Spacelike stationary surfaces in semi-Riemannian space forms

Makoto SAKAKI (榊 真)

Department of Mathematical System Science, Faculty of Science and Technology, Hirosaki University (弘前大学 理工学部 数理システム科学科)

Let $N_p^n(c)$ denote the n-dimensional simply connected semi-Riemannian space form of constant curvature c and index p, where we write $N^n(c)$ if p=0. We say that a spacelike surface in $N_p^n(c)$ is stationary if its mean curvature vector vanishes identically. We are interested in comparing the geometries of spacelike stationary surfaces in $N_p^n(c)$ of various index p.

We discuss necesarry and sufficient conditions for the existence of spacelike stationary surfaces in $N_1^4(c)$ and $N_2^4(c)$, together with isometric deformations preserving normal curvature.

THEOREM 1 ([S2]). (i) Let M be a spacelike stationary surface in $N_1^4(c)$. We denote by K, K_{ν} and Δ the Gaussian curvature, the normal curvature and the Laplacian of M, respectively. Then

(1)
$$\Delta \log\{(c-K)^2 + K_{\nu}^2\} = 8K$$

at points where $(c-K)^2 + K_{\nu}^2 > 0$, and

(2)
$$\Delta \tan^{-1} \left(\frac{K_{\nu}}{c - K} \right) = -2K_{\nu}$$

at points where $K \neq c$.

(ii) Conversely, let M be a 2-dimensional simply connected Riemannian manifold with Gaussian curvature $K(\neq c)$ and Laplacian Δ . If K_{ν} is a function on M satisfying (1) and (2), then there exists an isometric stationary immersion of M into $N_1^4(c)$ with normal curvature K_{ν} .

THEOREM 2 ([S4]). Let $f: M \to N_1^4(c)$ be an isometric stationary immersion of a 2-dimensional simply connected Riemannian manifold M into $N_1^4(c)$ with nowhere vanishing normal curvature K_{ν} . Then there exists a 2π -periodic family of isometric stationary immersions $f_{\theta}: M \to N_1^4(c)$ with the same normal curvature K_{ν} . Moreover, if $\tilde{f}: M \to N_1^4(c)$ is another isometric stationary immersion with the same normal curvature K_{ν} , then

there exists $\theta \in [0, \pi]$ such that \tilde{f} and f_{θ} coincide up to congruence.

THEOREM 3 ([S3]). (i) Let M be a spacelike stationary surface in $N_2^4(c)$. We denote by K, K_{ν} and Δ the Gaussian curvature, the normal curvature and the Laplacian of M, respectively. Then

(3)
$$\Delta \log(K - c + K_{\nu}) = 2(2K + K_{\nu})$$

and

(4)
$$\Delta \log(K - c - K_{\nu}) = 2(2K - K_{\nu})$$

at non-isotropic points where $(K-c)^2 - K_{\nu}^2 > 0$.

(ii) Conversely, let M be a 2-dimensional simply connected Riemannian manifold with Gaussian curvature K(>c) and Laplacian Δ . If K_{ν} is a function on M satisfying $(K-c)^2 - K_{\nu}^2 > 0$ and (3), (4), then there exists an isometric stationary immersion of M into $N_2^4(c)$ with normal curvature K_{ν} .

THEOREM 4 ([S3]). Let $f: M \to N_2^4(c)$ be a non-isotropic isometric stationary immersion of a 2-dimensional simply connected Riemannian manifold M into $N_2^4(c)$ with normal curvature K_{ν} . Then there exists a 2π -periodic family of isometric stationary immersions $f_{\theta}: M \to N_2^4(c)$ with the same normal curvature K_{ν} . Moreover, if $\tilde{f}: M \to N_2^4(c)$ is another isometric stationary immersion with the same normal curvature K_{ν} , then there exists $\theta \in [0, \pi]$ such that \tilde{f} and f_{θ} coincide up to congruence.

THEOREM 5 ([S3]). (i) Let M be an isotropic spacelike stationary surface in $N_2^4(c)$ with Gaussian curvature K and Laplacian Δ . Then

$$(5) \quad \Delta \log(K-c) = 2(3K-c)$$

at points where K > c.

(ii) Conversely, let M be a 2-dimensional simply connected Riemannian manifold with Gaussian curvature K(>c) and Laplacian Δ . If M satisfies (5), then there exists an isotropic isometric stationary immersion f of M into $N_2^4(c)$. Moreover, if $\tilde{f}: M \to N_2^4(c)$ is another isotropic isometric stationary immersion, then \tilde{f} and f coincide up to congruence.

REMARK. For these theorems, see [GT] for the case of minimal surfaces in $N^4(c)$.

We discuss spacelike stationary surfaces in $N_2^4(c)$ with constant Gaussian curvature, or constant normal curvature. We also give a rigidity type theorem.

THEROEM 6 ([S3]). Let M be a spacelike stationary surface with constant Gaussian curvature K in $N_2^4(c)$. Then either (i) K=c and M is totally geodesic, (ii) c < 0, K=c/3 and M is isotropic, or (iii) c < 0, K=0 and M is congruent to a certain surface in a totally geodesic $N_1^3(c)$.

REMARK. Theorem 6 should be compared with [K] for minimal surfaces in $N^4(c)$.

THEROEM 7([S3]). Let M be a spacelike stationary surface with constant normal curvature K_{ν} in $N_2^4(c)$. Then either (i) M lies in a totally geodesic $N_1^3(c)$, or (ii) c < 0 and M has constant Gaussian curvature c/3.

THEOREM 8([S3]). Let M be a spacelike stationary surface in $N_2^4(c)$. If M is locally isometric to a spacelike stationary surface in $N_1^3(c)$, then M lies in a totally geodesic $N_1^3(c)$.

REMARK. For Theorem 8, see [S1] for the case of minimal surfaces in $N^4(c)$.

We give two classes of 2-dimensional Riemannian manifolds which can be realized as spacelike stationary surfaces in $N_p^n(c)$.

Let M be a 2-dimensional Riemannian manifold with Gaussian curvature K and Laplacian Δ . For each real number c, set

$$F_1^c = 2(K-c), \quad F_{p+1}^c = F_p^c + 2(p+1)K - \sum_{q=1}^p \Delta \log(F_q^c) \quad \text{if } F_p^c > 0.$$

THEOREM 9([S5]). Let M be a 2-dimensional simply connected Riemannian manifold. Suppose that $F_p^c > 0$ for p < m, and $F_m^c = 0$ identically. Then there exists an isometric stationary immersion of M into $N_{2[m/2]}^{2m}(c)$, where [] denotes the Gauss symbol.

THEOREM 10([S5]). Let M be a 2-dimensional simply connected Riemannian manifold with metric ds^2 . Suppose that $F_p^c > 0$ for $p \le m$, and the

metric $d\hat{s}^2 = \left(\prod_{p=1}^m F_p^c\right)^{1/(m+1)} ds^2$ is flat. Then there exists a 2π -periodic family of isometric stationary immersions of M into $N_m^{2m+1}(c)$.

REMARK. The conditions of Theorems 9 and 10 may be seen as generalized Ricci conditions (cf. [L1], [J]). There are many 2-dimensional Riemannian manifolds which satisfy the conditions.

COROLLARY ([S5]). For every positive integer m, there exists an isometric stationary immersion of the hyperbolic plane of constant curvature -2/m(m+1) into $N_{2|m/2|}^{2m}(-1)$.

- REMARK. (i) For every positive integer m, there exists an isometric minimal immersion of the 2-sphere of constant curvature 2/m(m+1) into the 2m-dimensional unit sphere (cf. [C]).
- (ii) The author does not know the explicit representations of the surfaces in the Corollary.
- (iii) There exist many explicit flat spacelike stationary surfaces in pseudo-hyperbolic spaces (cf. [S5]).

REFERENCES

- [AP] L. J. Alias and B. Palmer, Curvature properties of zero mean curvature surfaces in four-dimensional Lorentzian space forms, Math. Proc. Camb. Phil. Soc. 124 (1998), 315-327.
- [B] R. Bryant, Minimal surfaces of constant curvature in S^n , Trans. Amer. Math. Soc. 290 (1985), 259-271.
- [C] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Diff. Geom. 1 (1967), 111-125.
- [EGT] J. H. Eschenburg, I. V. Guadalupe and R. A. Tribuzy, The fundamental equations of minimal surfaces in CP^2 , Math. Ann. 270 (1985), 571-598.
- [GT] I. V. Gudalupe and R. A. Tribuzy, Minimal immersions of surfaces into 4-dimensional space forms, Rend. Sem. Mat. Univ. Padova 73 (1985), 1-13.
- [J] G. D. Johnson, An intrinsic characterization of a class of minimal surfaces in cosntant curvature manifolds, Pasific J. Math. 149 (1991), 113-

- [K] K. Kenmotsu, Minimal surfaces with constant curvature in 4-dimension space forms, Proc. Amer. Math. Soc. 89 (1983), 133-138.
- [L1] H. B. Lawson, Complete minimal surfaces in S^3 , Ann. of Math. 92 (1970), 335-374.
- [L2] H. B. Lawson, Some intrinsic characterizations of minimal surfaces, J. Anal. Math. 24 (1971), 151-161.
 - [L3] H. B. Lawson, Lectures on Minimal Submanifolds, Berkeley, 1980.
- [O] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
- [S1]/M. Sakaki, Minimal surfaces with the Ricci condition in 4-dimensional space forms, Proc. Amer. Math. Soc. 121 (1994), 573-577.
- [S2] M. Sakaki, Spacelike minimal surfaces in 4-dimensional Lorentzian space forms, Tsukuba J. Math. (to appear).
- [S3] M. Sakaki, Spacelike maximal surfaces in 4-dimensional space forms of index 2, preprint.
- [S4] M. Sakaki, Isometric deformations of spacelike stationary surfaces preserving normal curvature in 4-dimensional Lorentzian space forms, Bull. Fac. Sci. Tech. Hirosaki Univ. 4 (2001), (to appear).
- [S5] M. Sakaki, Two classes of spacelike stationary surfaces in semi-Riemannian space forms, preprint.