Certain associated graded rings

of 3-dimensional regular local rings are regular

金沢大学理学部 泊 昌孝 (Masataka Tomari)

This note is a preliminary version.

Introduction. The study of various blowing-ups is very important in the theory of singularities. In many case some blowing-up appears as the blowing-down of divisors of algebraic variety, and is understood naturally as a filtered blowing-up. From this point of view, one of most interesting results in this field is M. Kawakita's classification of a special divisorial contraction of dimension three [2]. In [2], Kawakita proved that every divisorial contraction to a smooth 3-dimensional point is a weighted blowing-up induced by certain weighting on a regular system of parameters of 3-dimensional regular local ring. It is natural to study his theorem from the theory of filtered blowing-ups, and this is my motivation for this talk.

In this paper, I will discuss the filtered blowing-up of singularities, and, by using special equi-singular deformation induced from a filtration on local ring, I show the following simple assertion,

Theorem. 1 Let $A \cong \mathbb{C}\{x_1, x_2, x_3\}$ and $F = \{F^k\}_{k \geq 0}$ be a filtration on A such that $gr_F A = \bigoplus_{k \geq 0} F^k / F^{k+1}$ is an integral domain with isolated singularity. Then $gr_F A$ is regular, i.e., $gr_F A \cong \mathbb{C}[y_1, y_2, y_3]$.

In this paper, a filtration F on the local ring (A, m) is; $F = \{F^k\}$; a decreasing sequence of ideals $F^k \subset A$ such that $F^0(A) = A, m \supset F^1, F^k = A(k \le -1), F^k F^l \subset F^{k+l}(\forall k, l)$ and $\mathcal{R} = \bigoplus_{k \ge 0} F^k T^k \subset A[T]$ is a finitely generated A-algebra, where T is an indeterminate. There is an integer N such that the relation $F^{kN} = F^N \cdots F^N$ for all $k \ge 0$, and we assume that F^N is m-primary. We denote $G = gr_F(A)$ and remark that $G = \mathcal{R}'/T^{-1}\mathcal{R}'$, where $\mathcal{R}' = \bigoplus_{k \in Z} F^k T^k$ is the extended Rees algebra.

Theorem 1 is shown as a special case of the following more general results.

- **Theorem 2.** Let (V,p) be a normal d-dimensional isolated terminal singularity of index r (resp. canonical, resp. log terminal, resp. log canonical), and $F = \{F^k\}$ be a filtration on $A = O_{V,p}$ such that $G = gr_F A$ is an integral domain with isolated singularity. Then
- (1) G is normal and terminal singularity of index r (resp. canonical, resp. log terminal, resp. log canonical).
- (2) There is a filtration $F_B = \{F_B^k\}$ on the canonical cover (the index one cover) $B = \bigoplus_{m=0}^{k-1} \omega_A^{[m]}$ such that $G_B = gr_{F_B}B \cong$ the canonical cover of G and there exists an integer $M \geq 1$ such that the relations $F_B^{kM} \cap A = F^k \subset A$ for $k \geq 0$ and $(gr_{F_B \cap A}(A))^{(M)} = gr_F(A)$ hold.
- (3) If d = 3 and (V, p) is terminal, then the relation $e(m_B, B) = e((G_B)_+, G_B)(= 1, 2)$ holds.

We have a corollary as follows:

Corollary 3. (V,p): 3-dimensional cyclic terminal and F: as above, then $gr_F(A)^{\wedge} \cong A^{\wedge}$.

As the case of index one, we obtain Theorem 1 from Corollary 3. Here recall that every isolated quotient singularity of dimension not less than three is rigid.

In general, if we consider a filtration induced from a divisorial contraction, the associated graded ring is not necessary an integral domain with isolated singularity ([1,3]).

§1. Sketch of proof of Theorem 2.

We assume that there is no $N \ge 2$ such that $G^{(N)} = G$, where $G^{(N)}$ is defined by $G^{(N)} = \bigoplus_{k \ge 0} G_{kN} \subset G$.

Step 1. Let $\psi: X = \operatorname{Proj}(\mathcal{R}) \to V = \operatorname{Spec} A$ be the filtered blowing-up by F with $E = \operatorname{Proj}(G)$. We obtain the relation $F^k = \phi_*(O_X(-kE))$ for $k \in \mathbb{Z}$. (cf [6, §2]).

Proof. Since G is an integral domain and $V = \operatorname{Spec} A$ is normal, we can easily see that $\mathcal{R}' = \bigoplus_{k \in \mathbb{Z}} F^k T^k \subset A[T, T^{-1}]$ is a normal domain.

This claim is shown as follows: We have $G = \mathcal{R}'/u\mathcal{R}'$, where $u = T^{-1} \ni \mathcal{R}'_{-1}$. If $P \in V(u) \subset \operatorname{Spec}(\mathcal{R}')$, then $G_P \cong \mathcal{R}'_P/u\mathcal{R}'_P$ satisfies the conditions R_0 and S_1 , hence \mathcal{R}'_P is normal. Further, if $P \notin V(u)$, then we obtain the relations $\mathcal{R}'_P = (\mathcal{R}'_T)_P = A[T, T^{-1}]_P$ which is normal.

By the assumption that \mathcal{R} is a finitely generated A-algebra, there is a positive integer N>0 such that $F^{kN}=F^N\cdots F^N$, for $k\geq 0$, i.e., $\mathcal{R}^{(N)}=A[F^NT^N]$. Here ψ is the blowing-up with center F^N and $F^{kN}=\psi_*(F^{kN}O_X)=\psi_*(O_X(kN))$. Since Q(G) has a homogeneous element of degree 1, we have $O_X(k)=(O_X(1)^{\otimes k})^{**}$ for $\forall k\in \mathbb{Z}$. We have $O_X(1)=O_X(-E)$, hence $O_X(N)=O_X(-NE)$. Since G is an integral domain, $\{F^k\}$ defines a valuation V on Q(A) such that $F^k=\{x\in Q(A)\mid V(x)\geq k\}$. Further $\{F^{kN}\}$ defines the valuation V' on Q(A) as $F^{kN}=\{x\in Q(A)\mid V_E(x)\geq kN\}$ where $V_E(x)=ord_E(x)$ on X. Therefore $F^k=\{x\in Q(A)\mid V_E(x)\geq k\}$ for $\forall k\in \mathbb{Z}$.

Step 2. X has only cyclic quotient singularities, in particular X has only log terminal singularities.

Proof. (cf §5 [6]). For $P \in E = \operatorname{Proj}(G) \subset X = \operatorname{Proj}(\mathcal{R})$, there exists $f \in F^d - F^{d+1}$, with $P \in V_+(f^*)$, where $f^* = fT^d \in \mathcal{R}_d$. Here we denotes $\bar{f}T^d \in G_d$. Now $\mathcal{R}_{f^*} = \bigoplus_{k \in \mathbb{Z}} (\mathcal{R}_{f^*})_k$ is a regular ring. This is shown as follows: We see that $(\mathcal{R}_{f^*})_{(T^{-1})^{-1}} = A_f[T, T^{-1}]$ is regular and that $\mathcal{R}_{f^*}/T^{-1}\mathcal{R}_{f^*} = \mathcal{R}'_{f^*}/T^{-1}\mathcal{R}'_{f^*} = G_{\bar{f}}$ is regular. Hence so is \mathcal{R}_{f^*} .

Now let $B = (\mathcal{R}_{f*})_P = \bigoplus_{k \in \mathbb{Z}} ((\mathcal{R}_{f*})_P)_k$ and $t \in B$ be a homogeneous unit of the minimal degree N(P). Let C = B/t - 1. Then, by [6,§5], C is a regular local ring. Here $((\mathcal{R}_{f*})_P)_0$ is a finite direct summand of C.

Step 3. (The log canonical condition of A implies that) G is normal.

Proof. Let $\omega_0 \in \omega_A^{[r]}$ be a generator at p as $\omega_A^{[r]} = A \cdot \omega_0$. We define the integer

a' by the relation $div_X(\omega_0) = -(r+a')E$ on X. That is $\omega_X^{[r]} \cong O_X(-(r+a')E)$ or $K_X = \psi^*(K_V) - (1 + \frac{a'}{r})E$. Since A is log canonical, we have $a' \leq 0$. We will show the following.

Claim. $R^1\psi_*(O_X(-mE)) = 0$ for $m \ge 1$, $(m \in \mathbb{Z})$.

Proof of the claim. We have the relation

$$O_X(-mE) \cong \omega_X((r-1)K_X + (r+a')E - mE))$$

 $\cong \omega_X((r-1)(K_X + E) - (m-1-a')E).$

Further $(r-1)(K_X+E)-(m-1-a')E$ is relatively numerically equivalent to $-\frac{r-1}{r}a'E-(m-1-a')E=-(m-1-\frac{a'}{r})E$ with respect to ψ . Since -E is relatively ψ -ample, $(r-1)(K_X+E)-(m-1-a')E$ is ψ -nef. Hence by the vanishing theorem of Grauert-Riemenschneider, Kawamata-Viehweg, we obtain the claim.

Here we have the exact sequence

$$0 \to O_X(-(k+1)E) \to O_X(-kE) \to O_E(k) \to 0$$

for $k \in \mathbf{Z}$. By the claim, we obtain the following exact sequence

$$0 \to F^{k+1} = \psi_*(O_X(-(k+1)E)) \to F^k = \psi_*(O_X(-kE)) \to H^0(O_E(k))$$

 $\to R^1\psi_*(O_X(-(k+1)E)) = 0$

for $k \geq 0$.

We have

$$0 \to H^0_{G_+}(G) \to G \to \bigoplus_{k \in \mathbf{Z}} H^0(O_E(k)) \to H^1_{G_+}(G) \to 0.$$

Since G is an integral domain, $H^0_{G_+}(G)=0$. Further $\bigoplus_{k\in \mathbf{Z}}H^0(O_E(k))=\Gamma_*(G)$ is normal. This is shown as follows: Let \bar{G} be the normalization of G in Q(G). Since G has only isolated singularity, \bar{G}/G has finite length. Hence on $E=\operatorname{Proj}(G)$, we have the relation $\bar{G}(k)=G(k)$. By Demazure, with $T\in Q(\bar{G})_1$, there exists $D\in Div(E)\otimes \mathbf{Q}$ as follows; $\bar{G}(k)=O_E(kD)T^k$, for $k\in \mathbf{Z}$. Hence $\Gamma_*(G)=R(E,D)=\bar{G}$.

Therefore, we obtain the relation $H^1_{G_+}(G)_k = 0$ for $k \leq -1$. And the relation $H^1_{G_+}(G) = 0$ follows.

Step 4. We will discuss the log terminal property of G = R(E, D) under the assumption that A is log terminal of index r.

We have the following.

Lemma [8]. Let us assume the conditions that G is an integral domain where $Spec(G) - V(G_+)$ is normal Gorenstein and that Spec(A) - V(m) is Gorenstein. Then the following relations hold.

$$\frac{\omega_X^{[m]}(mE-\alpha E)}{\omega_X^{[m]}(mE-(\alpha+1)E)}\cong \omega_E^{[m]}(mD'+\alpha D) \ \ \textit{for} \ \ m,\alpha\in \mathbf{Z}.$$

Here $O_E(k) = O_E(kD)T^k$ as before, with $D = \sum_{V \in Irr^1(X)} \frac{p_V}{q_V}V$ with $(p_V, q_V) = 1$,

$$q_V \ge 1$$
 and $D' = \sum_{V \in Irr^1(X)} \frac{q_V - 1}{q_V} V$.

By the relation

$$\omega_X^{[r]}(rE - \alpha E) \cong O_X(-(a' + \alpha)E), \text{ for all } \alpha \in \mathbf{Z}$$

we obtain

$$\omega_E^{[r]}(rD' + \alpha D) \cong O_E((\alpha + a')D)$$
, for all $\alpha \in \mathbf{Z}$

by Lemma. Hence $K_R^{[r]} = R(a')$ follows.

Here $\operatorname{Spec}(R) - V(R_+) = \operatorname{Spec}(G) - V(G_+)$ is regular, G = R(E, D) is log terminal (resp. log canonical) if and only if a' < 0 (resp. $a' \le 0$) by Theorem (2.5) and Theorem (2.8) of [7].

We will discuss the index of R. By Lemma, we have the following exact sequence.

$$0 \to \frac{T^m \omega_{\mathcal{R}'}^{[m]}}{T^{m-1} \omega_{\mathcal{R}'}^{[m]}} \to K_{R(E,D)}^{[m]} \to$$

$$\bigoplus_{k \in \mathbf{Z}} \operatorname{Ker} \left\{ H^1(\omega_X^{[m]}(mE - (k+1)E)) \to H^1(\omega_X^{[m]}(mE - kE)) \right\} \to 0 \text{ for } m \in \mathbf{Z}.$$

If there exist r' > 1 where the relation $K_{R(E,D)}^{[r']} = R(a")$ is satisfied for some integer $a" \in \mathbf{Z}$, we have the relation $\frac{a"}{r'} = \frac{a'}{r}$. We obtain a" < 0.

Here
$$(K_R^{[r']})_k = R_{k+a}$$
, hence $(K_R^{[r']})_k = 0$ if $k \le -1$.

For $k \geq 0$, we set $m = r' \geq 1$ and obtain the relations

$$\omega_X^{[m]}(mE-(k+1)E) = \omega_X((m-1)(K_X+E)-kE),$$

and

$$(m-1)(K_X+E)-kE\equiv -\left(-rac{m-1}{r}a'+k
ight)E.$$

This is ψ -nef, hence the following vanishing hold

$$H^1(\omega_X^{[m]}(mE-(k+1)E))=0 \text{ for } k\geq 0.$$

Hence $\frac{T^m \omega_{\mathcal{R}'}^{[m]}}{T^{m-1} \omega_{\mathcal{R}'}^{[m]}} \cong K_{R(E,D)}^{[m]}$ with m = r'. Hence $T^m \omega_{\mathcal{R}'}^{[m]}$ is locally principal along $V(T^{-1}) = \operatorname{Spec}(R(E,D)) \subset \operatorname{Spec}(\mathcal{R}')$. For $c \neq 0 \in \operatorname{Spec}(T^{-1})$, it follows that $\omega_{\mathcal{R}'}^{[m]}/(T^{-1}-c)\omega_{\mathcal{R}'}^{[m]} = \bigcup_{k \in \mathbf{Z}} \psi_*(\omega_X^{[m]}(-kE)) = \omega_A^{[m]}$ is a principal $\mathcal{R}'/(T^{-1}-c)\mathcal{R}' = A$ -module for same c.

Step 5. We will show: The condition that A is a canonical (resp. terminal) singularity implies that G is also a canonical (resp. terminal) singularity.

Proof. Let $\omega: \mathcal{V} = \operatorname{Spec}(\mathcal{R}') \to \operatorname{Spec}(\mathcal{L}^{-1}) \cong \mathbf{C}$ with $\mathcal{V}_0 = \operatorname{Spec}(\mathcal{L}^{-1})$ and $\mathcal{V}_c \cong \mathcal{V}$ for $c \neq 0$. Let us introduce the filtration of ideals $\{F^l(\mathcal{R}')\}$ on \mathcal{R}' by the following way: $F^l(\mathcal{R}') = \mathcal{R}' \mid_{l} \cdot \mathcal{R}' \subset \mathcal{R}'$, where $\mathcal{R}' = \bigoplus_{k \geq l} F^l T^l \subset \mathcal{R}'$ for $l \in \mathbf{Z}$. As is shown in [6]§5, we obtain the following diagram after the blowing-up of $\mathcal{V} = \operatorname{Spec}(\mathcal{R}')$ by this

пиганоп.

$$Y" = \operatorname{Proj}(\mathcal{R}_{\mathcal{F}}(\mathcal{R}')) \qquad \stackrel{\xi}{\longrightarrow} \qquad \operatorname{Spec}(\mathcal{R}') = \mathcal{V}$$

$$\omega" \searrow \qquad \qquad \swarrow \omega \qquad ,$$

$$K_{\mathcal{R}'}^{[r]} \cong \mathcal{R}'(a'+r).$$

There is a meromorphic r-ple d+1-form $\tilde{\Omega}_0$ of \mathcal{R}' such that $\mathcal{R}' \to K_{\mathcal{R}'}^{[r]}; 1 \to \tilde{\Omega}_0$ gives an isomorphism. This induces the isomorphism

$$\omega_{Y"}^{[r]} = O_{Y"}(r+a')\xi^*(\tilde{\Omega}_0),$$

that is, we have the relation $div_{Y''}\tilde{\Omega}_0 = -(r+a')\mathbf{E}$, where the relation $\operatorname{Proj} gr_{\mathcal{F}}(\mathcal{R}') = \mathbf{E} \cong E \times \mathbf{C}$. Here $E = \operatorname{Proj}(G)$. Since $a' \leq -r$, $\xi^*(\tilde{\Omega}_0)$ is holomorphic on Y''. Hence $\operatorname{Res}_{(Y'')_c}(\tilde{\Omega}_0)$ is a holomorphic r-ple d-form on $(Y'')_c$ which does not vanishes on $(Y'')_c - E$. Here $(Y'')_c = X = \operatorname{Proj}(\mathcal{R})$ for $c \neq 0$, and $(Y'')_c = \operatorname{Proj}(G^{\dagger}) = C(E, D)$ for the case c = 0. Here $\operatorname{Res}_{(Z')_c}(\tilde{\Omega}_0)$ gives a generator of $\omega_{(Z')_c}^{[r]}$ for $c \in \mathbf{C} = \operatorname{Spec}(\mathbf{C}[T^{-1}])$.

We state the following claim.

Claim. There is a resolution of singularities $\beta: \tilde{Y}^{"} \to Y^{"}$ such that the natural induced map $\tilde{\omega}^{"}: \tilde{Y}^{"} \to \mathbb{C}$ is locally trivial along the fiber over $\{0\} = V(T^{-1})$:

$$ilde{Y}$$
" $\stackrel{eta}{\longrightarrow}$ Y " = $\operatorname{Proj}(\mathcal{R}_{\mathcal{F}}(\mathcal{R}'))$ $\swarrow \omega$ " \hookrightarrow $\operatorname{Spec}\mathbf{C}[T^{-1}]$.

Let $\mathbf{F} \subset \tilde{Y''} \to C$ be the horizontal divisor of $\tilde{Y''}$ which is exceptional for $\beta : \tilde{Y''} \to Y''$. For $c \neq 0$, we have the relation:

$$\operatorname{Res}|_{\tilde{Y}_{c}^{"}}\left(\beta^{*}(\tilde{\Omega}_{0})\right) = \beta^{*}\left(\operatorname{Res}|_{Y_{c}^{"}}\tilde{\Omega}_{0}\right).$$

Since (A, m) has only canonical singularities, this is holomorphic. Hence $\tilde{\Omega}_0$ is holomorphic on \tilde{Y} . Therefore Res $|_{\tilde{Y}_0}$ $\left(\beta^*(\tilde{\Omega}_0)\right)$ is holomorphic.

Q.E.D. for the claim.

Step 6. Here we will introduce a filtration F_B on the local ring $B = \bigoplus_{k=0}^{r-1} \omega_A^{[k]}$ which has the desired properties as is claimed in Theorem 2.

By a tentative way, we set $F_B^k(\omega_A^{[m]}) \subset \omega_A^{[m]}$ as follows:

$$F_B^k(\omega_A^{[m]}) = \sum_{ma'+rh \geq k \cdot gcd(a',r)} \psi_* \left(\omega_X^{[m]}(mE-kE)) \right) \subset \omega_A^{[m]},$$

and

$$F_B^k(B) = \bigoplus_{m=0}^{r-1} F_B^k(\omega_A^{[m]}) U^m \subset B = \bigoplus_{m=0}^{r-1} \omega_A^{[m]} U^m.$$

The main point which we have to check here is the assertion that the associated graded ring of $gr_{F_B}B$ is nothing but the graded canonical cover G = R(E, D). We can show this assertion by the following formula about graded cyclic covers which we will recall in the below.

Now, K_G is a **Q**-Cartier divisor of index r and there exists $\varphi \in k(X)$ such that $rK_E - a'D = div_X(\varphi)$.

Corollary (1.7.1) of [7]. Let $S = S(R, K_R, \varphi T^{a'})$ be the normal graded cyclic r-cover of R = R(X, D) as described in [7]. Then the Pinkham-Demazure construction S with respect to $\tilde{T} = T^{\beta}u^{\alpha}$ with $\alpha a' + \beta r = s(=(r, a'))$ is given by $S = R(F, \tilde{D})$ as follows: (1) F is the cyclic cover of E given by

$$\rho: F = Spec_E(\bigoplus_{l=0}^{s-1} O_E(l\left(\frac{r}{s}(K_X + D') - \frac{a'}{s}D\right))) \to E.$$

- (2) $\tilde{D} = \rho^* \{ \alpha(K_X + D') + \beta D \}.$
- (3) We obtain the relation $K_S = S(\frac{a'}{s})$.

By using Lemma B and the above theorem we can check the assertion. The details are left to the readers.

Further we obtain the following relations;

$$F_B^k \cap A = F_B^k(\omega_Z^{[0]}) = \sum_{h \geq k \frac{\gcd(a',r)}{r}} \psi_*(O_X(-hE)) = F^{[k \frac{\gcd(a',r)}{r}]}.$$

Step 7. Now we assume that $d = \dim A = 3$ and that (V, p) is a terminal singularity of index r. Then so is $gr_F(A) = R(E, D)$. Since $gr_{F_B}(B)$ is the graded canonical cover of $gr_F(A)$, $gr_{F_B}(B)$ is a terminal 3-dimensional singularity of index one, hence is regular or conpund Du Val singularity. In particular, $gr_{F_B}(B)$ is a hypersurface isolated singularity by M. Reid [4].

We have the following results on multiplicities of filtered rings;

Lemma [5]. Let $P(G_B, \lambda) = \sum_{k \geq 0} l((G_B)_k) \lambda^k \in \mathbf{Z}[[\lambda]]$ and $x_1, \ldots, x_x \in (G_B)_+$ be a homogeneous minimal generator with $\deg x_1 \leq \deg x_2 \leq \ldots \leq \deg x_s$. Then we have the followings.

- (1) $\deg x_1 \cdot \deg x_2 \cdots \deg x_d \lim_{\lambda \to 1} (1-\lambda)^d P(G_B, \lambda) \leq e(m_B, B) \leq e((G_B)_+, G_B)$. Hence, if $e((G_B)_+, G_B)$ equals the round up of the rational number $\deg x_1 \cdot \deg x_2 \cdots \deg x_d \lim_{\lambda \to 1} (1-\lambda)^d P(G_B, \lambda)$, then we have the equality $e(m_B, B) = e((G_B)_+, G_B)$.
- (2) If G_B is a hypersurface isolated singularity which is defined by a quasi-homogeneous polynomial of type $(\deg x_1, \ldots, \deg x_{d+1}; h)$, then $\deg x_1 \cdot \deg x_2 \cdots \deg x_d \lim_{\lambda \to 1} (1 \lambda)^d P(G_B, \lambda) = \frac{h}{\deg x_{d+1}}$ and $e((G_B)_+, G_B)$ equals to the round up of the rational number $\frac{h}{\deg x_{d+1}}$.

Hence we obtain the relation $e(m_B, B) = e((G_B)_+, G_B) (= 1, \text{ or } 2)$.

This completes the proof of Theorem 2.

References

- 1. T. Hayakawa: Blowing ups of 3-dimensional terminal singularities. II. Publ. Res. Inst. Math. Sci. 36 (2000), no. 3, 423–456.
- 2. M. Kawakita: Divisorial contractions in dimension three which contract divisors to smooth points. Invent. math.145, 105-119 (2001).
- 3. Y. Kawamata: Divisorial contractions to 3-dimensional terminal quotient singularities. in "Higher-dimensional complex varieties (de Gruyter, 1996)" 241–245
- 4. M. Reid: Young person's guide to canonical singulariteis. In: Block, SJ.(ed) Algebraic Geometry, Bowdoin 1985, Part I (Proceedings of Symposia in Pure Mathematics, vol. 46, 354-414) Amer. Math. Soc. (1987)
- 5. M. Tomari: Multiplicity of filtered rings and simple K3 singularities of multiplicity two. preprint
- M. Tomari, Kei-ichi Watanabe: Filtered rings, filtered blowing-ups and normal two-dimensional singularities with "star-shaped" resolution. Publ. Res.Inst.Math.Sci. Kyoto Univ.25-5(1989),681 -740.
- 7. M. Tomari, Kei-ichi Watanabe: Cyclic covers of normal graded rings. to appear in Kodai Math. J.
- 8. M. Tomari: Papers which include the proof of Lemma in Step 4 of §2, in preparation.
- 9. J. Wahl: Deformations of quasi-homogeneous surface singularities, Math. Ann. 280, 103-128