equation
which is a generalization of the PE in [32]. He called a unitary operatbr a pseudo-
multiplicative unitary (PMU) when it satisfies this generalized PE. Vallin defined
the generalized PE using the Connes-Sauvageot’s relative tensor products of Hilbert
spaces. M. Enock and J. M. VallinA constructed a PMU from a regular depth 2 inclu-
sion of von Neumann algebras in [10]. The basis of the PMU they studied is a (not
necessarily commutative) von Neumann algebra. Recently quantum groupoids are

studied by many authors. For example, see [3], [7], [18], [20], [27] and [33]. Quantum
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groupoids are related to inclusions of von Neumann algebras and PMU’s. In par-
ticular, PMU’s in finite-dimension were studied by G. Bohm and K. Szlachanyi [3]
and by J. M. Vallin [33]. They studied the PMU from the viewpoint of multiplica-
tive isometries. Before their works, Yamanouchi étudied a partial isometry which
satisfies the PE in [36]. When we deal with PMU’s in the theory of C*-algebras, it
is useful to formulate the generalized PE in the frame work of Hilbert C*-modules.
As for the usefulness of Hilbert C*-modules, for example, see the works of M. A.
Rieffel [25], E. C. Lance [16], B. Blackadar [4] and Y. Watatani [34]. The author
defined a PMU on a Hilbert C*-module using interior tensor products in [22]. The
base algebra of the PMU defined there is a commutative C*-algebra. (When PMU
is defined on a tensor product of A-modules, we will call A a base algebra. See Def-
inition 3.1.) An analogue of the Kac-Takesaki operator for a topological groupoid
becomes a PMU in the sense of [22]. Moreover, if it is a measured groupoid, that
is, if it has a quasi-invariant measure, then the PMU constructed in [22] induces
the PMU studied by Vallin in [32]. The author constructed in [23] a PMU in the
sense of [22] from an inclusion of finite-dimensional C*-algebras when the inclusion
satisfies certain conditions. There we had to assume a condition which implies a
commutativity of the base algebra.

In this paper, we will study a PE in full generality. We will not distinguish a
PE from a generalization of a PE and we will not distinguish an MU from a PMU.
Therefore we will call a PE a generalization of a PE and we will call an operator a
multiplicative operator when it satisfies a generalization of a PE. The aim of this
paper is to give a definition of a PE in full generality in the framework of Hilbert
C*-module and to give examples of operators which satisfies this PE. Especially, we
remove the assumption of the commutativity of the base algebra, which was assumed
in [22] and [23]. We meet many difficulties in defining a PE in the framework of

Hilbert C*-modules. For example, we do not in general the following objects; a
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flip on an interior tensor product of Hilbert C*-modules, a tensor product I ® z
as operator on an interior tensor product of Hilbert C*-modules for an adjointable
operator z on a Hilbert C*-module and a modular involution on a Hilbert C*-
module. When the base algebra is C, the multiplicative unitary operator (MUO)
defined in this paper coincides with the MU defined by Baaj and Skandalis in [2]
modulo the flip. When the base algebra is commutative, the MUO coincides with
the PMU studied in [22] and [23] modulo the flip. Note that we cannot define a flip

when the base algebra is not commutative.

2. PRELIMINARIES

First, we recall some definitions and notations on Hilbert C*-modules. For details,
we refer the reader to [16]. Let A be a C*-algebra. A Hilbert A-module is a right
A-module E with an A-valued inner product < -,- > such that FE is complete with
respect to the norm €l = || < &€& > || Note that the inner product is linear
in its second variable. A Hilbert A-module F is said to be full if the closure of the
linear span of {< &,n >;&, n € E} is all of A. Let E and F be Hilbert A-modules.
We denote by L4(E, F) the set of bounded adjointable operators from E to F' and
we denote by K4(E, F) the closure of the linear span of {0, ;& € F, n € E}, where
O¢ ., is the element of L4(E, F') defined by 6,(¢) = £ < n,{ > for ( € E. We
abbreviate L4(E, E) and K4(E, E) to L4(E) and K4(E) respectively. We denote
by I the identity operator on E. We often omit the subscript E for simplicity. A
unitary operator U of E to F is an adjointable operator such that U*U = Ig and
UU* = Ip.

Let A and B be C*-algebras. Suppose that E is a Hilbert A-module and that
F is a Hilbert B-module. Let ¢ be a *-homomorphism of A to Lg(F'). Then we
can define the interior tensor product F ®¢4 F ([16], Chapter 4). For £ € E and
n € F, we denote by £ ®, n the corresponding element of £ ®4 F. We often omit
the subscript ¢, writing £ ® n = £ ®, 1 for simplicity. We have {a ® 7 = £ ® ¢(a)n
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for every a € A. Note that E ®, F is a Hilbert B-module with a B-valued inner

product such that

<&E®OM,E® M >=<n,¢(< &,& >)n >

for &1, & € E and ny, 12 € F. Let E; be a Hilbert A;-module for ¢ = 1,2,3 and let
¢; be a x-homomorphism of A;_; to L4,(E;) for i = 2,3. Define a *-homomorphism
B2 ®py L Of Ay t0 La,(E2 ®¢; E3) by (¢2 ®4, t)(a) = ¢2(a) ® I for a € A;. We often

omit the subscript ¢3, writing ¢, ® ¢ = ¢2 ®g, ¢ for simplicity. Then we have
(E1 ®g, E2) ®¢, B3 = By ®gy0: (E2 @4, Es).

We denote the above tensor product by E; ®¢, E2 ®y, Es.

For ¢ = 1,2, let E; be a Hilbert A-module, let F; be a Hilbert B-module and let ¢;
be a *-homomorphism of A to Lp(F;). We denote by Lg((Fi, ¢1), (F2, ¢2)) the set
of elements z of Lp(Fi, F3) such that 2¢;(a) = ¢2(a)z for all a € A. We abbreviate

Lp((Fi, 1), (F1,¢1)) to Ls(F1, ¢1). We define Kp((F1, 61), (F2, ¢2)) and Kp(F1, ¢1)

similarly. The following proposition is useful in later arguments.

Proposition 2.1 ([22]). For z € La(F1, E;) and y € Lp((F1,¢1), (F2, ¢2)), there
ezists an element T ®y, y of Ls(E1 Qy, F1, E2 ®¢, F3) such that (z ®¢, y)({ ® 1) =
(z€) ® (yn) for € € Ey and y € F.

We often omit the subscript ¢;, writing z @ y = = ®y, y for simplicity.

3. PENTAGONAL EQUATIONS FOR OPERATORS ON HILBERT C*-MODULES

Let A be a C*-algebra, let E be a Hilbert A-module and let ¢ and ¢ be *-
homomorphisms of A to L4(E). We assume that ¢ and 1 commute, that is,
#(a)(b) = ¥(b)¢(a) for all a, b € A. We can define *-homomorphisms ¢ ®¢ ¢ and
1®41 of Ato LA(E®4E) by (1®46)(a) = I®¢¢(a) and (1®@¢%)(a) = I®4y(a) respec-
tively. We often omit the subscript ¢, writing t®¢ = t®,¢ and t®y = t®4 for sim-

plicity. We can also define *-homomorphisms ¢ ®, ¢ and t®, 9 of A to LA(E®y E).
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We often omit the subscript 4. Let W be an operator in L4(E ®y E,E®y F).- We

assume that W satisfies the following equations;

(3.1) W (. ®y ¢)(a) = (¢ ®y t)(a)W,
(3.2) W (Y ®y t)(a) = (¢ ®¢ ¥)(a)W,
(3.3) W (4 ®y 1)(a) = (¥ ® ) (a)W

for all a € A. Then, by Proposition 2.1, we can define following operators;
WRylIeLy(E®yE®yE,F®yFE®,yE),
I ®pe W € LA(E®y E®y E,FE®y E®y4E),
Wyl e LA(E®¢E®¢ E,EQ, E®yE),
I Que. W € LA(E®y E®y E, E .5y (E®4 E)),

I®geW € L4(E Q¢ (E QR E), E®y E R E).

Since ¢ and ¢ commute, there exists an isomorphism X, of F ®,g, (E ®¢ E) onto

E Q.4 (E ®, E) as Hilbert A-modules such that
T12(71 ® (T2 ® 73)) = 72 ® (21 @ 3)

for z; € E (1 = 1,2,3). Then we can define a pentagonal equation.

Definition 3.1. Let W be an element of L4(E®, E, EQ4E). Assume that W sat-
isfies the equations (3.1), (3.2) and (3.3). An operator W is said to be multiplicative

if it satisfies the pentagonal equation
(3.4) (W ®4 I)(I ®ge W)(W @y I) = (I Qugp W)Z12(I ®ya. W).

We will call A the base algebra of the multiplicative operator W.

Example 3.2. Suppose that A = C. Then F = H is a usual Hilbert space and
Lc(E) = L(H) is the C*-albebra of bounded linear operators on H. Let ¢ = ¢ = id,
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where id(\) = Mg for A € C. Then E ®;q E is the usual tensor product H ® H.
Let © € £(H ® H) be the flip, that is, 2(( ® 1) = n® . Let W be an element of
L(H ® H). Then the pentagonal equation (3.4) has the following form:

(3.5) WRNUIW)WRI=IQW)EQ(IW).

Defin an operator W by W = WE. Then W satisfies the pentagonal equation (3.5)

if and only if W satisfies the usual pentagonal equation ;
(3.6) Wi WisWas = WasWhs.

Example 3.3. In Examaple 3.2, if W = X, then the equation (3.5) is the Yang-

Baxter equation for the flip ([15]);
ERNIRL)ERIN=IQE)(ERI(I®X).

Example 3.4. Let G be a locally compact Hausdorff group and v be a right Haar
measure on G. Set H = L?(G,v). Defin an operator W on H ® H by (W¢)(g,h) =
&(h, gh) for £ € C.(G x G) and g, h € G. Then W satisfies the pentagonal equation
(3.5). The operator W in Example 3.2 is given by (Wf)(g, h) = &(gh, h), which is

the Kac-Takesaki operator and satisfies the usual pentagonal equation (3.6).

Suppose that A = C is an abelian C*-algebra. Let E be a Hilbert C-module and
¢ be a *-homomorphism of C to Lc(E). Define a x-homomorphism 1 of C to Lc(E)
by ¥(c)é = &c for € € E and ¢ € C. In this situation, we have defined a generalized
pentagonal equation and We have called a unitary operator pseudo-multiplicative if
it satisfies the generalized pentagonal equation in [22]. We will describe the relation
between the pentagonal equation (3.4) defined in this paper and the generalized
pentagonal equation defined in [22]. We wrote EQc¢ E for EQ®y E in [22]. Let W be
a unitary operator in L¢(E ®, E, E @4 E). Suppose that W satisfies the following
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(3.7) W(t ®y 9)(c) = (¢ ® §) (W,

(38) . W(d &y 1)(c) = (6 ®g 1) (OW.

for ¢ € C. There exists an isomorphism o, of E ®Lé¢ (E®4E) onto E®,g4 (E®y E)
such that 01(€ ® (n ® ¢)) = @ (£ ® ¢)) and there exists an isomori)hism oy of
E®y E®4E onto E®,g4 (E ®¢ E) such that 02(§®1n®C) = nl® E®). We deﬁne
an operator ng in Lo(E Quey (E®4 E), E ®y E ®4 E) by Wm = 03(I Q.4 W)ol.
In [22], the generalized pentagenal equation was defined as follows;

(3.9) (W @4 DWis(I @y W) = (I @pa W)(W ®y I).

T

There exists the flip £y in Lo(E ®y F) such that Ly ({ ® 1) = n® . Then we have

the following;

Proposition 3.5. Let W be an element of Lo(E ®y E,E ®4 E). Set W = WS,

Then W satisfies the equation (3.4) if and only if w satisfies the equation (3.9).

Example 3.6. Let G be a second countable locally compa.cf Hausdorff groupoid.
We denote by s (résp. r) the source (resp. range) map of G. We denote by G©
the unit space of G and by G the set of composable pairs. We set G, = s~ (u)
for u € GO. Let {\,;u € GO} be a right Haar system of G. As for groﬁpdids and
groupoid C*-algebras, see Renault [24]. (See also [19] and [22] for notations and
definitions used here.) For an arbitrary topological space X, we denote by C.(X )
the set of complex-valued continuous functions on X with compact supports and
by Co(X) the abelian C*-algebra of continuous functions on X vanishing at infinity
with the supremum norm || - ||o. Let C be the abelian C*-algebra Co(G(?) and let
E be the linear space C,(G). Then E is a right C-module with the right C-action
defined by (£c)(z) = &(z)c(s(z)) for £ € E,ce C and z € G. We define a C-valued
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inner product of E by

<&n>(u)= /G E@)n(z) dhu(z)

for £, n € E and u € GO, We denote by E the completion of E by the norm ||¢]| =
| < &€& > ||'/2. Then E is a full right Hilbert C-module. Define non-degenerate
.injective x-homomorphisms ¢ and ¢ of C to Lo(E) by (¢(c)€)(z) = c(r(z))é(x)
and 9(c)§ = &c respectively for c € C, £ € E and z € G. Set G¥(ss) = {(z,y) €
G?; s(z) = s(y)}. We define C-valued inner products of C,(G?(ss)) and C.(G®) by

<fuo>w=[[  FEDa@ @),

<fum> = [[  HEDRE @)

respectively for u € G, f,, g1 € C.(G?(ss)) and f3, g2 € C.(G®). Then C.(G?(ss))
and C,(G®) are dense pre-Hilbert C-submodules of E®, E and E®,F respectively.
Define a unitary operator W in Lo(E ®y E, E Q4 E) by (W¢)(z,y) = &(y, zy) for
¢ € C,(G*(33)), (z,y) € G?D. Set W = WE,. We have (W¢)(z,y) = &(zy,y) for
£ € C.(G?*(ss)), (z,y) € G®. It follows from [22] that W satisfies the equation
(3.9). By Proposition 3.5, W satisfies the pentagonal equation (3.4). When G is a
measured groupoid, that is, when there exists a quasi-invariant measure on G, we
discussed in {22] the relation between the operator W constructed above and the

fundamental operator studied by Yamanouchi in [36, §2] and by Vallin in [32, §3].

4. CoprrODUCTS FOR HILBERT C*-MODULES

It is known that multiplicative unitary operators give coproducts in several situ-
ations (cf. [2], [35], [31], [32], [10], [21], [22]). In this section, we study a coproducts
for a Hilbert C*-module associated with a multiplicative unitary operator and a fixed
vector with a certain property. First we introduce a notion of coproducts for Hilbert
C*-modules. We denote by E a Hilbert A-module and by ¢ a *-homomorphism of
A to L4(E).
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Definition 4.1. Let § be an operator in L4(F,E ®, F). We say that E is a

coproduct of (F, ¢) if é satisfies the following equations;

(4.10) - 0p(a) =(¢®1)(a)d forallac A

(4.11) (6 ® I5)6 = (Ig ® 6)5

The triplet (E, ¢,0) is called a Hopf Hilbert A-module.

Suppose that ¢ is coproduct for E. For &, n € E, we define a product {n in E by
&n = 6*(6®n). It follows from (4.11) that this product is associative. Then E' is a
right A-algebra with this product. Note that we have ||€n]| < ||6]|l|€]l]|n]|. Therefore,
if ||6]] < 1, then E is a Banach algebra.

Let 1 be a *-homomorphism of A to L4(F) such that ¢ and ¥ commute and let
W € L4(E ®y E,E ®¢4 E) be a multiplicative unitary operator. For an element &

of E, we say that & has the property (E1) if it satisfies the following conditions;

(i) [1oll =1.
(ii) W (& ®y o) = &o ® &o-
(iii) For every & € E, there exists an element ¢ (£) of L4(E) such that

<1, g (§)C >=< W (& ®y ), £ ®y ¢ >

for every n, ¢ € E.

We fix an element & with the property (E1). Define an operator § = ¢ in
LA(E,E®4E) by §(n) = W(&®n). Then we have ||§|| < 1 and §*(£®n) = m¢, (§)n-
Since W satisfies the pentagonal equation, we can show that (F,¢,6) is a Hopf
Hilbert A-module. We denote by £ e 1 the product of £ and 7 associated with 4.
Then we have ¢, (£)n = £ @ 7). Moreover the map ¢, of E to L4(FE) is a represen-

tation of the Banach algebra (E,e). We denote by B(&) the closed linear subspace
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generated by elements of the form ¢, () with £ € E. Then B(&) is a Banach sub-
algebra of L4(E). We denote by C*(B(&)) the C*-subalgebra of £4(F) generated
by B(&)-

For an element 7o of E, we say that 7 has the property (E2) if it satisfies the

following conditions;

Q) limll = 1. |
(ii) W (no ®y mo) = 10 ®¢ Mo-
(iii) For every & € E, there exists an element 7y, (§) of L4(E) such that

<N e (§)¢ >=< W* (1m0 ®¢ 1), { ®y ¢ >

for every n, ( € E.

We fix an element 7 with the property (E2). Define an operator 5 = 3,,0 in
La(E,E ®y E) by 3(7]) = W*(no ® ). Since W satisfies the pentagonal equa-
tion, we can show that (E, 1/),3) is a Hopf Hilbert A-module. We denote by £ o7 the
product of £ and 7 associated with 5. Then we have o (€)1 = € © . Moreover the
map 7, of E to L4(F) is a representation of the Banach algebra (E, ). We denote
by E(no) the closed linear subspace generated by elements of the form 7,,(£) with
¢ € E. Then B() is a Banach subalgebra of £4(E). We denote by C*(B(n)) the
C*-subalgebra of £4(E) generated by B(1).

In the following examples, we consider a finite groupoid, an r-discrete groupoid
and a compact groupoid. Let G be a second countable locally compact Hausdorff
groupoid. We keep the notations in Example 3.6 except for Co(G(®). Here we denote
by A the C*-algebra Cy(G®). Let W € L4(E ® E, E ®; E) be the multiplicative
unitary operator constructed in Example 3.6. Then we have (W¢)(z,y) = &(y, zy)
for £ € C,(G*(ss)) and (z,y) € G». Note that we have (W*£)(z,y) = £(yz~ !, )
for ¢ € C.(G?) and (z,y) € G*(ss). We denote by C;(G) the reduced groupoid
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C*-algebras. (As for the definition of the reduced groupoid C*-algebra, see [19],
[22).) | |

Example 4.2. Let G be a finite groupoid and let {)\,} be a right Haar system such
that A, is a counting measure on G,. Then we have A = C (G®) and E = C(G).
The A-valued inner product of E is given by < &,n > (u) = 35, £(z)n(z). We
have E ®y E = C(G?(ss)) and the A-valued inner product of E ®, E is given by
<&n>@= Y &z y)ny).
s(z)=s(y)=u
We have E ®4 E = C(G®) and the A-valued inner product of E'®y E is given by
<&Em>w= Y &z yn(z,y).
e
We set M = max{|Gy,|;u € G®}, where |G,| is the number of elements of G,.
We define an element & of E by &(z) = M~'/2 for all z € G. Then & has the
properties (E1) and (E2). We have 7, (£)¢ = £ * ¢, where £ *  is the convolution

product defined by |
(€xQ@) = ) &y ).

yEG,(,,) .
Therefore we have B(&) = C;(G). Since we have T, (€) = MY26;,,, we have

C*(E({o)) = K4(E). We define an element 7y of E by 1y = xg), where Xc©
is the characteristic function of G(®. Then 7, has the properties (E1) and (E2).
Since we have m,,(§) = 0 ,,, we have C*(B(m)) = Ka(E). We have T, (€) = m(f),
where m(£) is the multiplication operator on E defined by (m(£)¢)(z) = £(z)¢ ().
Therefore we havé B(mo) = C(G).

Example 4.3. Let G be an r-discrete groupoid [24, 1.2.6]. Note that G(® is open
and closed in G and that G, is discrete for every u € G©. Let {A\.} be a right Haar
system such that A, is the counting measure on G,. Since we have ||€||o < ||€]|£ for

¢ € C.(G), E is a'subspace of Cy(G). Fix an element f of A such that || f]j = 1. We



define an element 7y of E by 1 = fXxgo. Then 7y has the properties (E1) and (E2).
We have 7, (£) = ¢4, If the support of f is G(, then we have C*(B(np)) = K4(E).
We have 7, (€) = m(¢(f)€), where m(n) is the multiplication operator on E. If f
is real-valued, then we have 7, (£)* = 7y, (€). Therefore, if f is real-valued and the

support of f is G©®, then we have B(ny) = Co(G).

Example 4.4. Let G be a compact groupoid and let {\,} be a right Haar system
such that A\,(G) = 1 for all u € G©®. We define an element & of E by &(z) = 1
for all z € G. Then & has the properties (E1) and (E2). Note that C(G) is a
dense subspace of E. For &, ¢ € C(G), we have m,(§)¢ = & * (, where £ x ( is the

convolution product defined by

(€+Q)(a) = / £y ) (W) dAoie) (V).

Therefore we have B(&) = C(G). Since we have T¢,(§) = ¢ ¢,, we have C*(B(&)) =
Ka(E).

5. OPERATORS ASSOCIATED WITH INCLUSIONS OF C*-ALGEBRAS

Let A; be a C*-algebra and let Ay be a C*-subalgebra of A;. In this section, we
do not assume that A; and Ap are unital. Let F; be a Hilbert Ap-module and let ¢,
be a *-homomorphism of A; to L4,(E;). We denote by ¢y the restriction of ¢; to
Ag. Define E; = E) ®¢, E; and define a x»-homomorphism ¢, of A; to La,(E2) by
¢2 = ¢, ®¢. In general, we define E,, = E,,_; ®4, F1. We denote by A the C*-algebra
L4,(E1,¢1) and by E the normed space L4,((E1, $1), (E2, ¢2)). We define on E a
structure of a right A-module by (za)(§) = z(a) for x € E, a € A and £ € E; and
define on E an A-valued inner-product by < z,y >= z*y for z, y € E. Then F
becomes a Hilbert A-module. We define *-homomorphisms ¢ and ¢ of A to L4(FE)
by (¢(a)z)(€) = (a ® I)z(€) and (P(a)z)(§) = (I ® a)z(£) respectively for a € A,
z € E and £ € E,. We denote by 7 the inclusion map of A into L4,(E1).
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Proposition 5.1. There ezists an Ag-linear bounded map U of E ®; E1 to E, such
that U(z @ §) = x(§) for x € E and £ € E;. Moreover the following equalities hold:

<Ua,UB>=<a,B> fora,feEQ,E,,
Ulga) @) =(a®@)U forac€ A,
U(a)®I)=(IQ®a)U forac A,

U(I® ¢:1(a)) = ¢a(a)U  fora € A.

The proof is straightforward and we omit it. Note that U may not be adjointable.

We can define the following Aq-linear bounded operators;

I®¢®LUE®¢E®1E1 ——)E®i®LE27
U®gI:E®ig. E; — Es,
I®yg.U: E®y E®; By — E Qg Es,

I ®L®¢0 U: E1 ®L®¢0 (E X El) —_— E3.

There exists an isomorphism S of E ®,g; F3 onto E; ®,g4, (E ®; E1) as Hilbert
Ag-modules such that S(z® (£®n)) ={® (x®n) for z € E and &, n € E,. Define
an Ag-linear bounded operator V' of E @4 E ®; E; of E; by

V= (U ®¢0 I)(I ®¢®L U)a

and define an Ag-linear bounded operator V of E ®y E ®; E; of E3 by

~

V= (I R'®¢0 U)S(I Qyee U).

We summarize the properties of V and V in the following proposition. The proof is

easy and we omit it.
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Proposition 5.2. The operators V and 1% satisfies the following equalities;

<Va,VB>=<a,f> fora, B€EQyFEQ; E,
<‘7a,17ﬂ>£<a,,3'> fora,ﬂ€E®¢E®,-E1,
ViE®y®E) =(z®y I )y(l) forz,y€ E andf € By,

V(z®@y®¢) =k, ®u2)y() forz,yeE wmdfe E.
In the rest of this section, we will prove the following theorem.

Theorem 5.3. LetU, V and V be as above. Suppose that U is unitary and suppose
that there ezists an element W of Lo(E ®y E, E ®, E) such that VV=wael E, -

Then W is a multiplicative unitary operator.

Since U is unitary, V and V are also unitary operators. By straightforward

calclulation, we have, for every a € A,

V($(a) ® Ig ® Ig,) = (a ® Ig, ® IL,)V,
V(e ®¥(a)® Is,) = (Is, ® I, ® a)V,
V((a)® Ie ® Ig,) = (Ig, ® a ® Ig,)V,
V(Ig® ¢(a) ® I,) = (2 ® I, ® I, )V,
V(9(a) ® Iz ® Ir,) = (Ig, ® I, ® a)V,

V(6(a) ® £ ® Ig,) = (I, ®a ® I, V.
Therefore W satisfies the equations (3.1), (3.2) and (3.3). For n > 2, we set

E®"=EQ®s Q4 E (n times)
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and we define E®¥" similary. It follows from Proposition 5.1 that we have U(¢ ®

t)(a) = (i ®)(a)U for a € A. Therefore we can define the following operators;

Ie®Ig ®U € L4)(E®® ®; Ey, E%? Q;q, E»),
IE U ® IEl € EAO (E®¢2 Qice E2a E ®i®L®L E3)a

URIg ®IEg € ﬁAo(E Riziz. E3, E4)
We define an element Us in L4,(E®#3 ®; E1, E4) by

Since U is unitary by the assumption, U; is also a unitary operator. To prove

Theorem 5.3, it is enough to prove the following proposition. E
Proposition 5.4. Set

Wi = (W 8 I)(I ®pe. W)(W &y 1),

Wa = (I @ugg W)E12(I ®ye. W).
Then the following equation holds;

Us(W1®; I, ) (z®@y®28¢)
=Us(We ®i I )(z@y®28¢)

= (Ig, ® Ir, ® 7)(Ip, ® y)2¢.
forz,y, z€ E and £ € E,.
In the rest of this section, we will prove Proposition 5.4. Let

Sy EQy E Qugi B2 — E1 Quguge, (E ®y E Q; Er)

25



be an isomorphism defined by Sy (z®{®7) = €® (z®n) for z € E ®y E and
&, n € Ey, and let

Ss : E ®¢ E @i E2 — E1 Quguzeo (F ®¢ E ®; Ey)

be an isomorphism defined by Ss(z® {®7n) = £ ® (z ® n) for € E ® E and
£, m€ E;. Set UM = (I ®,p4, U)S.

Lemma 5.5. We have the following equalities for z,y, 2 € E and § € E;. ;

(5.12) .
Us(W ®4 ) ®; Ir,) = (V ®4, Ir,)(Ipe, & ®se. U),

(5.13)
(I ®pe W) ®; Ig, ) (W @y I) ®; g, )(z @y ® 2 ® )

= (I ®ugien V") Iz ®ge. U) S5 (I, ®posien V*)(IE, ® Ir, ® z)(IE, ® y)2E,

(5.14)
(Iz ®uie. V*)IE ®pe. U'Y)S; (I, Qpoeien V*)

= (Irg, £ ®igs U*)(V* ®g, Ir,)

Lemma 5.6. We have the following equalities for x € E and §; € Ey (i =1,2,3);

(5.15) W ® Ig, = (I ®usse V*V)(Z12 ®i I, ) g ®yeue. V*V),
(5.16) Us(Ig ®igie. V*) =U ® I, ® I,
(517) (IE ®L®¢®L ‘7)(212 ® IE1)(IE ®'«®L®’i V*)(.’E ® (fl ® 62 ® 53))

=U"(& ® &) ® 283,
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Proof of Proposition 5.4. Let z,y, z be elements of E and let £ be an element of

E,. It follows from Lemma 5.5 that we have
Us(W1 Qi Ig )(z®@y®2Q¢E)
=Us(W ®¢ I) ®; I, ) (I ®pan W) ®i I, ) (W ®y I) @i Ig, ) (@ y® 2 ® &)
= Us((W ®4 I) ®; Ir,) (Ipg, & ®igy U") (V* @, Ir,) (I, ® Ir, ® 7)(Ip, ® y)2E

= (IE1 ® IEl ® x)(IEl ® y)Zf
It follows from (5.16) and (5.17) that we have

Us(IE ®ueée. V*I~/)(212 ®i Ig, ) (IE Queui V) (2 @ &1 ® & ® &3)
= (U ® IEI ® IEI)(U*(fl ® 62) ® x§3)

= (I, ® I, ® 7)(£1 ® &2 ® &3).
for & € Ey (i =1,2,3). Then by using (5.15) we have

Us(Wa ®; I, ) (2 Q@ y® 2@ )
= Us(Ig .0 V'V) (212 ®i I, ) Iz Opane, VV)(2 @y ® 2 ® €)
= Us(Ig ®@upe. V*V) (212 ®; I, ) I ®usiai V*) (@ ® {(Ig, ® y)2€})

= (Ig, ® Ig, ® 7)(Ig, ® y)2¢.

6. INCLUSIONS OF INDEX FINITE-TYPE

In this section, we study a multiplicative unitary operator associated with an
iclusion of C*-algebras when the inclusion is of index-finite type in the sense of
Watatani [34]. Let A; be a C*-algebra with the identity 1, let Ag be a C*-subalgebra

of A; which contains 1 and let P, : A; — Ag be a faithful positive conditional
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expectation. We assume that P, is of index-finite type, that is, there exists a family

u; € A; (i =1,---,n) such that
n n
ZuiPl(u:-‘a) = ZPl(aui)u’{ =a
i=1 i=1

for every a € A, (34, 1.2.2, 2.1.6]. Then the index of P, is given by Index P, =
3, u;uf which is an element of the center of A;. We denote by E) a right Ag-module
A; whose right Ag-action is the product in A;. Define an Ay-valued inner product
E; by < a,b >= Py(a*b) for a, b € E;. It follows from [34, 2.1.5] that there exists a

positive number A such that
Malla, < llalls, < llalla,

for every a € E; = A;, where || - ||4, and || - ||g, denote the norms of A; and E,
respectively. Therefore F; is complete and is a Hilbert Ag-module. Define a unital
injective x-homomorphism ¢; : A} — L4,(E;) by ¢1(a)b = ab for a € A, and
b € E,, where ab is the product in A;. Then we can construct A, E, ¢v and ¥ as in
Section 5. Moreover we can construct the operators U, V and V.

We denote by A, the C*-algebra K4, (E;) (cf. [34, 2.1.2, 2.1.3]). Note that we
have K4o(E:) = La,(E1). In fact, we have I =) 7 0y, ,, in L4, (E1). We identify
#(A;) with A; and we have inclusions A9 C A; C A,, which is the basic construction
([34, 2.2.10], see also [11, Chapter 2]). Let P, : A, — A; be the dual conditional
expectation of Py, that is, P;(0,4) = ( Index P;)~'ab* for a, b € A, [34, 2.3.3]. Note
that P, and P, o P; are of index-finite type [34, 1.7.1, 2.3.4]. We denote by F; a
right Ag-module A; whose right Ag-action is the product in A,. Define an Ay-valued
inner product of Fy by < £,7 >= P, o P,(§*n) for £, 7 € F, = A;. Then F, is a
Hilbert Ap-module. Define a unital injective *-homomorphism 52 t A — L (F)

by az(a)é = af for a € A; and £ € F,, where af is the product in A;. Define a
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linear map @ : F; — F5 by
®(a ® b) = 0,561 (( Index P,)'/?)

for a, b € E;. Then @ is an isomorphism between the Hilbert Ap-modules. Moreover
we have ®(¢s(a1)€) = da(a;)®(€) for a; € A; and £ € E,. |

We denote by Aj N Ay the C*-algebra {a € A,; ab = ba for every b € Ay} and
denote by lin A4;(Aj N A,) the closed linear subspace of A, generated by elementé
ab with a € A; and b € A; N A,. For a € A;, we denote by C(a) the norm closure
of the convex hull of the set consisting of elements uau* with unitary elements u of
Ap. We consider the following two conditions:

(P1) Ay =lin A;(A) N Ay).

(P2) AyNC(a) #0 for every a € A;.

Remark. 1t seems that (P1) is equivalent to the condition that the inclusion
Ao C A, is of depth 2. The latter condition is assumed by Enock and Vallin in [10].
But I cannot prove the equivalence yet.

In the following theorem, we show that the conditions (P1) and (P2) imply the
assumptions of Theorem 5.3. Thus we have a multiplicative unitary operator when

these conditions are satisfied.

Theorem 6.1. (1) The operator U is uniatry if and only if the condition (P1) is
satisfied.

(2) Suppose that U is unitary and that the condition (P2) is satisfied. Then there
ezists an elment W of L4(E ®, E, E ®4 E) such that V*V = W @ I, .

Corollary 6.2. Suppose that the conditions (P1) and (P2) are satisfied. Then there

exists a multiplicative unitary operator W in LA(E ®@y E,E®4 E) such that VY =
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Corollary 6.3. Suppose that Ay is finite-dimensional and that the codition (P1) is
satisfied. Then there ezists a multiplicative unitary operator W in LA(E®y E,E®,
E) such that V*V =W ® I, .

The following proposition is useful to prove Theorem 6.1.

Proposition 6.4. (1) There ezists a bijection q1 of Ay N Ay onto A such that
q:1(a)b = ba for a € AyN A, and b € E,, where ba is the product 6f A
(2) There ezists a bijection go of Ay N Ay onto E such that g,(a)b = ®(ba) for

a € AyN Ay and b € E,, where ba is the product of A,.

7. CROSSED PRODUCTS BY FINITE GROUPS

Let Ay be a unital C*-algebra, let G be a finite group and let o be an action
of G on A. We denote by A, the crossed product Ay X, G. Then we have the
inclusion Ay C A, and the canonical conditional expectation P, of A; onto Ag.
Note that Index P, = |G|. In this section, we will show that the above inclusion
satisfies the condition (P1) and the assumption of Theorem 5.3. Therefore we have
a multiplicative unitary operator W associated with the inclusion 49 C Ay %, G.

We can give a formula for W.

REFERENCES

[1] S. Baaj and G. Skandalis, C*-algébres de Hopf et théorie de Kasparov équivariante, K-Theory
2(1989), 683-721.

[2] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C”-
algébres, Ann. Sci. Ecole. Norm. Sup. 26(1993), 425-488.

[3] G. Bohm and K. Szlachanyi, Weak C*-Hopf algebras and multiplicative isometries, preprint.

(4] B. Blackadar, K-theory for operator algebras (second edition), Cambridge University Press,
Cambridge, 1998. '

[5] E. Blanchard, Déformations de C*-algébres de Hopf, Bull. Soc. Math. France 124(1996), 141-

30



(6] J. Cuntz, “Regular actions of Hopf algebras on the C*-algebra generated by a Hilbert space” in
Operator algebras, Mathematical Physics, and Low Dimensional Topology, Res. Notes Math
5, A. K. Peters, Wellesley, Mass., 1993, 87-100.
[7] M. Enock, Inclusions of von Neumann algebras and quantum groupoids II, J. Funct. Analysis
178(2000), 156-225.
(8] M. Enock and R. Nest, Irreducible inclusions of factors, multiplicative unitaries and Kac
algebras J. Funct. Analysis, 137(1996), 446-543.
[9] M. Enock and J. M. Schwartz, Kac algebras and duality of locally compact groups, Springer-
Verlag, Berlin, 1992.
[10] M. Enock and J. M. Vallin, Inclusions of von Neumann algebras, and quantum groupoids, J.
Funct. Analysis 172(2000), 249-300.
[11] F. M. Goodmann, P. de la Harpe and V. F. R. Jones, Cozeter graphs and towers of algebras,
Springer-Verlag, New York, 1989.
[12] M. Izumi, Subalgebras of infinite C*-algebras with finite Watatani indices, II: Cuntz-Krieger
algebras, Duke Math. J. 91(1998), 409-461.
[13] V. F. R. Jones, Index for subfactors, Invent. Math. 72(1983), 1-25.
[14] V. Jones and V. S. Sunder, Introduction to subfactors, Cambridge University Press, Cam-
bridge, 1997.
[15] C. Kassel, Quantum groups, Springer-Verlag, New York, 1995.
[16] E. C. Lance, Hilbert C*-modules, Cambridge University Press, Cambridge, 1995.
[17] R. Longo, A duality for Hopf algebras and for subfactors. I, Comm. Math. Phys. 159(1994),
151-174.
(18] J. H. Lu, Hopf algebroids and quantumn groupoids, International J. Math. 7(1996), 47-70.
[19] M. Macho-Stadler and M. O’uchi, Correspondence of groupoid C*-algebras, J. Operator Theory
42(1999), 103-119. ‘
[20] D. Nikshych and L. Vainerman, “Algebraic versions of a finite-dimensional quantum groupoid’,
Lecture Notes in Pure and Appl. Math., Vol. 209, 2000, 189-221.
[21] M. Q’uchi, On coproducts for transformation group C*-algebras, Far East J. Math. Sci.
2(2000), 139-148.
[22] M. O’uchi, Pseudo-multiplicative unitaries on Hilbert C*-modules, preprint.
(23] M. O’uchi, Pseudo-multiplicative uniatries associated with inclusions of finite dimensional

C*-algebras, preprint

31



[24] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. 793, Springer-Verlag,
Berlin, 1980.

[25] M. A. Rieffel, Induced representations of C*-algebras, Advances Math. 13(1974), 176-257.

[26] N. Sato, Fourier transform for paragroups and its application to the depth two case, Publ. Res.
Inst. Math. Sci. 33(1997), 189-222.

[27] K. Szlachényi, Finite quantum groupoids and inclusions of finite type, preprint, 2000.

[28] W. Szymanski, Finite index subfactors and Hopf algebra crossed products, Proc. Amer. Math.
Soc. 120(1994), 519-528.

[29] N. Tatsuuma, Duality theorem for locally compact groups, Kinokuniya, Tokyo, 1994, (Japan-
ese).

[30] J. M. Vallin, C*-algébres de Hopf et C*-algébres de Kac, Proc. London Math. Soc.(3) 50
(1985), 131-174.

[31] J. M. Vallin, Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory 35(1996),
39-65.

[32] J. M. Vallin, Unitaire pseudo-multiplicatif associé & un groupoide applications d la
moyennabilité, J. Operator Theory 44(2000), 347-368.

[33] J. M. Vallin, Groupoids quantiques finis, preprint.

[34] Y. Watatani, Indez for C*-subalgebras, Memoir Amer. Math. Soc. 424(1990).

[35] T. Yamanouchi, Duality for actions and coactions of measured groupoids on von Neumann
algebras, Memoir Amer. Maht. Soc. 484(1993).

[36) T. Yamanouchi, Duality for generalized Kac algebras and a characterization of finite groupoid

algebras, J. Algebra 163(1994), 9-50.

DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF SCIENCE, OSAKA WOMEN’s UNI-
VERSITY, SAKAI CITY, OSAKA 590-0035, JAPAN

E-mail address: ouchiQappmath.osaka-wu.ac.jp

32



