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1 Introduction
The diffusion approximation of adiscrete model in population genetics is use-
ful to get analytical solution. For many cases without analytical solution we
use computer simulations by using stochastic difference equation for the diffu-
sion approximation. However the discretization of time makes the trajectory
go out of the boundary. We need some devices to solve this problem. The
simulations by adicrete system is sometimes useful. In section 2we compare
the two methods for the simulations of overdominance model in population
genetics (Itoh (1984)). In section 3to we introduce amodel of speciation for
which we could get an analytical solution (Itoh, Mallows, and Shepp (1998)).

2Overdominance model
2.1 Stochastic difference equation
The method presented here is obtained by an approximate description of
an interacting particle system for random genetic drift (Itoh (1973, $1979\mathrm{a}$,
$1979\mathrm{b}$ , 1984)), which is used by Maruyama and Nei (1982), Maruyama and
Takahata (1981), Takahata (1981), Maruyama (1983), Nei et al.(1983), to
discuss genetic variability maintained by mutation and overdominant selec-
tion in finite populations and is shown to be convenient. For the simulation
studies, it is necessary to decompose acovariance matrix called drift matrix
in population genetics. For general covariance matrix, Cholesky decomp0-
sition is usually used. For our case astochastic model which has the same
diffusion approximation to the original Fisher-Wright model automatically
gives adecomposition of the drift matrix.

Our interacting particle model for overdominant selection gives anatural
behaviour of trajectory at the boundary. We compared the heterozygosit$\mathrm{y}$
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obtained by our model with the result by Maruyama and Nei (1982), and
found these two results agree well with each other.

In the Fisher-Wright model it is supposed that each of the genes of the
next ${}_{\mathrm{m}}C_{2}$ generation is obtained by arandom choice among the genes of the
previous generation and that the whole population changes all at once. In
Moran’s model it is supposed that there are $M$ individuals each formed from
$m$ alleles Ai, $A_{2}$ , $\cdots$ , $A_{k}$ , and that at each instant at which the state of the
model may change, one individual of the $\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{s},\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{n}$ at $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{o}\mathrm{m},\mathrm{d}\mathrm{i}\mathrm{e}\mathrm{s}$ and is
replaced by anew individual which is $A_{i}$ with probability $m_{i}/M$ , where $m_{i}$

is the abundance of the allele $A_{i}$ . It is supposed that the probability of any
individual “dying” during an interval $(t, t +dt)$ and then being replaced by
anew individual is Xdt. Hence the mean number of such events in unit time
is AM and the mean length of ageneration is $\lambda^{-1}$ . The following model is
another reasonable one.

Consider apopulation of $M$ particles each of which is one of $k$ types,
$A_{1}$ , $A_{2}$ , $\cdots$ , $A_{k}$ . The types may represent species, alleles, genotypes or other
classification. We then consider interactions between $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s},\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ are as-
sumed to occur at the rate $\lambda dt$ per time interval $(t, t+dt)$ for each particle.
If apair of particles of different types $i$ and $j$ interact , then after the it\‘er-
action the both particles are the type $i$ with probability 1/2 and the type $j$

with probability 1/2. If the type of the interacting particles are the same, no
change occurs. In this model two particles are chosen by random sampling
without replacement at first, and from the two $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s},\mathrm{t}\mathrm{w}\mathrm{o}$ particles are
chosen by random samppling with replacement.

We can approximate our model by asystem of stochastic difference equa-
tions (1). In it, the relative abundance of type $i$ increase by $\sqrt{x\dot{.}(t)xj(t)}\triangle B.\cdot j(t)$

by the interaction with $j$ which results the decrease of the type $j$ by
$-\sqrt{x_{i}(t)x_{j}(t)}\triangle B_{ij}(t)$ , where $c=\sqrt{\lambda/M}$ . Hence our model automatically
leads to the following equation (1), which has the drift matrix $c^{2}\{x_{i}(t)(\sigma:j-$

$xj(t))\}\triangle t$ as covariances.
For $i$ , $j=1,2$ , $\cdots$ , $m$ , consider

$\triangle x_{i}(t)=\dot{.}\sum_{\neq j}c\sqrt{x_{i}(t)x_{j}(t)}\triangle B:j(t)$ , (1)

where $B_{ij}(t)(i>j)$ are mutually independent one dimensional normal ran-
dom variable with the mean 0and the variance $t$ and $\triangle B_{ij}(t)$ $=B_{ij}(t+\triangle)-$
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$B_{j}.\cdot(t)$ . Let

$x:(t+\triangle t)$ $=x:(t)+\triangle x:(t)$ for i $=1,$ 2, \cdots , m.

Then this difference scheme represent the random sampling drift of $m$ alleles.
1, 2, $\cdots$ , $m$ whose relative abundances at time $t$ are $x_{1}(t)$ , $x_{2}(t)$ , $\cdots$ , $x_{m}(t)$

respectively.
Pederson (1973) gave arepresentation in which $x_{i}(t +\mathrm{A}\mathrm{t})$ is constructed

from $x_{i}(t +\triangle t)$ for $j=1,2$ , $\cdots$ , $i-1$ , and $x_{j}(x)$ for $j=1,2$ , $\cdots$ , $i$ , as

$x_{i}(t + \triangle t)=i_{i-1}^{X}(1-\sum_{1-\sum_{j=1}x_{j}(t)}ij_{-}^{-1}j(-1t+\triangle t))x(t)+c\triangle B:(t)[x_{i}(t)(1-x.\cdot(t))$

$-( \frac{x.(t)}{1-\Sigma_{\dot{j}=1}^{-1}x_{j}(t)}.)^{2}\sum_{j,k=1}^{i-1}x_{j}(t)(\delta_{jk}-x_{k}(t))]^{1/2}$ , (2)

where $B_{:}(t)$ , $i=1,2$ , $\cdots$ , $m$ , are mutually independent standard Bronian m0-
tion.

Our method requires ${}_{\mathrm{m}}C_{2}$ mutually independent normal random numbers
for each step, while by the above method mutually independent $m$ normal
random numbers are used. The system of equations (1) is simple and the
decomposision is explicitly given in it.

2,2 An interacting particle system
Here we introduce four-particle collision model to simulate overdominant
selection model in population genetics.

Consider arandom mating population of effective size $N$ , and assume that
selection and mutuation occur deterministically and that, after selection and
mutuation, $2N$ gametes are randomly chosen for the next generation. If we
assume that the fitness of heterozygotes is 1for all pairs of alleles and $1-s$
for all homozygotes, and that every new mutation is different from the extent
alleles. Then we have

$E(\triangle x:(t))=2Nx:(t)\{-v+s(J-x:(t))/(1-sJ)\}\triangle t$

$E(\triangle x:(t)\triangle x_{j}(t))=x:(t)(\sigma_{j}.\cdot-x_{j}(t))(\triangle t)$ (3)
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By an appropriate scaling of time, where $v$ is the mutation rate, $x_{i}(t)$ is
the frequency of allele $A_{i}$ at time $t$ , $J= \sum_{i=1}^{n}x_{i}^{2}(t),\mathrm{a}\mathrm{n}\mathrm{d}N$ is effective popula-
tion size. The study of the allele frequency distribution in finite population
for overdominance selection was initiated by Wright (1949). Maruyama and
Nei (1982) used the form (1) (Itoh (1979b) to study various properties of
overdominant selection in afinite population by computer simulations, simu-
lating the stochastic differential equation with expectations and covariances
given by equation (3).

In apopulation there are $n$ particles of $m$ types, $A_{1}$ , $A_{2}$ , $\cdots$ , $A_{m}$ .Consider
the following four-particle random collision. Four particles are chosen from
the population by random sampling without replacement, and let the four
particles be $A_{i}$ , $A_{j}$ , $A_{k},\mathrm{a}\mathrm{n}\mathrm{d}A_{l}$ . $A_{i}$ and $A_{j}$ from an individual $A_{i}Aj$ , and $A_{k}$

and $A_{l}$ from $A_{k}A_{l}.\mathrm{T}\mathrm{h}\mathrm{e}$ $A_{i}Aj$ and the $A_{k}A_{l}$ collide and produce two $A_{i}Aj^{\mathrm{S}}$

with probability $1/2+s_{ij,kl}$ and two $A_{k}A_{l}\mathrm{s}$ with probability $1/2+s_{kl,ij}$ , where
$s_{ij,kl}=-s_{kl,ij}$ , with

$s_{ij,kl}=\{$

$s/2$ if $i\neq j$ and $k$ $=I$

$-s/2$ if $i=j$ and $k$ $\neq l$

0if $i\neq j$ and $k$ $\neq l$ or $i=j$ and $k$ $=I$,

and then the two AtAjS (or the two $A_{i}A_{l}\mathrm{s}$ ), split into two Ats and two $A_{j}\mathrm{s}$ , (or
two $A_{k}\mathrm{s}$ and two $A_{l}\mathrm{s}$ ). Hence by the above collision $A_{i}$ , $A_{j}$ , $A_{k}$ and $A_{l}$ become
two $A_{i}\mathrm{s}$ and two $A_{j}\mathrm{s}$ or two $A_{k}\mathrm{s}$ and two $A_{l}\mathrm{s}$ . We assume that a collision
takes place in atime interval $[t, t+dt]$ , with probability $Cdt$ . Let the array

of alleles frequencies be $\vec{X}=$ ( $X_{1}$ , A2, $\cdots$ , $X_{n}$ ) at time $t$ . We caluculate the
expectation $W(\triangle X_{i}(t))$ and covariance $E(\triangle X_{i}(t)\triangle Xj(t))$ .

Hence we have approximately the following

$E( \triangle x_{\alpha})=\frac{4}{n}Csx_{\alpha}(\sum_{k}x_{k}^{2}-x_{\alpha})\triangle t$

$E( \triangle x_{\alpha}\triangle x_{\beta})=\frac{4}{n^{2}}Cx_{\alpha}(\delta_{\alpha\beta}-x_{\beta})\triangle t$

where $x_{\alpha}=X_{\alpha}/n$ , for $\alpha=1,2$ , $\cdots$ , $m$ .

We assume that every mew mutation is different from the extant alleles
and in atime unit $\triangle t$ each of the $n$ alleles is replaced by amutant with
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probability $(4v/n)C\triangle t$ . The four-particle collisions and mutations take place
at random mutually independently. Hence we have

$E( \triangle x_{\alpha}=\frac{4}{n}Cx_{\alpha}\{-v+s(\sum_{k}x_{k}^{2}-x_{\alpha})\triangle t$ .

We choose $C=n^{2}/4$ and put $n=2N$. We have

$E( \triangle x_{\alpha}(t))=2N\{-v+sx_{\alpha}(\sum_{k}x_{k}^{2}-x_{\alpha})\}\triangle t$

$E(\triangle x_{\alpha}\triangle x_{\beta})=x_{\alpha}(\delta_{\alpha\beta}-x_{\beta})\triangle t$

where $x_{\alpha}=X_{\alpha}/2N$ for $\alpha=1,2$ , $\cdots$ , $m$ . The first equation is approximately
equivalent with (4) when $s$ is small. The variance caused by mutation is
negligible. Hence we can use our random collision model as asimulation
method for overdominance model when $s$ is small.

Astep consists of successive two stages. In the first stage arandom
collision of four particles takes place and in the next stage amutation takes
place with probability $4v$ , that is to say, one of $n$ particles is randomly chosen
and replaced by amutant with probability $4v$ . We repeat this step one by
one and take the time average $\mathrm{h}-$ of heterozygosity $h=1- \sum x_{1}^{2}.\cdot$ . Initially
we set all of the $n$ particles are of one type. We take the time average of
heterozygosity over the last half duration of the total steps, that is, we take
the time average from time $T/2$ to $T$ , to get the average heterozygosity of the
stationary state. Our results are compared with the results by Maruyama
and Nei [10] in Table 1
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Table 1. Comparison of values of heterozygosity, obtained by the two methods,

stochastic differential equation and four-particle collision model (Itoh (1984))

3Model for speciation
(by Y. Itoh, C. Mallows and L. Shepp)

We introduce an analytical solution for asimple model of speciation (Itoh,
Mallows, and Shepp (1998) $)$ . Suppose initially there are Ni(0) particles at
each vertex $i$ of $G$ , and that the particles interact to form aMarkov chain: at
each instant two particles are chosen at random, and if these are at adjacent
vertices of $G$ , one particle jumps to the other particle’s vertex, each with
probability 1/2. The process $\mathrm{N}$ enters adeath state after afinite time when
all the particles are in some independent subset of the vertices of $G$ , i.e., a
set of vertices with no edges between any two of them. The problem is to
find the distribution of the death state, $\eta\dot{.}=N_{i}(\infty)$ , as afunction of $N_{i}(0)$ .

We are able to obtain, for some special graphs, the limiting distribution
of $N_{i}$ if the total number of particles $Narrow\infty$ in such away that the fraction
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$N.\cdot(\mathit{0})/S$ $=\xi:$ , at each vertex is held fixed as $Narrow\infty$ . In particular we can
obtain the limit law for the graph, $S_{2}$ : $\cdot-\cdot-\cdot$ , having 3vertices and 2edges.

For the complete graph, the model is that of Moran (1958) for the Fisher-
Wright random sampling effect in population genetics. In the more general
case the model might be applied to study speciation in biology as well as
political positionings. For example consider agenetic system for $m$ alleles
A.$\cdot$ , $i=1,2$ , $\cdots$ , $m$ , in which zygotes $A\{Aj$ are fertile for $j=i-1$ , $i$ , $i+1$
and infertile for the other $j$ . This problem was studied numerically by Nei,
Maruyama and Wu (1983), considering the Fisher-Wright random sampling
effect with some selection structure. Our present model has arandom sam-
pling effect depending on the structure of agraph, which could be anatural
simplified model of the genetic problem. The graph $R_{2k}$ , which is aregular
polygon with $2k$ vertices and all edges present except those joining opposite
vertices, is aspecial case of our genetic model.

Let $G$ be any graph, and let $\sum\xi:=1$ , $\xi_{i}\geq 0$ , $i\in G$ , be given. We will
$:\in G$

define $X_{i}(t)$ , $i\in G$ , $t\geq 0$ , with X.$\cdot(0)=\xi$.$\cdot$ , as the solution to the stochastic
differential equation for $t$ $\geq 0$ ,

$dX \dot{.}=\sum_{j\in N\mathrm{e}_{*}}$

.

$\sqrt{X\dot{.}X_{j}}dB_{j}\dot{.}$ , i $\in G$ (4)

where Ne.$\cdot$ is the set of neighbors of $i$ in $G$ , and $B_{j}.\cdot$ are independent stan-
dard Wiener processes for distinct pairs $\{i,j\}$ and with the skew-symmetry
property if the order is reversed,

$B_{j}.\cdot(t)=-B_{j}.\cdot(t)$ , $t$ $\geq 0$ .
Thus, it is clear that there exists afirst time $\tau\geq 0$ , for which { $i$ : $X_{:}(\tau)>$

$0\}=I(\tau)$ is an independent subset of $G$ and $P(\tau<\infty)=1$ , i.e. the
situation is the same for $X$ as for $N$ . Indeed if the total number of particles
$N=\Sigma N\dot{.}(0)$ in the discrete process tends to infinity in such away that
N.$\cdot(0)/N$ is held fixed for each $i$ @ $G$ , then the limiting process of $N(t)/N$ is
$X$ .

The probability of fixation can be obtained for the case for $k\backslash _{2}’.$ . In this
case we can use the resulting family of martingales to determine the limiting
distribution explicitly. There is one martingale for each $n\geq 2$ , given by
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$\mathrm{Y}_{n}(t)$ $= \sum_{i=1}^{n-1}$ $(\begin{array}{l}ni\end{array})(\begin{array}{l}n-2i-\mathrm{l}\end{array})$ $(-1)^{i}X_{1}^{i}(t)X_{2}^{n-i}(t)$ (5)

We will use the martingale property:

$E\mathrm{Y}_{n}(\tau)=E\mathrm{Y}_{n}(0)$ (6)

to obtain the laws of $I(\tau)$ and $X(\tau)$ as afunction of $\xi=X(0)$ . With $\mathrm{Y}_{n}$ ,
define for any $u$ the process

$Z_{u}(t)= \sum_{n\geq 2}\frac{u^{n}}{n}\mathrm{Y}_{n}(t)$ , $t\geq 0$ . (7)

The following identity is valid for $|v|<1/4,0\leq x\leq 1$ ,

$\sum_{n\geq 2}\frac{v^{n}}{n}\dot{.}\sum_{=1}^{n-1}$
$(\begin{array}{l}ni\end{array})(\begin{array}{l}n-2i-\mathrm{l}\end{array})$

$(-1)^{i}x^{:}(1-x)^{n-i}=xv+ \frac{1-v}{2}(1-$

$EZ_{u}( \tau)=\int_{0}^{1}(xu+\frac{1-u}{2}(1-$ (9)

$Z_{u}(0)= \xi_{1}u+\frac{1-u(\xi_{1}+\xi_{2})}{2}(1-$ (10)

where $\xi_{i}=X_{i}(0)$ and $\mu(dx)=P\{X_{1}(\tau)\in dx\}$ .
From the analysis using the above two equations eq. (9) and eq.(10), we
obtain

$P \{X_{1}(\tau)=0\}=\frac{1-\xi_{1}-\xi_{2}}{2}\{1+\frac{1+\xi_{1}+\xi_{2}}{((1+\xi_{1}+\xi_{2})^{2}-4\xi_{2})^{1/2}}\}$ (11)

Obviously we have

$P\{X_{0}(\tau)=1\}=P\{X_{1}(\tau)=X_{2}(\tau)=0\}=\xi_{0}=1-\xi_{1}-\xi_{2}$ (12)

By symmetry we have (interchanging 1and 2) the point mass of $\mu$ at $x=1.$,

$P \{X_{1}(\tau)=1\}=\frac{1-\xi_{1}-\xi_{2}}{2}\{-1+\frac{1+\xi_{1}+\xi_{2}}{((1+\xi_{1}+\xi_{2})^{2}-4\xi_{1})^{1/2}}\}$ (13)
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The identity (8) has combinatorial meaning. It is obtained from an identy
for generating function to enumerate plane unlabelled trees (Flajolet (1999)).
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