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It is apleasure to take part in this remembrance of Professor Tosio Kato. His work was
very influential for mathematicians of my generation who were interested in mathematical
analysis related to physical problems. Ifirst benefited from his point of view when I
studied his book Perturbation Theory for Linear Operators as agraduate student. I
believe that the high degree of maturity and special care with writing in this book, and
in his papers, made his work especially valuable for others to learn from.

We are concerned here with the calculation of singular, or nearly singular, integrals
and applications to numerical methods for time-dependent fluid flow. Mathematical mod-
els of many problems in science can be formulated in terms of singular integrals. The
most familiar case is the use of single or double layer potentials to represent solutions of
Laplace’s equation. Numerical methods for solving various problems could be based on
integral formulations. Thus there is aneed for accurate and efficient numerical methods
for calculating such integrals. We will describe one approach, in which we replace the
singularity with aregularized version, compute asum in astandard way, and then add
corrections which are found by asymptotic analysis near the singularity. We have used
this approach to design aconvergent numerical method for three-dimensional water waves,
based on boundary integrals [4]. The choice of the discretization of the boundary integrals
affects the numerical stability of the method. The stability analysis involves considera-
tions very close to the study of linear evolution equations, and the point of view of linear
operators is helpful. In this work the sums replacing the layer potentials are treated as
discrete versions of pseudodifferential operators. In related work [7] with M.-C. Lai we
have developed techniques for computing nearly singular integrals, such as adouble layer
potential on acurve in the plane at apoint near the curve. This technique can be used,
for example, to solve aDirichlet problem at grid points inside the curve without having
to discretize the enclosed region.

1. Quadrature of singular integrals. Let us recall first that asingle layer potential
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on asurface $S\subseteq \mathrm{R}^{3}$ has the form

$u(x)= \int_{S}G(x-y)\sigma(y)dS(y)$ (1)

for some function $\sigma$ on $S$ . Here $G(x)$ is the fundamental solution or Green’s function for
the Laplace operator on $\mathrm{R}^{3}$ , $G(x)=-1/4\pi|x|$ . It is well known that $\Delta u=0$ on $\mathrm{R}^{3}-S$ ,

and $u$ is continuous across $S$ , but $\partial u/\partial n$ has ajump at $S$ . Similarly, the double layer
potential is defined as

$v(x)= \int_{S}\frac{\partial G(x-y)}{\partial n(y)}\mu(y)dS(y)$ (2)

where $n(y)$ is the normal vector. We will be concerned with finding discrete approxima-
tions to single layer potentials using values at points which are regularly spaced in some
coordinate system.

For asmooth integrand, an integral is well approximated by asum with equal weights.
Suppose $f$ : $\mathrm{R}^{d}arrow \mathrm{R}$ is smooth and rapidly decreasing. We can approximate the integral
I with the sum $S$ ,

$I= \int_{R^{d}}f(x)dx$ ,
$S= \sum_{j\in Z^{d}}f(jh)h^{d}$

(3)

Here $j$ is a $d$-tuple of integers and $h>0$ is the mesh size. The sum is ahigh order
approximation; specifically, for $\ell\geq d+1$ ,

$|S-I|\leq C_{l}h^{\ell}||D^{\ell}f||_{L^{1}}$ (4)

where $\ell$ can be large depending on the smoothness of $f$ . This fact can be seen from the
Poisson Summation Formula (see [1])

$(2 \pi)^{-d/2}\sum_{j\in Z^{d}}f(jh)h^{d}=\sum_{k\in Z^{d}}\hat{f}(2\pi k/h)$
(5)

where $\hat{f}$ is the Fourier transform

$\hat{f}(k)=(2\pi)^{-d/2}\int_{R^{d}}f(x)e^{-ikx}dx$ . (6)

When the integrand is singular, however, the situation is very different. As asimple
example, we compare

$I= \int_{R^{2}}\frac{f(x)}{|x|}dx$ , $S= \sum_{j\neq 0}\frac{f(jh)}{|jh|}h^{2}$ (7)

where again $f$ is smooth and rapidly decreasing. (We can think of this as aspecial case
of the single layer potential where the surface $S$ is flat.) In this case the error is $O(h)$ ;
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it goes to zero as $h-+0$, but not very fast. Fortunately, we know the form of the error
more precisely:

$I=S+c_{0}f(0)h+O(h^{3})$ (8)

where $c_{0}$ is aparticular constant, $c_{0}\approx 3.900265$ . Thus we can correct the sum so that the
error is $O(h^{3})$ , agreat improvement. The derivation of this fact can be found in [8]; there
is an interesting connection with number theory. This fact is useful once known, but such
constants are difficult to find. They also depend on the singularity. If instead of $1/|x|$

we had $1/\sqrt{q(x)}$ with $q(x)=g_{11}x_{1}^{2}+2g_{12}x_{1}x_{2}+g_{22}x_{2}^{2}$ , the error would be qualitatively
similar, but the constant $c_{0}$ would depend on $g_{ij}$ .

The example above illustrates ageneral principle about quadrature (or discrete ap-
proximation) of singular integrals. We will consider an integrand of the form $K(x)f(x)$ ,
with $x\in R^{d}$ , where $K$ is smooth for $x\neq 0$ and homogeneous of degree $m$;that is, for
$a>0$ , $K(ax)=a^{m}K(x)$ . (In our example, $m=-1.$ ) We also assume $f$ is smooth and
rapidly decreasing, and $m\geq 1-d$ . We now compare

$I= \int_{R^{d}}K(x)f(x)dx$ ,
$S= \sum_{j\neq 0}K(jh)f(jh)h^{d}$ (9)

where $j\in Z^{d}$ . Then

$S-I=h^{d+m}(c_{0}f(0)+C_{1}h+C_{2}h^{2}+\ldots)$ (10)

Here $c_{0}$ depends only on $K$ , but $C_{k}$ depends on $f$ as well. This fact was derived in [14];
anice proof was given in [9] which can be adapted to different cases. If $c_{0}$ is known, the
leading error can be subtracted out, but again it is difficult to find. Sometimes $C_{1}=0$
by symmetry; this was the case in the example.

Our approach is to use regularly spaced points, as above, but to replace the singular
kernel $K(x)$ with regularized, or smoothed, version. We can then compute the leading
error more easily. We write the regularized kernel in the form $K_{h}(x)=K(x)s(x/h)$ where
$s(x)arrow 1$ rapidly as $xarrow\infty$ and $s$ is chosen so that $K_{h}$ is smooth for all $x$ . Because $K$

is homogeneous, we have $K_{h}(x)=h^{m}K_{1}(x/h)$ . For example, if $K(x)=|x|^{-2}$ , we could
take $K_{h}(x)=|x|^{-2}(1-\exp(-|x|^{2}/h^{2})$ . Replacing $K$ with $K_{h}$ introduces an error due to
smoothing, but this error can be made higher order in $h$ by imposing moment conditions
on $s$ . Now with

$I= \int_{\mathrm{R}^{d}}K_{h}(x)f(x)dx$ , $S= \sum_{n}K(nh)f(nh)h^{d}$ (11)

we can show that the same error expansion (10) holds. Moreover, because $K_{1}$ is regular,
the new constant $c_{0}$ can be identified using the Poisson Summation Formula:

$c_{0}=(2 \pi)^{d/2}\sum_{n\neq 0}\hat{K}_{1}(2\pi n)$
. (12)
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We wish to choose $K_{1}$ , or $s$ , so that $\hat{K}_{1}(k)$ decays rapidly for large $k$ , so that only afew
terms need to be computed. Of course, we need to know $\hat{K}_{1}$ explicitly.

We now return to the question of computing the single layer potential on asurface $S$ .
Suppose $S$ is described by coordinates $\alpha=(\alpha_{1}, \alpha_{2})$ , so that the points on $S$ are given as
$x=x(\alpha)$ . We want to use values of the integrand at points regularly spaced in $\alpha$ , so that
the points on $S$ are $x_{j}=x(jh)$ . Assume for convenience that the singularity is at $\alpha=0$ ,
$x(0)=0$ , and the integral extends over $\alpha\in \mathrm{R}^{2}$ . The kernel for the single layer potential is
now $K(\alpha)=G(x(\alpha))$ , which is approximately $G(J\alpha)$ for $\alpha\approx \mathrm{O}$ , where $J$ is the Jacobian
matrix $\partial x/\partial\alpha$ at $\alpha=0$ . Thus $1/|x|\approx 1/\sqrt{g_{ij}\alpha_{i}\alpha_{j}}$. The constant $c_{0}$ will vary with the
location of the singularity; it does not appear practical to compute it without modifying
the kernel.

We now replace the free space Green’s function $G$ with aregular version $G_{h}(x)=$

$G(x)s(x/h)$ , with aradial function $s$ which we choose for our purposes. Then the kernel
$G_{h}(x(\alpha))$ for the modified single layer potential is approximately $G(J\alpha)s(J\alpha/h)$ , which
has the general form described above, except that it is afunction of $\alpha$ rather than $x$ .
Consequently we find that

$\int_{\mathrm{R}^{2}}G_{h}(x(\alpha))f(\alpha)d\alpha=\sum_{n}G_{h}(x(nh))f(nh)h^{2}-c_{0}f(0)h+O(h^{3})$ (13)

with

$c_{0}=2 \pi\sum_{n\neq 0}(G_{1}\circ J)^{\wedge}(2\pi n)=2\pi(\det g^{ij})^{1/2}\sum_{n\neq 0}\Gamma(2\pi\sqrt{g^{ij}n_{i}n_{j}})$ , (14)

$\Gamma(k)=(2\pi)^{-1/2}\int_{-\infty}^{\infty}\hat{G}_{1}(k, 0, \ell)d\ell$ . (15)

In [4] we use the specific choice of the regularized $G$ ,

$G_{h}(x)=-(4\pi|x|)^{-1}(\mathrm{e}\mathrm{r}\mathrm{f}(\rho)+2\pi^{-1/2}\rho\exp(-\rho^{2}))$ , $\rho=|x|/h$ (16)

where erf is the error function. This choice has several desirable properties: $G_{h}$ is smooth
and very close to $G$ for $x/h$ large. The smoothing error (the error in the integral because
of replacing $G$ with $G_{h}$ ) is $O(h^{3})$ . Both $G_{h}$ and $\Gamma$ can be computed explicitly. $\Gamma$ decays
rapidly, so that the infinite sum (14) can be computed with only afew terms. Afurther
property will be important later; $G\wedge h(k)<0$ for all $k$ , just as $\hat{G}(k)<0$ .

2. Numerical methods for water waves. Next we describe briefly the equations
of motion for water waves and the connection with layer potentials in numerical methods.
In the usual model of water waves, the fluid is governed by the Euler equations, with the
motion assumed incompressible and without viscosity. The upper surface or interface is
afree boundary; its location is one of the unknowns. We also assume, as usual, that the
motion is irrotational, so that the fluid velocity $v$ satisfies $\nabla\cross v=0$ . This, together
with the incompressibility condition $\nabla\cdot v=0$ , means that $v$ has the form $v=\nabla\phi$ for
a scalar velocity potential $\phi$ , with $\triangle\phi=0$ in the fluid region. There are two boundary
conditions at the interface: the points move with the fluid velocity; and the pressure $p$
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is zero (neglecting surface tension) to match the atmosphere above. We will suppose the
interface is written as x $\ovalbox{\tt\small REJECT}$ $\ovalbox{\tt\small REJECT} \mathrm{z}(0,$t) with coordinates (1$\ovalbox{\tt\small REJECT} ((1_{1}^{\ovalbox{\tt\small REJECT}}, \mathrm{c}\mathrm{z}_{2})$ , and we will consider $\mathrm{x}$

on the surface as afunction $\mathrm{O}(\mathrm{a},$t). The evolution equations on the interface are

$x_{t}=v$ , $\phi_{t}=\frac{1}{2}|v|^{2}-gx_{3}$ . (17)

Here $g$ is the acceleration of gravity, and $x_{3}$ is the vertical coordinate. The first equation
means that the point with fixed amoves with the fluid velocity, i.e., $\alpha_{1}$ , $\alpha_{2}$ are Lagrangian
coordinates. The second equation is aform of Bernoulli’s Law, with the pressure set to
zero. To complete this set of evolution equations, we need to determine the velocity $v$

at the interface from $x$ and $\phi$ . This is possible because $\Delta\phi=0$ in the fluid domain and
$v=\nabla\phi$ . The tangential gradient of $\phi$ can be found directly from $\phi$ on the surface, and
so the important part is to determine the normal derivative $\phi_{n}$ from $\phi$ on the surface,
given that $\triangle\phi=0$ in the interior. The operator assigning $\phiarrow\phi_{n}$ on the surface is
called the Dirichlet-t0-Neumann operator. Thus the entire fluid motion is determined by
what happens on the interface, with Laplace’s equation acting as aside condition. The
equations have the character of anonlinear, nonlocal wave equation. Existence results for
the exact initial value problem have been difficult to obtain; recent definitive results were
given by Sijue Wu [19],[20].

It is helpful to recall the special but important case of the equations linearized at
equilibrium. In that case it is convenient to denote the height of the interface at a
horizontal point $x$ as $\eta(x, t)$ . Then (if the water is infinitely deep) $\eta$ obeys the equation

$\eta_{tt}=-g\Lambda\eta$ $.(18)$

where Ais the operator

$(\Lambda\eta(\cdot, t))\wedge(k)=\}k|\hat{\eta}(k, t)$ . (19)

Here $\hat{\eta}$ is the Fourier transform with respect to $x$ , and Ais the Dirichlet-t0-Neumann
operator for the half-space. Obviously the wavelike character of the motion depends
on the positivity of $\Lambda$ , and the same is true more generally. It can be seen that the
linearization about an arbitrary solution of the full water wave equations reduces to an
equation for acertain state variable $u(\alpha, t)$ of the form

$u_{u}+c\Lambda u\approx 0$ (20)

where Ais the principal part of the Dirichlet-t0-Neumann operator on the current surface
and $c$ is acertain coefficient which is known to be positive. Since $\mathrm{A}\geq 0$ , equation (20) is
well posed. This structure has implications for the behavior of the numerical method.

Numerical methods for water waves based on the formulation above have been in use
for some time, mostly for tw0-dimensional waves. The methods are of boundary integral
type; the velocity is found from layer potentials on the moving interface. Most numerical
work has been based on the formulations of Longuet-Higgins and Cokelet [13] and Vinje
and Brevig [18]. For recent surveys, see [16],[17]. However, numerical stabilities have often
been observed. In [6], T. Hou, J. Lowengrub and the author designed aversion of the
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method which is numerically stable and convergent. This version is closely related to the
work of Baker, Meiron, and Orszag [3]. Recently [4] the author has designed aconvergent
method in three dimensions, and it is this case that we emphasize here. Another approach
in $3\mathrm{D}$ has been given in [12].

In principle, num\’erical methods based on integrals are too expensive, since with $N$

points, there are $N$ operations needed for each of $N$ integrals, resulting in $N^{2}$ operations.
However, the operation count can be reduced almost to $O(N)$ using arapid summa-
tion method; see [10] for arecent description of the fast multipole method in $3\mathrm{D}$ . This
important development makes numerical methods practical which not be otherwise.

We will not explain the numerical method of [4] here, but rather make some general
remarks. In proving convergence of numerical methods for time-dependent problems, we
follow ausual outline: We compare the exact problem, in the form $u_{t}=F(u)$ , with a
discrete version $u_{t}^{h}=F^{h}(u^{h})$ . To estimate the growth of $u^{h}-u$ we add and subtract to
get

$(u^{h}-u)_{t}=[F^{h}(u^{h})-F^{h}(u)]+[F^{h}(u)-\mathrm{F}(\mathrm{u})$ , (21)

or with $\delta u=u^{h}-u$ .

$(\delta u)_{t}\approx dF^{h}(u)(\delta u)+[F^{h}\{u$ ) $-\mathrm{F}(\mathrm{u})$ , (22)

The second term on the right in (22) is the consistency error, while the first term has to
do with stability. The first term gives us alinear evolution equation which must have
bounded growth, independent of $h$ , in order for the method to have numerical stability
and converge to the actual solution. For the water wave case, this linear stability equation
amounts to adiscrete version of (20). Thus it is of primary importance for the discrete
form of $\Lambda$ to be positive. It can be seen that the main part of this discrete $\Lambda$ is asum
approximating asingle layer potential, and thus the choice of quadrature discussed before
is critical for the numerical stability.

3. Discrete Boundary Integral Operators. As noted above, the numerical sta-
bility of the method for computing water waves depends on the properties of the discrete
operators approximating the single layer potential. We assume the surface is doubly pe-
riodic. It is convenient to estimate the operators acting on discrete Sobolev spaces. The
needed properties are analogues of standard mapping properties of the layer potentials in
Sobolev spaces. It is helpful to view the layer potentials as pseudodifferential operators.
In [4] we develop some basic properties of discrete pseudodifferential operators; another
version of such properties was given in [15]. Since we work with doubly periodic functions
of $\alpha$ , it is convenient to use the discrete Fourier transform of afunction $f$ on the a-grid.
We denote the transform by $\dot{f}(k)$ ;it has period $2\pi/h$ in $k=k_{1}$ , $k_{2}$ :

$j.(k)=(2 \pi)^{-2}\sum_{j\in I}f(jh)e^{-ikjh}h^{2}$ ,
$f(jh)= \sum_{k\in I}j.(k)e^{ikjh}$ (23)

where I is the index set for afundamental period.
The single layer potential, written as an integral in $\alpha$ , is
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$\int_{S}G^{\pi}(x(\alpha)-x(\alpha’))f(\alpha’)d\alpha’$ (24)

where we integrate over one period, and $G^{\pi}$ means the periodic Green’s function. This
operator gains one derivative; i.e. it is bounded from $H^{s}$ to $H^{s+1}$ , where $H^{s}$ is the Sobolev
space of periodic functions with $s$ derivatives in $L^{2}$ . The discrete operator, applied to a
grid function $f$ , is

$(Af)_{j} \equiv\sum_{\ell\in I}G_{h}^{\pi}(x_{j}-x_{\ell})f_{\ell}h^{2}$ (25)

where $x_{j}=x(\alpha_{j})$ , $\alpha_{j}=jh$ , etc. It is proved in [4], \S 5, that $A$ gains one discrete
derivative, in the sense that $AD_{h}$ is bounded on discrete $L^{2}$ , where $D_{h}$ is any discrete
first order derivative. Furthermore, the principal part $\mathrm{o}\mathrm{f}-A$ has apositivity property
explained below, provided $\hat{G}_{h}(k)<0$;we saw in \S 1 that this sign condition on the Fourier
transform of $G_{h}$ could be achieved. As discussed in \S 2, the positivity property $\mathrm{o}\mathrm{f}-A$ is
important for the stability of the numerical method.

To see where these facts come from, we can approximate $x_{j}-x_{\ell}$ by $J(\alpha_{j})(\alpha_{j}-\alpha_{\ell})$ ,
as in \S 1. Also, let $G_{h}^{0}$ be the part of $G_{h}$ near the singularity, cut-0ff and made periodic,
so that $G_{h}^{\pi}-G_{h}^{0}$ is smooth. Then the important part of $A$ should be

$(A^{(0)}f)_{j} \equiv\sum_{\ell\in I}G_{h}^{0}(J(\alpha_{j})(\alpha_{j}-\alpha_{\ell}))f_{\ell}h^{2}$ (26)

For fixed $j$ we can regard this as adiscrete convolution, evaluated at $j$ , of the form

$(A^{(0)}f)_{j}= \sum_{\ell\in I}K(jh,jh-\ell h)f_{\ell}h^{2}$ (27)

We can now rewrite this in the discrete transform as

$(A^{(0)}f)_{j}= \sum_{k\in I}\dot{K}(jh, k)e^{:kjh}j.(k)$ (28)

and we can see from the Poisson Summation Formula that

$\dot{K}(jh, k)=(2\pi)^{-1}\sum_{n\in Z^{2}}\hat{K}(jh, k+2\pi n/h)$ . (29)

Here $K(\cdot,jh)=G_{h}^{0}\circ J(\alpha_{j})$ , so that $\hat{K}$ is related to $\hat{G}_{h}$ , as in \S 1.
The operator $A^{(0)}$ of (27), expressed as in (28), looks like adiscrete version of a

pseudodifferential operator. The standard form is

(Tf)(x) $=[$ $a(x, k)e^{:kx}\hat{f}(k)dk$ (30)
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and the corresponding discrete form is

$(Tf)_{j}= \sum_{k\in I}a(jh, k;h)e^{ikjh}j.(k)$ (31)

These discrete operators have properties of boundedness, composition, and positivity like
those of the usual ones, but the properties are more restricted unless we assume the
operator is cut off for large $k$ ;cf. [15]. There is aform of $\mathrm{G}[mathring]_{\mathrm{a}}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}’ \mathrm{s}$ inequality, saying that
the operator is essentially positive on discrete $L^{2}$ if the symbol $a(jh, k;h)$ is positive. (See
Q4 of [4].) From (28),(29), the symbol $\mathrm{o}\mathrm{f}-A^{(0)}$ is essentially positive, provided we assume
$\hat{G}_{h}<0$ . Using this fact and estimates for $\hat{G}_{h}$ , we show ([4], \S 5) that the operator $A$ of
(25) has the form $A=-A^{(1)}-A^{(2)}$ , where $A^{(1)}$ is positive, with again of one derivative,
and $A^{(2)}$ has again of two. Since $A^{(1)}$ is the main part of $A$ , its positivity gives the critical
property that was needed for the numerical stability as described before.
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