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Abstract

We present particle methods for solving one-dimensional nonlinear reaction-

diffusion or convection-diffusion equations. This is done by afractional step it-

eration in which diffusion is simulated by random walk. We investigate the effect of

replacing pseud0-random numbers by quasi-random numbers in the random walk

step. The application of quasi-random sequences is not straightforward, because of
correlations, and areordering technique is used in every time step. For simple prob-

lems, we show that asignificant improvement in magnitude of error and convergence
rate is achieved over standard random walk methods.

1Introduction
We are interested in mathematical models that involve acombination of reaction and

diffusion or convection and diffusion. The solutions may have sharp gradients or traveling

fronts. Because of this, standard computational algorithms often require very fine grids

to resolve the sharp gradients. With atraveling front solution the method would incor-

porate moving refined grid. An alternative is to consider aparticle-based method that is

automatically adapting to sharp gradients [3]. The methods considered are fractional step

methods: the equation to be solved is split into two evolution equations, each of which
is solved separately. The reaction equation is solved with anumerical ordinary differen-
tial equation solver: this is equivalent to altering the particle masses [1], The nonlinear
advection equation is approximated by advecting the particles in avelocity field induced
by the particles [10]. In both cases one of the fractional steps is the heat equation. The
numerical solution is obtained by random walking the particles.

The major drawback with aprobabilistic method using pseud0-random numbers is
that convergence can be extremely slow. For example, Monte Carlo integration converges
at arate $\mathcal{O}(N^{-1/2})$ where $N$ is the number of nodes. Much of the effort in the development
of Monte Carlo has been in construction of variance reduction methods which speed up the
computation. An alternative approach to acceleration is to change the choice of sequence.
Quasi-Monte Carlo methods use quasi-random sequences instead of pseud0-random. The
quasi-Monte Carlo integration with $N$ nodes yields adeterministic error bound of the
form $\mathcal{O}(N^{-1}(\log N)^{s-1})$ in dimension $s$ . There are quasi-Monte Carlo methods not only
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for numerical integration, but also for various other computational problems and it was
found that in certain types of such problems they significantly outperform Monte Carlo
methods. The refinements of quasi-Monte Carlo methods and the expanding scope of
their applications are presented in [7].

The efficiency of aquasi-Monte Carlo method depends on the quality of the sample
points that are used. These points should form alow-discrepancy point set, i.e., apoint
set with smal star discrepancy. We recall from [6] some basic notations and concepts.
If $s\geq 1$ is afixed dimension, then $I^{s}:=[0,1)^{s}$ is the $s$-dimensional half-0pen unit cube
and $\lambda_{s}$ denotes the $s$-dimensional Lebesgue measure. For apoint set $P$ consisting of
$\mathrm{P}\mathrm{o}$ , $\ldots$ , $\mathrm{P}N-1$ $\in I^{s}$ and for an arbitrary subset $E$ of $I^{s}$ we define the local discrepancy by

$D_{N}(E, P):= \frac{1}{N}\sum_{0\leq j<N}c_{E}(\mathrm{p}_{j})-\lambda_{s}(E)$ ,

where $c_{E}$ is the characteristic function of $E$. The star discrepancy of the point set $P$ is
defined by

$D_{N}^{*}(P):= \sup_{J}|D_{N}(J, P)|$ ,

where $J$ runs through all subintervals of $I^{s}$ with one vertex at the origin. The idea of
$\mathrm{a}(t, m, s)$-net is to consider point sets $P$ for which $D_{N}(J, P)=0$ for alarge family of
intervals $J$ . Such point sets should have asmall star discrepancy. For integers $b\geq 2$ and
$0\leq t\leq m$ , $\mathrm{a}(t, m, s)$ -net in base $b$ is a point set $P$ consisting of $b^{m}$ points in $I^{s}$ such that
$D_{N}(J, P)=0$ for every subinterval $J$ of $I^{s}$ of the form

$J= \prod_{\dot{|}=1}^{s}[\frac{a_{\dot{1}}}{\mu}$

’
$\frac{a_{\dot{l}}+1}{b^{\mathit{4}}})$ ,

with integers $d_{\dot{l}}\geq 0$ and $0\leq a:<b^{d_{l}}$ for $1\leq i\leq s$ and of measure $\lambda_{s}(J)=b^{t-m}$ . The
sequence analog of this concept is as follows. If $b\geq 2$ and $t\geq 0$ are integers, asequence

$\mathrm{P}\mathrm{o}$ , $\mathrm{p}_{1}$ , $\ldots$ of points in $I^{s}$ is a $(t, s)$ -sequence in base $b$ if, for all integers $n\geq 0$ and $m>t$ ,
the points $\mathrm{p}_{j}$ with $nb^{m}\leq j<(n+1)b^{m}$ form a $(t, m, s)$-net in base $b$ .

Aquasi-random walk method for simulation of diffusion is used in this paper. The
basic idea is to write the desired result of the simulation as an integral and to replace the
pseud0-random points by low-discrepancy sequences. But the improved accuracy of quasi-
Monte Carlo methods may be lost for problems in which the integrand is not smooth.
This problem can be overcome by a special technique involving reordering the particles by
position after each time step. This approach, along with aconvergence proof, is developed
in [4] for the diffusion equation and in [5] for linear convection-diffusion problems.

The paper is organized as follows. First aquasi-random particle method for solving
a1-D re ction-diffusion equation of the form $u_{t}=\nu u_{xx}+f(u)$ is presented in section
2. This is followed by the description of aquasi-random walk method for the Burgers
equation $u_{t}+uu_{x}=\nu u_{xx}$ in section 3. Finally, in section 4we conclude by summarizing
the results and discussing possible directions for future work.

2Are ction-diffusion equation
In this section, we study quasi-random particle methods for approximating solutions of
nonlinear reaction-diffusion equations in one species and in one spatial dimension. Thes
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equations can be studied as initial-value problems and has the form:

$\frac{\partial u}{\partial t}(x, t)=\nu\frac{\partial^{2}u}{\partial x^{2}}(x, t)+f(u)(x, t)$ , $x\in \mathrm{I}\mathrm{R}$ , $t>0$ , (1)

$u(x, 0)=u_{0}(x)$ , $\prime x\in 1\mathrm{R}$. (2)

The action-diffusion equation appears in problems governed by the simultaneous action

of gradient diffusion and local multiplication of concentration, which may be heat, chemi-

cal species, population density, or strength of nerve signal. The forcing term $f$ is assumed

to satisfy the conditions

$f(u)>0$ for $0<u<1$ , $f(0)=f(1)=0$ , (3)

$f’(u)\leq 1$ for $0<u\leq 1$ , $f’(0)=1$ . (4)

The initial data is subject to the constraints

$\lim_{xarrow-\infty}u_{0}(x)=1$ , $\lim_{xarrow+\infty}u_{0}(x)=0$ and $0\leq u_{0}(x)\leq 1$ . (5)

We refer to $[8, 9]$ for analysis of the random particle method presented below.

We choose integers $b\geq 2$ , $m\geq 0$ and we put $N:=b^{m}$ . For the quasi-random walk,

we need alow-discrepancy sequence $P=\{\mathrm{p}_{0}, \mathrm{p}_{1}, \ldots\}\subset I^{2}$ satisfying

$\forall n\geq 0$ $\{p_{j,1} : nN\leq j<(n+1)N\}$ is a $(0, m, 1)$-net in base $b$ . (6)

$\forall j\geq 0$ $p_{j,2}>0$ . (7)

The strategy is to represent the gradient $u_{x}$ by weighted particles. Let $H$ denote the

Heaviside function
$H(x):=\{$

0, if $x<0$
1, otherwise.

We begin the method by determining astep function approximation $u^{(0)}$ to the exact

initial data
$u^{(0)}(x)= \sum_{0\leq j<N}w_{J^{1}}^{(0)}H(x_{j}^{(0)}-x)$

, (8)

where $x_{j}^{(0)}$ represents the location and $w_{j}^{(0)}$ is the mass of the $j\mathrm{t}\mathrm{h}$ particle. We assume

$\forall j$ $0<w_{j}<1$ and $\sum_{0\leq j<N}w_{j}^{(0)}=1$
. (9)

Let $\triangle t$ be the time step. We put $t_{n}:=n\triangle t$ and $u_{n}(x):=u(x, t_{n})$ . Given the computed

solution
$u^{(n)}(x)= \sum_{0\leq j<N}w_{j}^{(n)}H(x_{j}^{(n)}-x)$

(10)

at time $t_{n}$ , the solution at time $t_{n+1}$ is obtained in two distinct steps.

First we assume that the particles have been labeled so that

$x_{0}^{(n)}\leq\ldots\leq x_{N-1}^{(n)}$ . (11)
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Step 1. The first step is the numerical solution of the reaction equation

$\frac{\partial u}{\partial t}(x, t)=f(u)(x, t)$ , $x\in 1\mathrm{R}$ , $t>t_{n}$ , (12)

$u(x, t_{n})=u^{(n)}(x)$ , $x\in 1\mathrm{R}$ . (13)

The solution of this equation can be obtained using an explicit ordinary differential equa-
tion (ODE) solver. When Euler’s method is used, the intermediate solution is

$\overline{u}^{(n+1)}=u^{(n)}+\triangle tf(u^{(n)})$ . (14)

This is equivalent to altering the weights so that the new weights satisfy

$\overline{u}^{(n+1)}--\sum_{0\leq j<N}w_{j}^{(n+1)}H(x_{j}^{(n)}-x)$ . (15)

This gives

$w_{j}^{(n+1)}=w_{j}^{(n)}+ \triangle t(f(\sum_{j\leq k<N}w_{k}^{(n)})-f(\sum_{j<k<N}w_{k}^{(n)}))$. (16)

Step 2. It remains to solve the diffusion equation for the gradient

$\frac{\partial u_{x}}{\partial t}(x, t)=\nu\frac{\partial^{2}u_{x}}{\partial x^{2}}(x, t)$ , $x\in 1\mathrm{R}$ , $t>t_{n}$ , (17)

$u_{x}(x, t_{n})=\tilde{u}_{x}^{(n+1)}(x)$ , $x\in 1\mathrm{R}$ . (18)

Let $\lfloor r\rfloor$ denote the greatest integer $\leq r$ and put

$\Phi(x):=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}\exp(-y^{2}/2)dy$, $x\in \mathrm{I}\mathrm{R}$ .

Each particle takes astep drawn quasi-randomly from aGaussian distribution with zero
mean and variance $2\nu\triangle t$ .

$x_{\lfloor Np_{j,1}\rfloor}^{(n+1)}=x_{\lfloor Np_{\mathrm{j}.1}\rfloor}^{(n)}+\sqrt{2\nu\triangle t}\Phi^{-1}(p_{j,2})$, $nN\leq j<(n+1)N$ . (19)

We refer to [4] for aconvergence analysis of the quasi-Monte Carlo simulation of the
diffusion equation.

There are several ways to obtain amethod which is higher-0rder in time. We may
consider asecond-0rder ODE solver in place of Euler’s method. Define the intermediate
solution as

$\tilde{u}^{(n+1)}=u^{(n)}+\frac{\triangle t}{2}(f\cdot(u^{(n)})+f(u^{(n)}+\triangle tf(u^{(n)})))$ . (20)

This is Heun’s method for solving (12)-(13). Then the new weights are as follows:

$w_{j}^{(n+1)}$ $=$ $w_{j}^{(n)}+ \frac{\triangle t}{2}(f(\sum_{j\leq k<N}w_{k}^{(n)})-f(\sum_{g<k<N}w_{k}^{(n)}))$

$+ \frac{\triangle t}{2}(f(\sum_{j\leq k<N}\hat{w}_{k}^{(n+1)})-f(\sum_{j<k<N}\hat{w}_{k}^{(n+1)}))$ , (21)
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$\hat{w}_{k}^{(n+1)}:=w_{k}^{(n)}+\triangle t(f(\sum_{k<\ell<N}w_{\ell}^{(n)})-f(\sum_{k<\ell<N}w_{\ell}^{(n)}))$ .

As noticed in [9], the error due to the operator splitting remains Ct(Xt). To increase the
accuracy, we may employ the following splitting algorithm known as Strang splitting. Let
$t_{n+1/2}:=t_{n}+\triangle t/2$ .

Step 1. Solve (12)-(13) using Heun’s scheme and consider the intermediate solution

at time $t_{n+1/2}$ :

$\overline{u}^{(n+1/2)}$ $=$ $u^{(n)}+ \frac{\triangle t}{4}(f(u^{(n)})+f(u^{(n)}+\frac{\triangle t}{2}f(u^{(n)})))$

$=$ $\sum_{0\leq j<N}w_{j}^{(n+1/2)}H(x_{j}^{(n)}-x)$
. (22)

$5tep$ $\mathit{2}$ . Perform aquasi-random walk

$x_{\lfloor Np_{j,1}\rfloor}^{(n+1)}=x_{\lfloor Np_{j,1}\rfloor}^{(n)}+\sqrt{2\nu\triangle t}\Phi^{-1}(p_{j,2})$ , $nN\leq j<(n+1)$N. (23)

Assume that the $x_{j}^{(n+1)}$ have been sorted by position and put

$u^{(n+1/2)}(x):= \sum_{0\leq j<N}w_{j}^{(n+1/2)}H(x_{j}^{(n+1)}-x)$
.

Step 3. Use Heun’s scheme to solve

$\frac{\partial u}{\partial t}(x, t)=f(u)(x, t)$ , $x\in 1\mathrm{R}$ , $t>t_{n+1/2}$ , (24)

$u(x, t_{n+1/2})=u^{(n+1/2)}(x)$ , $x\in \mathrm{R}$ . (25)

This gives

$u^{(n+1)}$ $=$ $u^{(n+1/2)}+ \frac{\triangle t}{4}(f(u^{(n+1/2)})+f(u^{(n+1/2)}+\frac{\triangle t}{2}f(\tau\iota^{(n+1/2)})))$

$=$
$\sum_{0\leq j<N}w_{j}^{(n+1)}H(x_{j}^{(n+1)}-x)$

. (26)

We examine one model example to study the effectiveness of quasi-random walk
(QRW) method, as discussed above, when compared with standard random walk (SRW)
method using pseud0-random numbers [9], These experiments allow us to estimate the
rate of convergence of each method, at least for the model problem for which an exact an-
swer is available. For $\nu=1$ and aforcing term $f(u)=u(1-u)$ , equation (1)$-(2)$ becomes
the Kolmogorov equation and has amoving wave solution of the form $u(x, t)=g(x-\alpha t)$

with speed a $=5/\sqrt{6}$ and wave form

$g(x)= \frac{1}{(1+(\sqrt{2}-1)\exp(x/\sqrt{6}))^{2}}$
. (27)

If the simulation is advanced up to $T$ with atimestep $\triangle t$ , we define the averaged error

$E_{N}:= \frac{\triangle t}{T}\sum_{n=1}^{\tau/\Delta t}||u^{(n)}-u_{n}||_{\infty}$ , (28)
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where $||v||_{\infty}$ denotes the essential supremum of the function $v$ . The QRW method uses
a $(0, 2)$-sequence of Faure in base 2for random walk [2]. We compute the solution up to
$T=1$ using three different schemes and time steps for solving the reaction equation:

1. Euler’s method with $\triangle t=2^{-10}$ ,

2. Heun’s method with $\triangle t=2^{-9}$ ,

3. Heun’s method with Strang splitting and $\triangle t=2^{-7}$ .

The QRW method is compared with the SRW method in Fig. 1. For all the calculations,
the number of simulated particles ranges from $N=32$ to $N=1,048,576$ , with $N$ being
chosen as powers of two. In all cases, the averaged error is computed at each $N$ , and a
line is fitted to the log-log data to estimate the convergence rate. This assumes that over
this range of $N$ , the error may be modeled as $cN^{-d}$ . One finds

1. For Euler’s method

$D_{N}( \mathrm{S}\mathrm{R}\mathrm{W})\approx\frac{0.64}{N^{0.50}}$ , $D_{N}( \mathrm{Q}\mathrm{R}\mathrm{W})\approx\frac{0.77}{N^{0.70}}$ . (29)

2. For Heun’s method

$D_{N}$ (SRW) $\approx\frac{0.69}{N^{0.51}}$ , $D_{N}$ (QRW) $\approx\frac{0.72}{N^{0.69}}$ . .(30)

3. For Heun’s method with Strang splitting

$D_{N}( \mathrm{S}\mathrm{R}\mathrm{W})\approx\frac{0.70}{N^{0.51}}$ , $D_{N}( \mathrm{Q}\mathrm{R}\mathrm{W})\approx\frac{0.72}{N^{0.69}}$ . (31)

For each method, the quasi-random strategy produces sizable gains over pseud0-random
Monte Carlo. One easily sees the trend toward steady reduction of tlue error as more and
more particles are used. Similar results have been observed for example in [4] for simple
diffusion problems.

3The Burgers equation
In this section we present aquasi-random walk method used to solve the quasilinear
diffusion equation

$\frac{\partial u}{\partial t}(x, t)+(u\frac{\partial u}{\partial x})(x, t)=\nu\frac{\partial^{2}u}{\partial x^{2}}(x, t)$ , $x\in \mathrm{R}$ , $t>0$ , (32)

$u(x, 0)=u_{0}(x)$ , $x\in \mathrm{I}\mathrm{R}$ , (33)

with viscosity $\nu>0$ . The equation is attributed to Burgers aatd was advanced as a
one dimensional model for the Navier-Stokes equations. We assume that $u_{0}$ is constant
outside acompact set

$u_{0}(x)=\{$
$u_{-}$ , if $x<-A$
$u_{+}$ , if $x>A$ . (34)
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Figure 1: Kolmogorov equation: Euler’s method (top), Heun’s method (middle) and
Heun’s method with Strang splitting (bottom): SRW (dotted line) $\mathrm{v}\mathrm{s}$ . QRW (solid line)
averaged error
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We follow [10] for the description of the random particle method for this equation. The
algorithm is based on aviscous splitting. We refer to [11] for information on the numerical
solution of conservation laws.

We choose integers $b\geq 2$ , $m\geq 0$ , we put $N:=b^{m}$ and we choose aspatial pa-
rameter $h>0$ . For the quasi-random walk, we need alow-discrepancy sequence $P=$
$\{\mathrm{p}_{0}, \mathrm{p}_{1}, \ldots\}\subset I^{2}$ satisfying (6) and (7). We suppose that the gradient $u_{x}$ of the s0-
lution is approximated by acollection of weighted particles. The initial step function
approximation is given by

$u^{(0)}(x)=u_{-}+l \iota\sum_{0\leq j<N}\epsilon_{j}H(x-x_{j}^{(0)})$ , (35)

where
$\epsilon_{j}=\pm 1$ and $\sum_{0\leq j<N}\epsilon_{j}=\frac{u_{+}-u_{-}}{h}$ . (36)

Here $x_{j}^{(0)}$ is the location and $h$ is the absolute strength of the $j\mathrm{t}\mathrm{h}$ particle.
Let $\triangle t$ be the time step and put $t_{n}:=n\triangle t$ , $u_{n}(x):=u(x, t_{n})$ . We denote the computed

solution after $n$ time steps as $u^{(n)}$ ,

$u^{(n)}(x)=u_{-}+l \iota\sum_{0\leq j<N}\epsilon_{j}H(x-x_{j}^{(n)})$ . (37)

We assume that the particles have been labeled so that

$j<k\Rightarrow x_{j}^{(n)}\leq x_{k}^{(n)}$. and $\epsilon_{j}\geq\epsilon_{k}$ . (38)

The approximate solution at time $t_{n+1}$ is obtained in two steps.
Step 1. Given particles at position $x_{j}^{(n)}$ , $0\leq j<N$ , we need to evolve the positions

in such away that the associated step function approximates the solution of the inviscid
Burgers equation

$\frac{\partial u}{\partial t}(x, t)+(u\frac{\partial u}{\partial x}.)(x, t)=0$ , $x\in \mathrm{R}$ , $t>t_{n}$ , (39)

$u(x, t_{n})=u^{(n)}(x)$ , $x\in \mathrm{R}$ . (40)

We solve the Riemann problems associated with each jump separately. Let

$[u^{(n)}]_{j}:=u^{(n)}(x_{j}^{(n)}+0)-u^{(n)}(x_{j}^{(n)}-0)$

be the strength of the jump at $x_{j}^{(n)}$ .

$\bullet$ If $[u^{(n)}]j\leq 0$ , then we have ashock and the speed of the discontinuity is

$v_{j}^{(n)}:= \frac{1}{2}(u^{(n)}(x_{j}^{(n)}+0)+u^{(n)}(x_{j}^{(n)}-0))$ .

We define it as the velocity of the $j\mathrm{t}\mathrm{h}$ particle.
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o If $[u^{(\mathrm{n})}]_{\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}>0$ , then we have ararefaction wave. Assume that p A- q particles are

located at \yen
$*7$

$x_{j}^{(n)}$ $=$ $x_{j+1}^{(n)}=\ldots=x_{j+p-1}^{(n)}$ , with $\epsilon_{j}=\ldots=\epsilon j+p-1=+1$ ,

$x_{j}^{(n)}$ $=$ $x_{j+p}^{(n)}=\ldots=x_{j+p+q-1}^{(n)}$ , with $\epsilon_{j+p}=\ldots=\epsilon j+\rho+_{l}‘-1=-1$ .

We define the velocity of the $(j+k)\mathrm{t}\mathrm{h}$ particle to be

$v_{j+k}^{(n)}\cdot=\{$

$u^{(n)}(x_{j}^{(n)}-0)+(k. + \frac{1}{2})h$ , if $0\leq k<p-q$

$u^{(n)}(x_{j}^{(n)}+0)$ , if $p-q\leq k$. $<p+q$ .

As time proceeds, the solutions start to interact: at this time we consider the approxi-

mating step function as new initial data. We set

$\delta t_{1}^{(n)}:=\min_{j,k}\{\frac{x_{k}^{(n)}-x_{j}^{(n)}}{v_{j}^{(n)}-v_{k}^{(n)}}$ : $x_{j}^{(n)}<x_{k}^{(n)}$ and $v_{j}^{(n)}>v_{k}^{(n)}\}$ ,

so that $t_{n}+\delta t_{1}^{(n)}$ is the first time of intersection of the trajectories of at least two particles

that were at different positions at time $t_{n}$ . For $t_{n}\leq t\leq t_{n}+\delta t_{1}^{(n)}$ , the location of the $j\mathrm{t}\mathrm{h}$

particle at time $t$ is
$x_{j}^{(n)}(t)=x_{j}^{(n)}+(t-t_{n})v_{j}^{(n)}$ . (41)

If $\delta t_{1}^{(n)}\geq\triangle t$ we set
$x_{j}^{(n+1/2)}:=x_{j}^{(n)}(t_{n+1})$ ,

and we go to step 2, otherwise we replace $t_{n}$ by $t_{n}+\delta t_{1}^{(\tau\iota)}$ and we repeat step 1until we

reach $t_{n+1}$ . Then
$u^{(n+1/2)}(x):=u_{-}+h \sum_{0\leq j<N}\epsilon_{j}H(x-x_{j}^{(n+1/2)})$

.

Step 2. The next step involves solving the diffusion equation for $u_{x}$

$\frac{\partial u_{x}}{\partial t}(x, t)=\nu\frac{\partial^{2}u_{x}}{\partial x^{2}}(x, t)$ , $x\in \mathrm{R}$ , $t>t_{n}$ , (42)

$u_{x}(x, t_{n})=u_{x}^{(n+1/2)}(x)$ , $x\in \mathrm{R}$ . (43)

This is accomplished by adding aquasi-random component to the position of the particles.

We assume that the particles have been sorted in order of position:

$x_{0}^{(n+1/2)}\leq\ldots\leq x_{N-1}^{(n+1/2)}$ . (44)

Then
$x_{\lfloor Np_{j,1}\rfloor}^{(n+1)}--x_{\lfloor Np_{j,1}\rfloor}^{(n+1/2)}+\sqrt{2\nu\triangle t}\Phi^{-1}(p_{j,2})$ , $nN\leq j<(n+1)N$ . (45)

In order to compare the performance of quasi-random walk (QRW) method described
above and standard random walk (SRW) employing pseud0-random numbers [10], both
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${\rm Log}_{2}\mathrm{E}_{\mathrm{N}}$

Figure 2: Burgers equation: SRW (dotted line) $\mathrm{v}\mathrm{s}$ . QRW (solid line) averaged error

methods are used to solve amodel problem which has an exact known solution. We can
use the Cole-Hopf transformation to solve (32)-(33). If $u_{0}(x)=1-H(x)$ , we obtain:

$u(x, t)=. \frac{\Phi((t-\tau)/\sqrt{2\nu t})\exp((t-2x)/4\nu)}{\Phi((t-x)/\sqrt{2\nu t})\exp((t-2x)/4\nu)+\Phi(x/\sqrt{2\nu t})}$ . (46)

We choose $\nu=0.1$ and the solution is computed up to $T=1$ with atime step
$\triangle t=2^{-11}$ . The QRW method utilizes a $(0, 2)$-sequence of Faure in base 2. For all the
calculations, the number $N$ of particles ranges ffom $N=32$ to $N=262,144$, with $N$

being chosen as powers of two. Figure 2shows alog-log plot of the averaged error (28).
The least-squares fit convergence rates are as follows:

$D_{N}( \mathrm{S}\mathrm{R}\mathrm{W})\approx\frac{1.31}{N^{0.54}}.$ , $D_{N}( \mathrm{Q}\mathrm{R}\mathrm{W})\approx\frac{0.89}{N^{0.71}}$ . (47)

We see that the QRW method still clearly outperforms the SRW method for this example,
although the problem being dealt with here is more complicated than simple diffusion
problem.

4Conclusion
In this paper we examine the use of quasi-random sequences of points in place of pseud0-
random points in random walk simulation of diffusion. Two problems are considered: one-
dimensional nonlinear reaction-diffusion equation and Burgers equation. The algorithm
has been tailored to fit in affactional step scheme. The results for the two problems reveal
that quasi-Monte Carlo methods can be successfully applied to simple one-dimensional
equations, producing errors which are smaller than standard random walk. Akey element
in successfully applying the quasi-random sequences is a technique involving renumbering
the particles after each time step
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The algorithms are presently suited for solving scalar, one-dimensional equations. One
desirable extension would be to systems of equations such as the Hodgkin-Huxley equa-
tions. Afurther possible extension is to problems in more than one space dimension, such
as the Navier-Stokes equations. On the theoretical side it will be especially interesting to

prove convergence of the schemes.
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