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1. INTRODUCTION

We study smoothing effect for the following nonlinear dispersive equation of the Benjamin-
Ono type

(1.1) $\{$

$\partial_{t}u+H_{x}\partial_{x}^{2}u+\partial_{x}u^{2}=0$ , $t\in(-T, T)$ , $x\in \mathbb{R}$

$u(0, x)=\phi(x)$ ,

where $u(t, x)$ : $\mathbb{R}\cross \mathbb{R}arrow \mathbb{R}$ is an unknown function and $\prime H_{x}$ denotes the Hilbert transform
defined by $H_{x}v= \mathcal{F}\frac{\xi}{i|\xi|}\hat{v}$ (see [3], [37]). Our problem here is to investigate asufficient
condition of the initial data $\phi$ on which the solution has regularizing property up to
analyticity.

One related problem to (1.1) is the Cauchy problem for the Korteweg -de Vries type

(1.2) $\{$

$\partial_{t}u+\partial_{x}^{3}u+\partial_{x}u^{2}=0$ , $t\in(-T, T)$ , $x\in \mathbb{R}$

$u(0, x)=\phi(x)$ .

This equation appears in the water wave theory and $u$ describes the height of ashallow
water wave. There are plenty amount of literatures concerning the study of the $\mathrm{K}\mathrm{d}\mathrm{V}$

equation ([8], [27], [41]). Among others, T. Kato [28] was the first to extract asmoothing
effect from the linear part of the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation:

(1.3) $\{$

$\partial_{t}v+\partial_{x}^{3}v=0$, $t$ , $x\in \mathbb{R}$

$v(0, x)=\phi(x)$ .

He showed the local smoothing effect for the solution to (1.3) as follows:

(1.4) $\int_{0}^{T}\int_{-R}^{R}|\partial_{x}v|^{2}dxdt\leq C(R, T)||\phi||_{2}^{2}$ .
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This estimate enables us to treat aweak solution of the KdV equation (1.2) in the Sobolev
space $H^{s}(\mathrm{R})$ for s $\ovalbox{\tt\small REJECT}$ $3/2$ (See also Sjolin [39], Constantin-Saut [8] and Vega [43] for more
general cases). Here $H^{s}\ovalbox{\tt\small REJECT}$ $H^{s}(\mathrm{R})$ denotes the Sobolev space of order s defined by

$H^{s}(\mathbb{R})=\{f\in S’ : ||f||_{H^{\partial}}<\infty\}$ , $||f||_{H^{s}}\equiv||\langle\xi\rangle^{s}\hat{f}||_{2}$ ,

$\hat{f}=Ff$ is the Fourier transform of $f$ and $\langle\cdot\rangle=$ $(1+|\cdot|^{2})^{1/2}$ . Kenig-Ponce-Vega [30] ex-
tended the Kato type smoothing effect and moreover discovered ahigher order smoothing
effect for the inhomogeneous term of the perturbed linear $\mathrm{K}\mathrm{d}\mathrm{V}$ equation. Their estimates
to the homogeneous and inhomogeneous part are the following:

(1.5) $||D_{x}V(t)\phi||_{L_{x}(\mathbb{R}_{j}L_{T}^{2})}\infty\leq C||\phi||_{2}$ ,

(1.6) $||D_{x}^{2} \int_{0}^{t}V(t-s)F(s)ds||_{L_{x}(\mathbb{R}_{j}L_{T}^{2})}\infty\leq C||F||_{L_{x}^{1}(\mathbb{R}_{j}L_{T}^{2})}$,

where $D_{x}=H_{x}\partial_{x}$ and $V(t)=e^{-t\partial_{l}^{3}}$ denotes the free $\mathrm{K}\mathrm{d}\mathrm{V}$ (Airy) evolution group. Using
these estimates (with more extensions), they showed that the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation is well-posed
in the Sobolev space $H^{3/4}$ . In the series of papers, Bourgain [4] obtained $L^{2}$ well-posedness
of the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation in the periodic boundary condition. Kenig-Ponce-Vega [31], [32]
proved some bilinear estimates involving negative exponent Sobolev spaces and refined
the local well-posedness for the Cauchy problem in negative Sobolev spaces $H^{s}(\mathbb{R})$ for
$-3/4<s$ . Those are obtained by the method of the Fourier restriction norm and asharp
estimate for the quadratic nonlinear term in the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation. In fact, the polynomial
structure of the nonlinear term has asort of smoothing effect such as

(1.7) $|| \int_{0}^{t}V(-s)\partial_{x}v(s)^{2}ds||_{H_{t}^{b}(\mathbb{R}_{j}H_{x}^{s})}\leq C||V(-\cdot)v||_{H_{t}^{b}(\mathbb{R}_{j}H}^{2}i)$ , $b> \frac{1}{2}$ .

On the other hand, ahighly regular solution and its smoothing effect were also studied
by several authors. T.KatO-Masuda [29] obtained aglobal smooth solution and analyticity
for any point $(t, x)\in \mathbb{R}\cross \mathbb{R}$ (Ukai [42] considered abilinear estimate for the Boltzmann
equation in Gevrey and analytic classes.) Asmoothing effect uP to analyticity or Gevrey
class is then proved by Hayashi-K.Kato [16] who obtained an analytic smoothing effect
for the nonlinear Schr\"odinger equation (see also K.KatO-Taniguchi [26]) and de Bouard-
Hayashi-K.Kato [10] established analyticity for the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation from Gevrey initial
data. Those results are basically obtained by using operators which commute or almost
commute to the linear $\mathrm{K}\mathrm{d}\mathrm{V}$ equation.

In [23], we showed that asingle point singularity of the initial data at, say the origin,
like the Dirac 6measure, immediately disappears after time passes and regularity of the
solution to the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation reaches real analyticity in both space and time variables
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To be more precisely, we recall the Fourier restriction space (see [4], [31])

$||f||_{X_{b}^{s}}=( \int\int\langle\tau-\xi^{3}\rangle^{2b}\langle\xi\rangle^{2s}|\hat{\hat{f}}(\tau, \xi)|^{2}d\tau d\xi)^{1/2}=||V(-\cdot)f(\cdot)||_{H_{t}^{b}(\mathbb{R};H_{x}^{\mathit{8}}(\mathbb{R}))}$ ,

where $V(t)$ is the unitary group of the free $\mathrm{K}\mathrm{d}\mathrm{V}$ evolution $e^{-t\partial_{x}^{3}}$ . The result proved in (K.
KatO-Ogawa [23] $)$ for (1.2) was as follows;

Theorem 1.1 ([23]). $Let-3/4<s$ . Suppose that the initial data $\phi\in H^{s}(\mathbb{R})$ and satisfy

for some $A_{0}>0$ ,

$\sum_{k=0}^{\infty}\frac{A_{0}^{k}}{k!}||(x\partial_{x})^{k}\phi||_{H^{\mathit{8}}}<\infty$ .

Then for some $b\in(1/2,7/12)$ , there exists a unique solution $v\in C((-T, T),$ $H^{s})\cap X_{b}^{s}$

of the $KdV$ equation (1.2) in a certain time interval $(-T, T)$ and the solution $v$ is time
locally well-posed, $i.e$ . the solution continuously depends on the initial data.
Moreover the solution $v$ is analytic at any point $(t, x)\in(-T, 0)\cup(0, T)\cross \mathbb{R}$

One can easily see that atypical example of initial data satisfying the assumption
of the above theorem is the Dirac delta measure or $p.v. \frac{1}{x}$ , where $p.v$ . denotes Cauchy’s
principal value. Analyticity for the inverse scattering solution with weighted initial data
was obtained recently by Tarama [40]. Since our method is based on the fact that the
solution is in $H^{s}$ , we do not know if our result is true globally in time.

Compared with the well-posedness theory to the $\mathrm{K}\mathrm{d}\mathrm{V}$ case, the Benjamin-One equation
(1.1) is not yet well-understood. The existence and well-posedness problem of this equa-
tion is studied by again T. Kato [27] and also some development was done by Iorio Jr.
[21], Ponce [38], Kenig, Ponce and Vega [32] and reference therein. Since the Benjamin-
Ono equation has adispersive structure similar to the Schr\"odinger equations, we expect
that analogous results may hold for the nonlinear problem (1.1).

As aconsequence, we observe analytic smoothing effect for the solution to (1.1) with
the initial data having asingularity at the origin.

Let $L_{s}^{2}(\mathbb{R})$ denote the weighted $L^{2}$ defined by

$||f||_{L_{s}^{2}}\equiv||\langle x\rangle^{s}f||_{2}<\infty$.

Under the restriction in the weighted Sobolev space, the analytic smoothing effect for the
Benjamin-Ono equation can be stated as follows.

Theorem 1.2 ([22]). Let $s>3/2$ . Suppose that for some $A_{0}>0$ , the initial data $\phi\in$

$H^{s}(\mathbb{R})$ and satisfies

$\sum_{k=0}^{\infty}\frac{A_{0}^{k}}{((k-1)!)^{2}}(||(x\partial_{x})^{k}\phi||_{H^{s}}^{2}+||(x\partial_{x})^{k}\phi||_{L_{s}^{2}}^{2})<\infty$ ,
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(where 0!, (-1)!=1) then there exists a unique solution $u\in C(\mathbb{R}H^{s})$ to the nonlinear
dispersive equation (1.1) and for any $(t,x)\in(\mathbb{R}\backslash \{0\})\cross \mathbb{R}$ there exists some $A>0$ such
that we have

$|\partial_{t}^{j}\partial_{x}^{l}u(t, x)|\leq C\langle t^{-1}\rangle^{j+l}\langle x\rangle^{2l+3j}A^{j+l}(j+l)!$

for any $j$ , $l\in \mathrm{N}$ Namely $u(t$ , $\cdot$ $)$ is a real analytic function in both space and time variables
$(t, x)\in \mathrm{R}/\{0\}\cross \mathbb{R}$

The existence and uniqueness result of the Benjamin-Ono equation can be found in the
articles by Iorio Jr. [21], Ponce [38]. The global well-posedness in time is also discussed
by Kenig, Ponce and Vega [32]. Our result is based on those well-posedness results in the
Sobolev space $H^{s}(\mathbb{R})$ with $s>3/2$ . It seems that the well-posedness in aspace weaker
than $H^{3/2}$ is not well established as far as the author knows. If this is improved such as
$H^{s}$ with $s\leq 3/2$ , we may extend our result into such aweaker spaces.

We should also emphasize that from the result by Iorio Jr. [21], there is by no means
asolution to (1.1) in the weighted space $H^{s}\cap L_{s}^{2}$ , where $s>3$ and there is no solution
in $H^{s}\cap L_{s}^{2}$ when $s>2$ unless the data satisfies $\int\phi(x)dx=0$ . Roughly speaking, this is
because the characteristic of the linear part of the Benjamin-Ono equation is not smooth
at $\xi=0$ . If we assume that the solution belongs to some weighted $L^{2}$ space, then the
Fourier transform of the solution has to be smooth (or continuous) around ( $=0$ . While
the evolution $e^{:t|\xi|\zeta}$ loses the regularity (or integrability) when we take the derivative of
evolution by 4. For example, if we take aderivative more than 5/2, it loses the $L^{2}$

integrability at $\xi=0$ . This contradicts the solution belongs to the weighted space. Since
the weight condition on the data is less than 5/2, the above observation does not really
contradict our result. Our solution has aheavy condition on its derivative of solution
but not the solution itself. And even more, the solution reaches higher regularity up to
space-time analyticity.

Quite recently, aremarkable ill-posedness result was obtained by Molinet, Saut and
Tzvetkov [36], where they proved the iteration scheme from the integral equation can
not yield the well-posedness in any order of the Sobolev spaces. Since our well-posedness
result is based on aquadratic form and multiplication with integration by parts, it is
possible to avoid this deficiency.

The essential difference in proving the above results from the case for the nonlinear
Schr\"odinger or $\mathrm{K}\mathrm{d}\mathrm{V}$ equation is due to the appearance of the nonlocal operator $H_{x}$ .

Since our method is depending on the commutator argument using the generator of
the dilation, we reduce the equation into asystem of infinitely many equations of the
Benjamin-Ono type. It is well known that the Kato type method for the quasi-linea
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equation ([27]) saves the derivative loss if it is asingle equation or having anice nonlin-
earity. However the reduced system here is not the case. To fill this gap, we invoke the
local smoothing property for the linear dispersive equations. This nature for the disper-
sive equations was observed by several authors [35], [28], [39], [43], [17] and [8]. Namely,
some gauge invariance for the Schr\"odinger equation also works to save the derivative loss.
Hayashi [14] firstly applied the nonlinear gauge transform to obtaining the existence the-
orem for the nonlinear Schrodinger equation with derivative nonlinearity. Independently
the linear case was studied by Doi [11] and his work was developed further by Chihara
[6] and Kenig-Ponce-Vega [34]. (see also [18], [15]). Here we apply those local smoothing
property under the weight condition to save the derivative loss for the reduced system.

To prove the solution is real analytic in space and time directions, we employ alocal-
ization technique. Then it is required to treat the non local term carefully to show the
higher regularity. We then introduce aweight function which has an explicit commuting
estimate with $\gamma\{_{x}$ . This enables us to handle the nonlocal term $H_{x}$ in the linear part of
the equation. In the following section, we first show the outline of our method and what
is the difficulty. Then in the subsequent section we give the local well posedness of the
reduced equations and regularity up to the analyticity in space time directions.

2. METHOD

In this section we give an overview of the whole proof for the Benjamin-Ono case and
present some difference from the proof of the former cases in [23] and [24].

Firstly, we introduce the generator of the dilation $P=2t\partial_{t}+x\partial_{x}$ corresponding to
the linear part of the dispersive equation. Since the commuting relation with the linear
dispersive operator $L\equiv\partial_{t}+H_{x}\partial_{x}^{2}$ is

$[L, P]=2L$,

it follows
$LP^{k}=(P+2)^{k}L$ ,

(2.1)
$(P+2)^{k}\partial_{x}=\partial_{x}(P+1)^{k}$ , $k=1,2$ , $\cdots$

Applying $P=2t\partial_{x}+x\partial_{x}$ to the equation, we have

(2.2) $\{$

$\partial_{t}u+’H_{x}\partial_{x}^{2}u+\partial_{x}u^{2}=0$, $t$ , $x\in \mathbb{R}$

$u(0, x)=\phi(x)$ .

Iteratively, it follows

(2.3) $\partial_{t}(P^{k}u)+H_{x}\partial_{x}^{2}(P^{k}u)=(P+2)^{k}Lu=-(P+2)^{k}\partial_{x}(u^{2})$ .
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Then if we set $u_{k}=P^{k}u$ and $B_{k}(u, u)=-(P+2)^{k}\partial_{x}u^{2}$ ,

$(P+1)^{l}u=(P+1)^{l-1}Pu+(P+1)^{l-1}u=\cdots$

(2.4)
$= \sum_{j=0}^{l}\frac{l!}{j!(l-j)!}P^{j}u$ ,

and hence
$B_{k}(u, u)=-(P+2)^{k}\partial_{x}(u^{2})=-\partial_{x}(P+1)^{k}(u^{2})$

(2.5)
$=- \partial_{x}\sum_{l=0}^{k}$ $(\begin{array}{l}kl\end{array})$ $(P+1)^{l}uP^{k-l}u$

$=- \partial_{x}\sum_{k=k_{0}+k_{1}+k_{2}}\frac{k!}{k_{0}!k_{1}!k_{2}!}u_{k_{1}}u_{k_{2}}$ .

The important point is that the nonlinear terms $B_{k}(u, u)$ maintain the bilinear structure
similar to the original Benjamin-Ono equation. This is due that the Leibniz rule can
be applicable for an operation of $P$ . Thus each of $u_{k}$ satisfies the following system of
equations;

(2.6) $\{$

$\partial_{t}u_{k}+’H_{x}\partial_{x}^{2}u_{k}=B_{k}(u, u)$ , $t$ , $x\in \mathbb{R}$

$v_{k}(0, x)=(x\partial_{x})^{k}\phi(x)$ .

Therefore, we consider the following system of dispersive equation and show the well-
posedness of the system as well as establishing an estimate for the derivatives

(2.7) $\{$

$\partial_{t}u_{k}+H_{x}\partial_{x}^{2}u_{k}=B_{k}(u, u)$ , $t$ , $x\in \mathbb{R}$

$u_{k}(0, x)=\phi_{k}(x)$ .

One difficulty to establish the local well-posedness to the above system is that the
method of quasi-linear equation by T.Kato [27] does not work well since some of the
nonlinear term, say $\partial_{x}(u_{k_{1}}u_{k_{2}})$ does not contains the same function $u_{k}$ which represents
the principal linear part. Therefore it is required to use some kind of smoothing effect from
the dispersive property to avoid the derivative loss. Following the argument found in [6],

[18] and [15], we consider avariation of the weight function $\mathcal{E}_{x}(x)=\exp(-\int_{-\infty}^{x}\omega^{2}(y)dy)$ ,

where $\omega(x)$ is an appropriately chosen weight function. By commuting $\mathcal{E}_{x}$ with the linear
part, this weight function gains one half derivative under some weight condition, then the
local existence and wellposedness for the following infinitely coupled system of Benjamin-
Ono type is proved in aproper weighted Sobolev space. We also note that the solution is
constructed in aslightly stringent function class such as

$\sum_{k=0}^{\infty}\frac{A_{1}^{k}}{(k-1)!^{2}}||u_{k}||_{H^{s}\cap L^{2}}^{2}$. $<\infty$
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than the case of the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation $(\mathrm{c}.\mathrm{f}.[23])$ , since it is required for the quadratic argument.
Then taking $\phi_{k}=(x\partial_{x})^{k}\phi(x)$ , the uniqueness and local well-posedness allow us to say
$u_{k}=P^{k}u$ for all $k=0,1$ , $\cdots$ .

Through the process of proving the existence and uniqueness , we obtain the estimate

$||P^{k}u||_{H^{\theta}}\leq CA^{k}k!$ .

Then we would derive the point-wise derivative estimate by using the equation:

(2.8) $H_{x} \partial_{x}^{2}P^{k}u=-\frac{1}{2t}P^{k+1}u+\frac{1}{2t}x\partial_{x}P^{k}u+B_{k}(u, u)$ .

To treat the second term of the right hand side of (2.8), we employ the localization
argument. That is, by $a=a(x)$ we denoted asuitable decaying weight function and can
show that

$||a\partial_{x}^{l}P^{k}u(t)||_{H^{1}(\mathbb{R})}\leq C\langle t^{-1}\rangle^{l}A^{k+l}(k+l)!$ , $k$ , $l=0,1,2$ , $\cdots$

and then by iterative argument, we can shift from the estimate with the operator $P^{k}$ to
$(t\partial_{t})^{l}$ and conclude

(2.9) $||(t\partial_{t})^{l_{1}}\partial_{x^{2}}^{l}u(t)||_{L^{\infty}(x0-\delta,x\mathrm{o}+\delta)}\leq C\langle t^{-1}\rangle^{l_{1}+l_{2}}\langle x_{0}\rangle^{3l_{1}+2l_{2}}A^{l_{1}+l_{2}}(l_{1}+l_{2})!$

for $l_{1}$ , $l_{2}=0,1,2$ , $\cdots$ . In acrucial step for obtaining the above derivative estimates is to
treat the nonlocal operator $H_{x}$ which is an essential difference from the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation or
nonlinear Schr\"odinger equations. It is well known that the commutator estimate holds
between the Hilbert transform and some smooth cut-0ff function $a(x)$ ( $\mathrm{c}.\mathrm{f}.$ , Calder\’on [5]).
However it is now required to show an explicit dependence of the order of the iteration
on the constant appeared in the commutator estimate:

$||[H_{x}, a^{k}]\partial_{x}^{k}||_{\mathcal{L}(L^{2}arrow L^{2})}\leq C_{k}$,

where $a^{k}=a(x)^{k}$ . In order to make it explicit, we choose aparticular weight function
$a(x)=\langle x\rangle^{-2}$ , where $\langle x\rangle=(1+|x|^{2})^{1/2}$ and derive an explicit commuting estimate with
the Hilbert transform and $a^{k}$ . By this step, we may use the equation (2.8) to gain the
regularity and to show the analyticity (2.9).

3. CONSTRUCTION OF THE SOLUT1ON

To establish the well-posedness for the system of Benjamin-Ono type equation (2.7),
we arrange the equation as follows. By setting $v_{k}=((k-1)!)^{-1}u_{k}$ , the equation (2.7)
$-(2.5)$ can be reduced as the following slightly simpler system;

(3.1) $\{$

$\partial_{t}v_{k}+7\{_{x}\partial_{x}^{2}v_{k}=\tilde{B}_{k}(v, v)$, $t$ , $x\in \mathbb{R}$

$u_{k}(0, x)=\phi_{k}(x)$ ,
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(3.2)
$\tilde{B}_{k}(v, v)=-\partial_{x}\sum_{k=k_{0}+k_{1}+k_{2}}\frac{k}{k_{0}!k_{1}k_{2}}v_{k_{1}}v_{k_{2}}$.

Recall that inside the above summation, $k$ is understood as $k!/(k-1)!$ so that it is 1if
$k=0$ .

To recover regularity loss, we introduce aweight function of exponential type. This
argument is originally due to Mizohata [35], Kato [28] and Doi [11], later on it is developed
by Chihara [6], Hayashi [14] and Kenig-Ponce-Vega [34].

Definition. For $\sigma>0$ and $b>0$ , we let

$\omega(x)\equiv b\langle x\rangle^{-1/2-\sigma}$ ,
(3.3)

$\mathcal{E}_{x}(x)\equiv\exp(-\int_{-\infty}^{x}\omega^{2}(y)dy)$ .

Prom the definition we see $||\mathcal{E}_{x}\psi||\leq||\psi||$ and also the inverse operator $\mathcal{E}_{x}^{-1}$ is continuous
$||\mathcal{E}_{x}^{-1}\psi||\leq e^{Cb}||\psi||$ .

To see Proposition 4.1 holds, it suffices to show that

Proposition 3.1. Let $s>3/2$ . Suppose that for some $A_{1}>0$ , the initial data $\phi\in H^{s}(\mathbb{R})$

and satisfies
$\sum_{k=0}^{\infty}A_{1}^{k}||\phi_{k}||_{H\cap L^{2}}^{2}.$. $<\infty$ ,

then there exists $T>0$ such that the system (3.1) with (3.2) is well-posed in

$\sum_{k=0}^{\infty}A_{1}^{k}(||v_{k}||_{C([0,T]_{j}H\cap L^{2})}^{2}..+\int_{0}^{T}||\omega \mathcal{E}_{x}H_{x}D^{s+\frac{1}{2}}v_{k}||_{2}^{2}dt+\int_{0}^{T}||\omega \mathcal{E}_{x}D^{s+\frac{1}{2}}v_{k}||_{2}^{2}dt)<\infty$.

In the next lemma we derive an energy estimate, involving the operator $\mathcal{E}_{x}$ expressing
the smoothing property of the Benjamin-Ono equation originally due to T.Kato [28]. See
for some variants in Ponce [38], Doi[ll], Chihara [6] and Hayashi [14].

Lemma 3.2. For a smooth solution $u$ to the linear Benjamin-Ono type equation;

(3.4) $\{$

$\partial_{t}u+H_{x}\partial_{x}^{2}u=f$, $t$ , $x\in \mathbb{R}$

$u(0, x)=\phi(x)$ ,

the following inequality holds

$\frac{d}{dt}||\mathcal{E}_{x}u||_{2}^{2}+2||\omega \mathcal{E}_{x}D_{x}^{1/2}u||_{2}^{2}+2||\omega \mathcal{E}_{x}H_{x}D_{x}^{1/2}u||_{2}^{2}\leq 2|(\mathcal{E}_{x}u, \mathcal{E}_{x}f)|+C||u||_{2}^{2}$ .
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Proof of Lemma 3.2. Applying operator $\mathcal{E}_{x}$ to both sides of the linear Benjamin-Ono
equation (3.4),

$\partial_{t}\mathcal{E}_{x}u+H_{x}\partial_{x}^{2}\mathcal{E}_{x}u=[H_{x}\partial_{x}^{2},\mathcal{E}_{x}]u+\mathcal{E}_{x}f$.

Since $[\partial_{x}, \mathcal{E}_{x}]=-\omega^{2}\mathcal{E}_{x}$ , we obtain

(3.5) $\partial_{t}\mathcal{E}_{x}u+H_{x}\partial_{x}^{2}\mathcal{E}_{x}u+2\omega^{2}\mathcal{E}_{x}D_{x}u=(\omega^{4}-\partial_{x}\omega^{2})\mathcal{E}_{x}’H_{x}u+\partial_{x}^{2}[H_{x},\mathcal{E}_{x}]u+\mathcal{E}_{x}f$.

Therefore multiplying both sides of equation (3.5) by $\mathcal{E}_{x}u$ and integrating over $\mathbb{R}$ we have

$\frac{d}{dt}||\mathcal{E}_{x}u||_{2}^{2}+4(\omega^{2}\mathcal{E}_{x}D_{x}u, \mathcal{E}_{x}u)$

$\leq 2|((\omega^{4}-\partial_{x}\omega^{2})\mathcal{E}_{x}H_{x}u, \mathcal{E}_{x}u)|+2|(\partial_{x}^{2}[H_{x}, \mathcal{E}_{x}]u, \mathcal{E}_{x}u)|+2|(\mathcal{E}_{x}f, \mathcal{E}_{x}u)|$ .

For the right hand side, it holds $||(\omega^{4}-\partial_{x}\omega^{2})||_{\infty}\leq C$ and we have

$||(\omega^{4}-\partial_{x}\omega^{2})\mathcal{E}_{x}H_{x}u||_{2}\leq C||u||_{2}$ ,

$||\partial_{x}^{2}[H_{x}, \mathcal{E}_{x}]u||_{2}\leq C||u||_{2}$ .

Hence it follows that

$\frac{d}{dt}||\mathcal{E}_{x}u||_{2}^{2}+4(\omega^{2}\mathcal{E}_{x}D_{x}u, \mathcal{E}_{x}u)\leq 2|(\mathcal{E}_{x}f, \mathcal{E}_{x}u)|+C||u||_{2}^{2}$ .

On the other hand, we find

4 $(\omega^{2}\mathcal{E}_{x}D_{x}u, \mathcal{E}_{x}u)=4(D_{x}\omega \mathcal{E}_{x}u, \omega \mathcal{E}_{x}u)-4([D_{x}, \omega \mathcal{E}_{x}]u, \omega \mathcal{E}_{x}u)$

(3.6) $\geq 2||D_{x}^{1/2}\omega \mathcal{E}_{x}u||_{2}^{2}+2||H_{x}D_{x}^{1/2}\omega \mathcal{E}_{x}u||_{2}^{2}-C||u||_{2}^{2}$

$\geq 2||\omega \mathcal{E}_{x}D_{x}^{1/2}u||_{2}^{2}+2||\omega \mathcal{E}_{x}H_{x}D_{x}^{1/2}u||_{2}^{2}-C||u||_{2}^{2}$ .

This proves Lemma 3.2. $\square$

We give the weighted nonlinear estimate which is the key estimate for proving the well
posedness.

Lemma 3.3. For $0<\sigma<1/6$ , let $s= \frac{3}{2}+3\sigma$ , $\delta=\frac{1}{2}+\sigma$ and $\omega(x)=b\langle x\rangle^{-\delta}$ for some
$b>0$ . For $u$ , $v$ and $w\in H^{s}\cap L_{s}^{2}$ , then we have

(3.7)
$|(\mathcal{E}_{x}u, \mathcal{E}_{x}D_{x}^{s}\partial_{x}(vw))|\leq Cb^{-2}||w||_{H^{e}\cap L_{\theta}^{2}}(||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}H_{x}v||_{2}+||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}v||_{2})||\omega \mathcal{E}_{x}D^{\frac{1}{x^{2}}}u||_{2}$

$+Cb^{-2}||v||_{H\cap L_{s}^{2}}.(||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}H_{x}w||_{2}+||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}w||_{2})||\omega \mathcal{E}_{x}D^{\frac{1}{x^{2}}}u||_{2}$

$+Cb^{-1}||v||_{H^{s}\cap L^{2}}.||w||_{H\cap L_{s}^{2}}.||\omega \mathcal{E}_{x}D^{\frac{1}{x^{2}}}u||_{2}+C||u||_{2}||v||_{H^{s}\cap L_{s}^{2}}||w||_{H^{s}\cap L^{2}}.\cdot$
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For the proof, see [22].
Proof of Proposition 3.1. Let

$M=4( \sum_{k=0}^{\infty}A_{1}^{k}||\phi_{k}||_{H\cap L^{2})^{1/2}}^{2}..$

’

for $s \in(\frac{3}{2}, \frac{5}{3})$ we choose to be such that $s= \frac{3}{2}+3\mathrm{a}$ . We define aclosed subset of the
complete metric space as follows. For $T>0$ which is determined later, we let

(3.8)

$X_{M}=\{f=(f_{0},f_{1}, \cdots);f_{k}\in C([0, T];H^{s}\cap L_{s}^{2})$ ,

$|||f|||_{X} \equiv(\sum_{k=0}^{\infty}A_{1}^{k}\sup_{t\in[0,T]}||f_{k}(t)||_{H\cdot\cap L^{2})^{1/2}}^{2}$.
$+( \sum_{k=0}^{\infty}A_{1}^{k}\int_{0}^{T}(||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}f_{k}(t)||_{2}^{2}+||\omega \mathcal{E}_{x}H_{x}D_{x}^{s+\frac{1}{2}}f_{k}(t)||_{2}^{2})dt)^{1/2}\leq M\}$

Then we introduce amap 4on $X_{M}$ as follows; for any $vu\in X_{M}$ , $\Phi(w)=v=(v_{0}, v_{1}, \cdots)$ ,
where $v$ solves the linear Benjamin-Ono type equation;

(3.9) $\{$

$\partial_{t}v_{k}+H_{x}\partial_{x}^{2}v_{k}=\tilde{B}_{k}(w, v)$ , $t,x\in \mathbb{R}$

$v_{k}(0, x)=\phi_{k}(x)$

with

(3.8) $\tilde{B}_{k}(w, v)=-\partial_{x}\sum_{k=k_{0}+k_{1}+k_{2}}\frac{k}{k_{0}!k_{1}k_{2}}v_{k_{1}}w_{k_{2}}$.

Then we claim that the map $\Phi$ is contraction from $X_{M}$ into $X_{M}$ . To this end, we apply
the operator $D_{x}^{s}$ to equation (3.9),

$\partial_{t}D_{x}^{s}v_{k}+H_{x}\partial_{x}^{2}D_{x}^{s}v_{k}=D_{x}^{s}\tilde{B}_{k}(w, v)$

and from Lemma 3.2 we have the energy type estimate;

$\frac{d}{dt}||\mathcal{E}_{x}D_{x}^{s}v_{k}||_{2}^{2}+2||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}v_{k}||22 +2|| \omega \mathcal{E}_{x}H_{x}D_{x}^{s+\frac{1}{2}}v_{k}||_{2}^{2}$

(3.11)
$\leq C|(\mathcal{E}_{x}D_{x}^{s}v_{k},\mathcal{E}_{x}D_{x}^{s}\tilde{B}_{k}(w,v))|+C||\mathcal{E}_{x}D_{x}^{s}v_{k}||_{2}^{2}$ .

Using Lemma 3.3 and integrating the result with respect to $t\in[0, T]$ and taking asum
over $k$ from 0to oo we find
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$\sum_{k=0}^{\infty}A_{1}^{k}\sup_{t\in[0,T]}||\mathcal{E}_{x}D_{x}^{s}v_{k}||_{2}^{2}+2\sum_{k=0}^{\infty}A_{1}^{k}\int_{0}^{T}$ ( $||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}v_{k}||22 +||\omega \mathcal{E}_{x}H_{x}D_{x}^{s+\frac{1}{2}}v_{k}||_{2}^{2}$ ) $dt$

$\leq\frac{M^{2}}{16}+C_{1}e^{A_{1}}b^{-2}|||w|||_{X}(\int_{0}^{T}\sum_{k=0}^{\infty}A_{1}^{k}||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}v_{k}||_{2}^{2}dt)^{1/2}$

(3.12) $\cross(\int_{0}^{T}\sum_{k_{1}=0}^{\infty}A_{1}^{k_{1}}$ ( $||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}v_{k_{1}}||22 +||\omega \mathcal{E}_{x}H_{x}D_{x}^{s+\frac{1}{2}}v_{k_{1}}||_{2}^{2}dt$ ) $)^{1/2}$

$+C_{1}e^{A_{1}}b^{-2}|||w|||_{X}(0 \sum_{k=0}^{T\infty}A_{1}^{k}||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}v_{k}||_{2}^{2}\sum_{k_{1}=0}^{\infty}A_{1}^{k_{1}}||v_{k_{1}}||_{H^{\epsilon}\cap L_{\mathit{8}}^{2}}^{2}dt)^{1/2}$

$+C(e^{A_{1}/2}|||w|||_{X}+1) \int_{0}\sum_{k=0}^{\tau\infty}A_{1}^{k}||v_{k}||_{H^{\mathit{8}}\cap L_{\mathit{8}}^{2}}^{2}dt$ .

We now choose sufficiently large $b>0$ in (3.12) such that $C_{1}e^{A_{1}}b^{-2}M< \frac{1}{2}$ . Then it

follows from (3.12) that

$\sum A_{1}^{k}\sup_{t\in[0,T]}||\mathcal{E}_{x}D_{x}^{s}v_{k}||_{2}^{2}+\infty\int_{0}^{T}\sum_{k=0}^{\infty}A_{1}^{k}$ ( $||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}v_{k}||22 +||\omega \mathcal{E}_{x}H_{x}D_{x}^{s+\frac{1}{2}}v_{k}||_{2}^{2}$ ) $dt$

(3.13)
$k=0$

$\leq\frac{M^{2}}{4}+C(M+1)\int_{0}\sum_{k=0}^{\tau\infty}A_{1}^{k}||v_{k}||_{H^{s}\cap L_{s}^{2}}^{2}dt$ ,

where the constant $C>0$ .
Similar but much simpler way, we obtain

$\sum_{k=0}^{\infty}A_{1}^{k}\sup_{t\in[0,T]}||\langle x\rangle^{s}v_{k}||_{2}^{2}\leq\frac{M}{4}+C\sum_{k=0}^{\infty}\int_{0}^{T}A_{1}^{k}||\langle x\rangle^{s}v_{k}||_{2}||v_{k}||_{H^{\epsilon}\cap L_{\delta}^{2}}dt$

$(3.14)$

$+C|||w|||_{X}0 \sum_{k=0}^{\tau\infty}A_{1}^{k}||v_{k}||_{H^{s}\cap L_{\epsilon}^{2}}^{2}dt$ .

Choosing sufficiently small time $T>0$ we obtain from (3.13) and (3.14) the estimate

(3.15)

$|||v|||_{X}= \sum_{k=0}^{\infty}A_{1}^{k}\sup_{t\in[0,T]}||v_{k}||_{H^{\epsilon}\cap L_{\theta}^{2}}^{2}+\sum_{k=0}^{\infty}A_{1}^{k}\int_{0}^{T}$ ( $||\omega \mathcal{E}_{x}D_{x}^{s+\frac{1}{2}}v_{k}||22 +||\omega \mathcal{E}_{x}H_{x}D_{x}^{s+\frac{1}{2}}v_{k}||_{2}^{2}$ ) $dt$

$<^{\underline{M}}$

-2
By virtue of (3.15) we see now that the mapping 0is from $X_{hI}$ into itself. In the same
manner we can prove that for $w,\overline{w}\in X_{T}$ ,

$|||v_{k}- \tilde{v}_{k}|||_{X}<\frac{1}{9_{\lrcorner}}|||w-\overline{w}|||_{X}$
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if $T>0$ is sufficiently small, where $v=\Phi(w)$ and $\tilde{v}=\Phi(\tilde{w})$ . Thus (I is acontraction
mapping in $X_{T}$ . Therefore there exists aunique solution $u$ of the Cauchy problem (3.9)
such that

$\sum_{k=0}^{\infty}A^{k}\sup_{t\in[0,T]}||v_{k}(t)||_{H\cap L^{2}}^{2}.$. $\leq M^{2}$ .

This proves Proposition 3.1. $\square$

4. BOOTSTRAp ARGUMENT

We have constructed aweak solution to the dispersive equation (2.7) satisfying the
following extra conormal regularity:

$||P^{k}u||_{H}\cdot\leq CA_{1}^{k}(k-1)!$ $k=0,1$ , $\cdots$ ,

under the condition to the initial data $\phi$ :

$||(x\partial_{x})^{k}\phi||_{H}\cdot\leq CA_{1}^{k}k!$ $k=0,1$ , $\cdots$

Introducing asmooth weight function; $a(x)=\langle x\rangle^{-2}$ , where $\langle x\rangle=(1+|x|^{2})^{1/2}$ , we
firstly derive

(4.2) $||a^{l}\partial_{x}^{l}P^{k}u(t)||_{H_{x}^{1}(\mathbb{R})}\leq C\langle t^{-1}\rangle^{l}A_{1}^{k+l}(k+l)!$, $k$ , $l=0,1,2$ , $\cdots$

To this end, we recall the following lemma originally due to Calder\’on [5] which plays a
key role in the first step of the regularity bootstrap argument.

Lemma 4.1 ([5]). If $||a^{l}\theta_{x}f||_{2}\leq CA^{l}l!||f||_{2}$ for $0\leq l\leq N-1$ , then there exists $a$

constant $A>0$ such that we have

$||[H_{x}, a^{N}]\partial_{x}^{N}f||_{2}\leq CA^{N}N!||f||_{2}$ .

Based upon the above Lemma 4.1, we proceed to show the regularity. The first step is
the following proposition.

Proposition 4.2. Let $u$ be a solution constructed in Proposition 3.1 $satisfying||P^{k}u(t)||_{H^{s}}\leq$

$CA^{k}k!$ for $k=0,1,2$ , $\cdots$ . Then we have

(4.2) $||(x\rangle^{-2l}\partial_{x}^{l}P^{k}u(t)||_{H^{1}}\leq C_{3}\langle t^{-1}\rangle^{l}A_{1}^{k+l}(k+l)!$

for all $k$ , $l=0,1,2$ , $\cdots$ .

See for the proof, [22]. Rest of the proof goes asimilar way as in [23]. By the Sobolev
embedding theorem, we have from Proposition 4.2 that for any $x_{0}\in \mathbb{R}$ and some $\delta>0$

$||\partial_{x}^{l}P^{k}u(t)||_{L}\infty(I_{ae_{0}})\leq C\langle t^{-1}\rangle^{l}\langle x_{0}\rangle^{2l}A_{1}^{k+l}(k+l)!$ $k,l=0,1,2$ , $\cdots$ ,
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where $I_{x_{0}}\ovalbox{\tt\small REJECT}$ $(\mathrm{r}_{0}-15, \mathrm{x}_{0}+15)$ . From this pointwise estimate, we forward the second step
and the operator P can be translated into the time derivative via $tD_{\mathit{6}}\ovalbox{\tt\small REJECT}$ $\mathrm{g}(P-x\mathrm{C})_{x})$ .

This gives the regularity for the solution.

Proposition 4.3. For $\delta>0$ , we denote $I_{x_{0}}=(x_{0}-\delta, x_{0}+\delta)$ . Suppose that there exist
positive constants $C$ and $A_{4}$ such that

(4.3) $t \in[t_{0}-\delta,t_{0}+\delta]\sup||\partial_{x}^{l}P^{k}u(t)||_{L(I_{x_{0}})}\infty\leq C_{0}\langle t_{0}^{-1}\rangle^{l}\langle x_{0}\rangle^{2l}A_{1}^{k+l}(k+l)!$
, $k$ , $l=0,1,2$ , $\cdots$

Then we have

(4.4) $t \in[t_{0}-\delta,t_{0}+\delta]\sup||\partial_{t}^{j}\partial_{x}^{l}u(t)||_{L^{\infty}(I_{x_{0}})}\leq C\langle t_{0}^{-1}\rangle^{j+l}\langle x_{0}\rangle^{2l+3j}A_{2}^{j+l}(j+l)!$ , $j$ , $l=0,1,2$ , $\cdots$ ,

where the constants $C$ and $A_{2}$ only depend on Co, $A_{1}$ , $\delta$ and $I_{x_{0}}$ .
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