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Abstract

In this article, we give abrief informal introduction to Malliavin Calculus for newcomers.
We apply these ideas to the simulation of Greeks in Finance. First to European-type options
where formulas can be computed explicitly and therefore can serve as testing ground. Later
we study the case of Asian options where close formulas are not available. The Greeks are
computed through Monte Carlo simulation.

1Introduction
Malliavin Calculus is an area of research which for many years has been considered highly
theoretical and technical from the mathematical point of view. In recent years it has become
clear that there are various applications of Malliavin Calculus as far as the integration by parts

formula is concerned. Nevertheless it is still considered by the general mathematical audience
and practitioners afield where is hard to grasp the basic ideas or to obtain new contributions.

In this article we present an informal introduction to Malliavin Calculus which we hope can
open the area to practitioners. For serious mathematical approaches to the topic we refer the
readers to the authoritative books on the matter, e.g. [1, 2, 3]. We have tried to take the spirit
of the issues to try to explain in simple terms the elements of the theory.

2Malliavin calculus

The most common concise way Malliavin Calculus is presented in aresearch paper is as follows.
Let $W=\{W_{t}\}_{t\in[0,1]}$ be astandard one-dimensional Brownian motion defined on acomplete
probability space $(\Omega,\mathcal{F}, P)$ . Assume $\mathcal{F}=\{\mathcal{F}_{t}\}_{t\in[0,1]}$ is generated by $W$ . Let $S$ be the space
of random variables of the form $F=f(W_{t_{1}}$ , ... ’

$W_{t_{n}})$ , where $f$ is smooth. For $F\in S$ , $D_{t}F=$

$\sum_{\dot{|}=1}^{n}\frac{\partial}{\partial x_{j}}f(W_{t_{1}}, \ldots, W_{t_{n}})1_{[0,t_{j}]}(t)$ . For $k\in \mathbb{Z}_{+}$ , $p\geq 1$ , let $\mathrm{M}^{p}$,be the completion of $S$ with the
respect to the norm

$||F||_{k,p}=(E[|F|^{p}]+E[( \sum_{j=1}^{k}\int_{0}^{1}\ldots\int_{0}^{1}|D_{s_{1},\ldots,s_{j}}^{j}F|^{2}ds_{1}\ldots ds_{j})^{p/2}])^{1/p}$,

where $D_{t_{1},\ldots,t_{j}}^{j}F=D_{t_{1}\cdots t_{j}}DF$ . We let $||F||_{0,p}=(E[F^{p}])^{1/p}=||F||p$ and $\mathrm{D}^{\infty}=\mathrm{n}_{k,p}\mathrm{M}^{p},$ . For

processes $u=\{u_{t}\}_{t\in[0,1]}$ on $(\Omega,F, P)$ , $\mathrm{D}_{L^{2}([0,1])}^{k,p}$ is defined as $\mathrm{M}^{p}$,but with norm $||u||_{k,p,L^{2}([0,1])}=$

$(E[||u||_{L^{2}([0,1])}^{p}]+E[( \sum_{j=1}^{k}\int_{0}^{1}\ldots\int_{0}^{1}||D_{s_{1},\ldots,s_{j}}^{j}u||_{L^{2}([0,1])}^{2}ds_{1}\ldots ds_{j})^{p/2}])^{1/p}$ .
We denote by $D^{*}(u)$ the Skorokhod integral or the adjoint operator of $D$ . This adjoint

operator behaves like astochastic integral. In fact, if $u_{t}$ is $\mathcal{F}_{t}$ adapted, then $D^{*}(u)= \int_{0}^{1}$ utdWt
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the Ito integral of $u$;see e.g. [2]. Here we write $D^{*}(u)= \int_{0}^{1}$ utdWu even if $u_{t}$ is not $F_{t}$ adapted.
There are other anticipating integrals that have some relationship with this one as e.g. the
Ogawa symmetric integral. Of the formulas we will use, the following are worth mentioning,

$\int_{0}^{1}Fu_{t}dW_{t}=F\int_{0}^{1}u_{t}dW_{t}-\int_{0}^{1}(D_{t}F)u_{t}dt$ , (1)

for F $\in \mathrm{D}^{1,2}$ and $E[F^{2} \int_{0}^{1}u_{t}^{2}dt]<\infty$ –see e.g. $[2]-$;and

E $[ \int_{0}^{1}(D_{t}F)u_{t}dt]=E[FD^{*}(u)]$ . (2)

As abyproduct of aU the above formulas one obtains the integration by parts formula. For
this, we say that $F$ is smooth if $F\in?$ . For areal random variable $F\in \mathrm{D}^{1,2}$ , we denote by $\psi_{F}$

the MMavin covariance matrix a ociated with $F$. That is, $\psi_{F}=<DF,DF>_{L^{2}[0,1]\mathrm{x}\mathrm{R}}$. One
says that the random variable is non-degenerate if $F\in\ovalbox{\tt\small REJECT}$ and the matrix $\psi_{F}$ is invertible $\mathrm{a}.\mathrm{s}$.
and $($cdet $\psi_{F})^{-1}\in\bigcap_{p\geq 1}L^{p}(\Omega)$ .

The integration by parts formula of Malliavin Calculus can be briefly described as follows.
Suppose that $F$ is anon-degenerate random variable and $G\in \mathrm{D}^{\infty}$ . Then for any function
$g\in C_{p}^{\infty}(\mathbb{P})$ and afinite sequence of multi-indexes $\beta$ , we have that there exists arandom
variable $H^{\beta}(F, G)$ so that

$E[g^{\beta}(F)G]=E[g(F)H^{\beta}(F, G)]$ with

$||H^{\beta}(F, G)||_{n\mathrm{p}}\leq C(n,p,\beta)||\det(\psi_{F})^{-1}||_{\Psi}^{a’}||F||_{d,b}^{\iota}||G||_{d’,\mathcal{V}}$ ,

for some constants $C(n,p,\beta)$ , $a$ , $b$, $d$, $p’$ , $a’$ , $b’$ , $d$ and $\beta\in\bigcup_{n\geq 1}\{1, \ldots, q\}^{\iota}’$ . Here $g^{\beta}$ denotes the
high order derivative of order $l(\beta)$ , the length of the multi-index $\beta$ , and whose partial derivatives
are taken according the index vector $\beta$.

Agentler introduction may say that the idea behind the operator $D$ is to differentiate a
random variable with respect to the underlying noise being this generated by the Wiener process
$W$. Therefore heuristically one may think that $D_{s}$ $”=$ ”

$\frac{\theta}{\partial(dW.)}$ . With this in mind one can guess
how to differentiate various random variables. Some examples are

$D_{t}W_{t}$ $=$ 1,
$D_{\iota}f(Wt)$ $=$ $f’(W_{t})$ , and

$D_{s}( \int_{0}^{1}f(W_{u})dW_{u})$ $=$ $\int_{s}^{1}f’(W_{u})dW_{u}+f(W_{s})$ .

Here $f$ is a $C_{b}^{1}$ function. Away to understand any integration by parts formula is through the
following general definition.

Definition We will say that given two random variables $X$ and $\mathrm{Y}$ , the integration by parts
formula is valid if for any smooth function $f$ with bounded derivatives we have that

$E[f’(X)\mathrm{Y}]=E[f(X)H]$ ,

for some random variable $H\equiv \mathrm{H}(\mathrm{X}$, .
One can deduce an integration by parts formula through the dualty principle (2). That is,

let $Z=f(X)$ . Then using the chain rule we have

$D_{s}Z=f’(X)D_{s}X$ .
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From here we multiply the above by $\mathrm{Y}h(s)$ where $h$ is aprocess to be chosen appropiately. Then

$D_{s}Z\mathrm{Y}h(s)=f’(X)D_{s}X\mathrm{Y}h(s)$ .

Integrating this for $s\in[0,1]$ , we have that

$\mathit{1}^{1}D_{s}Z\mathrm{Y}h(s)ds=\int_{0}^{1}f’(X)D_{s}X\mathrm{Y}h(s)ds=f’(X)\mathrm{Y}\int_{0}^{1}h(s)D_{s}Xds$ , then

$\int_{0}^{1}\frac{\mathrm{Y}D_{s}Zh(s)}{\int_{0}^{1}h(v)D_{v}Xdv}ds=f’(X)\mathrm{Y}$, therefore

$E<DZ,u>_{L^{2}[0,1]}=E[f’(X)\mathrm{Y}]$ ,

with
$u_{s}= \frac{\mathrm{Y}h(s)}{\int_{0}^{1}h(v)D_{v}Xdv}$ .

Finally, we have that if $D^{*}$ is the adjoint operator of $D$ –see equation (2)–, then

$E[ZD^{*}(u)]=E[f’(X)\mathrm{Y}]$ , and

$E[f(X)D^{*}( \frac{\mathrm{Y}h(\cdot)}{\int_{0}^{1}h(v)D_{v}Xdv})]=E[f’(X)\mathrm{Y}]$ .

This also means that in particular for $h\equiv 1$ we have that

$H \equiv H(X, \mathrm{Y})=D^{*}(\frac{\mathrm{Y}}{\int_{0}^{1}D_{v}Xdv})$ . (3)

If one has higher order derivatives then one has to repeat this procedure iteratively. The use
of the norms in the spaces $\mathrm{m}^{p}$,is necessary in order to prove that the above expectations are
finite (in particular the ones related to $H$). Note that the integral $\int_{0}^{1}h(v)D_{v}Xdv$ should not be
degenerate with probability one. Otherwise the above argument is bound to fail. The process $h$

that appears in this calculation is aparameter process that can be chosen so as to obtain this
non-degeneracy. In the particular case that $h(v)=DVX$ one obtains the so called Malliavin
covariance matrix.

In conclusion one can build different integrations by parts formulas depending on how we
choose this process $h$ . In the next section we use this formula in order to apply it to aconcrete
problem in Finance.

3Greeks in Finance

European options are contracts that are signed between two parties (usually abank and a
customer) that allows to obtain certain monetary benefits if the price of certain asset fall above
(call option) or below (put option) acertain fixed value, the strike price, at acertain fixed date,
the expiration time. AGreek is the derivative of an option price with respect to aparameter. In
general, let $X\equiv X(\alpha)$ be arandom variable that depends on aparameter $\alpha$ . Suppose that the
option price is computed through apayoff function in the following form $P(\alpha)=E[\Phi(X(\alpha), \alpha)]$

where $\Phi$ is generally non-smooth. AGreek is therefore ameasure of the sensibility of this price
with respect to its parameters. In particular, it could serve to prevent future dangers in the
position of acompany holding these options. The problem of computing Greeks in Finance has
been studied by various authors: [4, 5, 6, 7, 8], among others. Let us take aclooser look at the
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problem. If the Leibnitz rule of interchange between expectation and differentiation were true
then we would have

$\frac{\partial P(\alpha)}{\partial\alpha}=\frac{\partial E[\Phi(X(\alpha),\alpha)]}{\partial\alpha}=E[\Phi’(X(\alpha),\alpha)\frac{\partial X(\alpha)}{\partial\alpha}+\frac{\partial\Phi(X(\alpha),\alpha)}{\partial\alpha}]$. (4)

When the above expression does not have aclose formula then one may start thinking in per-
forming some Monte Carlo simulations in order to approximate the above quantity. If $\Phi$ is
somewhat regular then we can use the last expression above to do this: we shall $\mathrm{c}\mathrm{a}\mathrm{U}$ this prove
dure the “direct method”. Unfortunately in various cases 4is not differentiate. Then one can
resort to the use of the middle expression above to generate what is known as finite difference
method. This method has been somewhat successful in the recent past but we would like to
discuss here the application of the integration by parts pesented before in order to compute
these derivatives.

4The European-style options
We shaU iUustrate how this prooedure works by choosing a very special subset of the large family
of Financial derivatives: what we have called European-style options. In this class of derivativeswe $\mathrm{w}\mathrm{i}\mathrm{U}$ find aU the options whose payoff function depends only on the value of the underlying
at the expiration time $T$, which is previously fixed. Examples of the European-type options
are the vanillas –the more classical European calls and puts–, or the binaries –the so called

$” \mathrm{c}\mathrm{a}\mathrm{s}\mathrm{h}- \mathrm{o}\mathrm{r}- \mathrm{n}\mathrm{o}\mathrm{t}\mathrm{l}\dot{\mathrm{u}}\mathrm{n}\mathrm{g}$”options–, among others. These options will differ, for instance, from the
$Americanarrow style$ options, where the execution time is not fixed but belongs to an interval; and
also ffom the Asian-style options where the payoff depends on some average of the value of the
asset in agiven period of time. We $\mathrm{w}\mathrm{i}\mathrm{u}$ return on this topic afterwards.

The interest of the European-style options is that they are aclass of derivatives whose Greeks
can be computed in closed form for particular classes of payoff functions. The reason, as we $\mathrm{w}\mathrm{i}\mathrm{u}$

show, is that we explicitly know the probability density function of the random variable involved,
$S_{T}$, whereas in other scenarios this is not true. This pecularity provides us with aframework
where we can easily test how Malliavin Calculus applies to the computation of Greeks. Later,
we will also make acomment on acase where this closed formulas are not available and where
this technique may prove useful.

4.1 The Malliavin expressions
Let us start deriving the formal expressions for some of the Greeks we shall deal with.

First we assume that our underlying asset $S$ is described by ageometric Brownian motion
under the risk neutral probability $\mathrm{P}$ :

$S_{t}=S_{0}+ \int_{0}^{t}rS_{s}ds+\int_{0}^{t}\sigma S_{s}dW_{s}$ , (5)

where $r$ is the interest rate and $\sigma$ is the volatilty. This model is one of the models typicaly
used to describe stock prices or stock indices.

Second, from the previous arguments it folows that $X(\alpha)$ must be in general afunctional of
$S$. In the case of European-type options, $X(\alpha)=S_{T}$ and from (5):

$S_{T}=S_{0}e^{\{\mu T+\sigma W_{T}\}}$ , (6)

where $\{W_{t}\}_{t\in[0,T]}$ is the Wiener process, and $\mu$ is just r $-\sigma^{2}/2$. Expression (6) is involved in all
the following derivations
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Now we can compute Delta, $\Delta$ , the first partial derivative of the (discounted) expected

outcome of the option, with respect to the present value of the asset:

$\Delta=\frac{\partial}{\partial S_{0}}E[e^{-\mathrm{r}T}\Phi(S_{T})]=\frac{e^{-rT}}{S_{0}}E[\frac{\partial S_{T}}{\partial S_{0}}\Phi’(S_{T})]=\frac{e^{-\mathrm{r}T}}{S_{0}}E[\Phi’(S_{T})S_{T}]$ .

(7)

Now we may perform the integration by parts applying the formula given in (3),

$\Delta=\frac{e^{-rT}}{S_{0}}E[\Phi(S_{T})D^{*}(\frac{S_{T}}{\int_{0}^{T}D_{v}S_{T}dv})]$ ,

which removes the derivative of $\Phi$ from the expectation.
The integral term appearing in the last expression will appear many times along our expo

sition. In order to compute it we must remember the rules of the stochastic derivative stated
above:

$D_{u}S_{T}=\sigma S_{T}D_{u}W_{T}=\sigma S_{T}1_{u\leq T}$ ,

and then
$\int_{0}^{T}D_{u}S_{T}=\sigma TS_{T}$ . (8)

Then we are able to perform the stochastic integral in (7),

$D^{*}( \frac{S_{T}}{\int_{0}^{T}D_{v}S_{T}dv})=D^{*}(\frac{S_{T}}{\int_{0}^{T}\sigma S_{T}dv})=D^{*}(\frac{1}{\sigma T})=\frac{W_{T}}{\sigma T}$ ,

with the help of equation (1) applied to $F= \frac{1}{\sigma T}$ . Then the expression for Areads,

$\Delta=E[e^{-tT}\Phi(S_{T})\frac{W_{T}}{S_{0}\sigma T}]$ . (9)

Let us move now into anew Greek: Vega, It measures how sensitive is the price of the option

when the volatility changes,

$\mathcal{V}=\frac{\partial}{\partial\sigma}E[e^{-\mathrm{r}T}\Phi(S_{T})]=e^{-\mathrm{r}T}E[\frac{\partial S_{T}}{\partial\sigma}\Phi’(S_{T})]=e^{-rT}E[S_{T}(W_{T}-\sigma T)\Phi’(S_{T})]$.

We invoke again the recipe in Section 2and thus we can withdraw the derivative form $\Phi(S_{T})$ ,

$\mathcal{V}--e^{-\mathrm{r}T}E[\Phi(S_{T})D^{*}(\frac{S_{T}(W_{T}-\sigma T)}{\int_{0}^{T}D_{v}S_{T}dv})]=e^{-tT}E[\Phi(S_{T})D^{*}(\frac{W_{T}}{\sigma T}-1)]$ ,

where we have used the expression (8). So the computation we must face is

$D^{*}( \frac{W_{T}}{\sigma T}-1)=\frac{1}{\sigma T}D^{*}(W_{T})-W_{T}$ .

Here anew instance of stochastic integral appears, $D^{*}(W_{T})$ . The rule which we must take into

account in order to solve the problem is again in (1), with $F=W\tau$ ,

$D^{*}(W_{T})=W_{T}^{2}- \int_{0}^{T}D_{s}W_{T}ds=W_{T}^{2}-T$,

what lead us finally to this expression for $v$ ,

$V=E[e^{-rT} \{\frac{W_{T}^{2}}{\sigma T}-W_{T}-\frac{1}{\sigma}\}\Phi(S_{T})]$ . (10)
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The last example we $\mathrm{w}\mathrm{i}\mathrm{U}$ present here is one involving asecond derivative: Gamma. $\Gamma$ inform us
on the second order dependence of the price of the option on the actual value of the underlying,

$\Gamma=\frac{\partial^{2}}{\partial S_{0}^{2}}E[e^{-rT}\Phi(S_{T})]=\frac{e^{-\tau T}}{S_{0}^{2}}E[S_{T}^{2}\Phi’(S_{T})]$.

After afirst integration by parts we obtain,

$\Gamma=\frac{e^{-rT}}{S_{0}^{2}}E[\Phi’(\mathrm{k})D^{*}(\frac{S_{T}^{2}}{\int_{0}^{T}D_{v}S_{T}dv})]=\frac{e^{-rT}}{S_{0}^{2}}E[\Phi’(S_{T})D^{*}(\frac{S_{T}}{\sigma T})]$ .

The stochastic integral may be simplfied using once more formula (1) on $F=\#^{s}$ , leading to

$D^{*}( \frac{S_{T}}{\sigma T})=\frac{S_{T}}{\sigma T}D^{*}(1)-\frac{1}{\sigma T}\int_{0}^{T}D_{s}S_{T}ds=S_{T}\{\frac{W_{T}}{\sigma T}-1\}$ .

Afterwards we can perform the second integration by parts, yielding:

$\Gamma=\frac{e^{-rT}}{S_{0}^{2}}E[\Phi’(\mathrm{k})\mathrm{h}\{\frac{W_{T}}{\sigma T}-1\}]=\frac{e^{-rT}}{S_{0}^{2}}E\{$$\Phi(S_{T})D^{*}(\frac{S_{T}}{\int_{0}^{T}D_{v}S_{T}dv}\{\frac{W_{T}}{\sigma T}-1\})]$ .

The stochastic integral is now slightly cumbersome, but it does not endow any complexity that
we have not seen before,

$D^{*}( \frac{S_{T}}{\int_{0}^{T}D_{v}S_{T}dv}\{\frac{W_{T}}{\sigma T}-1\})=\frac{1}{\sigma T}D^{*}(\frac{W_{T}}{\sigma T}-1)=\frac{1}{\sigma T}\{\frac{W_{T}}{\sigma T}-W_{T}-\frac{1}{\sigma}\}$ .

If we bring together the previous partial results we will obtain the expression,

$\Gamma=E[\frac{e^{-rT}}{S_{0}^{2}\sigma T}\{\frac{W_{T}}{\sigma T}-W_{T}-\frac{1}{\sigma}\}\Phi(S_{T})]$ . (11)

If we compare it with (10), we find the following relationship between v and $\Gamma$ :

$\Gamma=\frac{v}{S_{0}^{2}\sigma T}$ . (12)

Since we have indeed closed expressions for aU the Greeks, we may easily chedc the correctness
of the above statements. We shall recover property (12) of the European-style options in the
next section. The above identities are very $\mathrm{w}\mathrm{e}\mathbb{I}$ known by practitioners although their proofs do
not usualy recal the integration by parts formula in the form we have introduced it here.

4.2 The explicit computation

The reason for the existence of such expressions for the Greeks of European-type options is due
to the fact that there is aclosed and tractable formula for the probabilty density function of
$S\tau$ . This is the lognonnal distribution that is written as

$p(x)= \frac{1}{x\sqrt{2\pi\sigma^{2}T}}\exp\{-\beta \mathrm{o}\mathrm{g}(x/S_{0})-\mu T]^{2}/2\sigma^{2}T\}$.

When $p(x)$ is available we can face the problem from adifferent perspective. In this case we are
able to compute all the partial derivatives, starting from the explicit formulation for the price
of the option, $P$,

$P$ $=E[e^{-rT} \Phi(S_{T})]=\int_{0}^{\infty}e^{-rT}\Phi(x)p(x)dx$, (13)
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usually just aformal expression, which now becomes handy. We can show this computing the
value of $\Delta$ , in terms of partial derivatives of $p(x)$ :

$\Delta=\frac{\partial}{\partial S_{0}}\int_{0}^{\infty}e^{-\mathrm{r}T}\Phi(x)p(x)dx=\int_{0}^{\infty}e^{-\mathrm{r}T}\Phi(x)\frac{\partial p(x)}{\partial S_{0}}dx=\int_{0}^{\infty}e^{-\mathrm{r}T}\Phi(x)\frac{\partial 1\mathrm{o}\mathrm{g}p(x)}{\partial S_{0}}p(x)dx$ .

Note that we get an expression that can be easily rewritten in away that apparently resembles
our previous results, since one integration by parts has been implicitly done, and akernel
naturally appears,

$\Delta=E[e^{-rT}\Phi(S_{T})(\frac{\partial 1\mathrm{o}\mathrm{g}p(x)}{\partial S_{0}})_{x=S_{T}}]$ . (14)

But we have not yet exploited the information we have about the functional form of $p(x)$ ,

$( \frac{\partial 1\mathrm{o}\mathrm{g}p(x)}{\partial S_{0}})_{x=S_{T}}=\frac{1}{S_{0}\sigma^{2}T}[\log(x/S_{0})-\mu T]_{x=S_{T}}=\frac{W_{T}}{S_{0}\sigma T}$,

which leads us to the same expression we have already obtain by means of Malliavin Calculus:

$\Delta=E[e^{-rT}\Phi(S_{T})\frac{W_{T}}{S_{0}\sigma T}]$ .

Asimilar procedure applies to the other Greeks. We will obtain $V\eta a$ just replacing the $S_{0}$

with aain equation (14),

$\mathcal{V}=E[e^{-\tau T}\Phi(S_{T})(\frac{\partial 1\mathrm{o}\mathrm{g}p(x)}{\partial\sigma})_{x=S_{T}}]$ ,

and, after straightforward computations, we recover equation (10). The case of Garnrna leads
to an expression with avery similar flavor to what we have already seen,

$\Gamma=E[e^{-tT}\Phi(S_{T})\{(\frac{\partial 1\mathrm{o}\mathrm{g}p(x)}{\partial S_{0}})^{2}+\frac{\partial^{2}1\mathrm{o}\mathrm{g}p(x)}{\partial S_{0}^{2}}\}_{x=S_{T}}]$ ,

that yields, again, the same result presented in (11). We find therefore in this frame that the
property stated in (12) is fulfilled by Vega and Gamma.

We can then conclude that when we deal with European-style options, the Mallavin-related
procedures presented above are equivalent to the result we attain if we directly differenciate the
probability density function.

4.3 The vanilla options

Besides the formal comparison with the previous case, the fact of knowing $p(x)$ allows us, in
principle, to completely compute all the Greeks once apayoff function has been selected. One
of the most popular choice is the European, or vanilla, call whose payoff reads,

$\Phi(X)=(X-K)_{+}$ . (15)

Then can be easily derived the following expressions for the Greeks we have presented:

$\Delta$ $=$ $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{d_{1}(K)}e^{-x^{2}/2}dx$ ,

$v$ $=$
$s_{0}\sqrt{\frac{T}{2\pi}}e^{-[d_{1}(K)]^{2}/2}$ , and

$\Gamma$ $=$ $\frac{1}{s_{0}\sqrt{2\pi\sigma^{2}T}}e^{-[d_{1}(K)]^{2}/2}$ ;
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$d_{1}(x)= \frac{1}{\sigma\sqrt{T}}[\log(S_{0}/x)+(r+\frac{1}{2}\sigma^{2})T]$ ,

as it can be found in any textbook on financial derivatives [9]. In conclussion, we are ableto compute the different Greeks using the Malliavin-related formulas, and compare them withtheir theoretical values. We present in Fig. 1and 2the result of this procedure, for agivenset of parmeters, after Monte Carlo simulation. Only Aand $v$ are shown, since $\Gamma$ would justbe areplica of the second, due to equation (12). These examples show us how the outcomeof the simulation progressively attains their own theoretical value, whereas the statistical errorreduces. We notice however that the use of what we have labeled as “direct method”, just
perfoming Monte Carlo simulations starting ffom the rhs expression in (4), would lead to anestimator with smaller variance, and therefore abetter estimation. Those estimations do notappear in the Figures, in the sake of clarity. But we must remember that this technique can onlybe applied when the payoff is smooth enough. In our case, when payoff follows (15), Gamma
cannot be computed in this way.

$\frac{\frac{\varpi}{}}{[mathring]_{\mathrm{o}}}$

$\frac{3}{\varpi}$

$.\underline{\in}$

$\overline{\mathrm{u}^{\omega_{\mathrm{J}}}}$

Figure 1: Estimated value of Delta for an European call with parameters r $=0.1$ , $\sigma=0.2$,
T $=1.0$ (in years) and $S_{0}=K=1\mathfrak{M}$ (in arbitrary cash units), using Monte Carlo techniques.

5The Asian-style options

Here one considers the Greeks for options written on the average of the stock price $\frac{1}{T}\int_{0}^{T}S_{s}ds$ ,
instead of the final value $S\tau$ , as in European options. Note that in this particular case the
density function of the random variable does not have aknown closed formula. Delta in thiscase is given by

$\Delta=\frac{\partial}{\partial S_{0}}E[e^{-rT}\Phi(\frac{1}{T}\int_{0}^{T}S_{s}ds)]=\frac{e^{-rT}}{S_{0}}E[$$\Phi’(\frac{1}{T}\int_{0}^{T}S_{s}ds)\frac{1}{T}\int_{0}^{T}S_{u}du]$ .
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Figure 2: Estimated value of Vega for an European call with parameters $r=0.1$ , $\sigma=0.2$ ,
$T=1.\mathrm{O}$ (in years) and $S_{0}=K=100$ (in arbitrary cash units), using Monte Carlo techniques.

There are various ways of doing the integration by parts. In the already cited literature we find
in [7] the following expression:

$\Delta=\frac{e^{-\mathrm{r}T}}{S_{0}}E[\Phi(\frac{1}{T}\int_{0}^{T}S_{s}ds)(\frac{2\int_{0}^{T}S_{t}dW_{t}}{\sigma\int_{0}^{T}S_{t}dt}+1)]$ ,

whereas aclose variant of it, which involves (5), can be found in [8]:

$\Delta=\frac{2e^{-\mathrm{r}T}}{S_{0}\sigma^{2}}E[\Phi(\frac{1}{T}\int_{0}^{T}S_{s}ds)(\frac{S_{T}-S_{0}}{\int_{0}^{T}S_{t}dt}-\mu)]$ .

Of course, we may also use the same approach we have present in the previous sections, and

obtain athird one:

A $= \frac{e^{-rT}}{S_{0}}E[\Phi(\frac{1}{T}\int_{0}^{T}S_{s}ds)($ $\frac{1}{<S>}\{\frac{W_{T}}{\sigma}+\frac{<S^{2}>}{<S>}\}-1)]$ ,

where

$<S>$ $=$ $\frac{\int_{0}^{T}tS_{t}dt}{\int_{0}^{T}S_{v}dv}$ , and

$<S^{2}>$ $=$ $\frac{\int_{0}^{T}t^{2}S_{t}dt}{\int_{0}^{T}S_{v}dv}$ ,

are something similar to afirst two moments
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Although the two first expressions for $\Delta$ are statistically identical, their particular reah.z&
tions when perfoming numerical computation will slightly differ, even though the same series
of random numbers is used. The last formula is definitely abrand new estimator with its own
properties, among them its smaller variance is perhaps the most relevant one. We can observe
these features in Fig. 3, where we show the outcome of the Monte Carlo simulation using the
three alternative instances. We have chosen again the functional form in (15) for the payoff, and
the rest of parameters takes the same value we used in the making of the previous plots.

$\frac{\frac{\alpha}{}}{\mathrm{o}\Phi}$

$\frac{3}{\varpi}$

$.\underline{\in}$

$\overline{\mathrm{u}^{w_{\mathrm{J}}}}$

Figure 3: Computed value of Delta for an Asian cffi with parmeters $r$ $=0.1$ , $\sigma=0.2$ , $T=1.\mathrm{O}$

(in years) and $S_{0}=K=1W$ (in arbitrary cash units), using Monte Carlo techniques, for the
estimators presented in the main text. We have broken the interval of integration in 252 pieces,
representing the approximate number of trading days in ayear. The exact result turns out to
be near the bottom of the graph, at about 0.65.

Then, not all these formulas coincide and in fact, contrary to what is claimed in [8] there
is no way to obtain the integration by parts that provides the minimal variance. The main
reason being that this is equivalent to know the probabilty density of the random variable in
question. To expose the main ideas that also appear in [8] one can note first that there is an
integration by parts that is the “moet straightforward but highly unrealstic. For this, consider
the generalized problem

$E[ \Phi’(\int_{0}^{T}S_{s}ds)\int_{0}^{T}S_{s}ds]=\int_{0}^{\infty}\Phi’(x)xp(x)dx$ .

Here $p$ denotes the density of $\int_{0}^{T}$ Ssds which exists and is smooth (it is an interesting exercise of
Malliavin Calculus). Therefore one can perform the integration by parts directly in the abov
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formula thus obtaining that

$E\{$$\Phi’(\int_{0}^{T}S_{s}ds)\int_{0}^{T}S_{s}ds]$ $=$ $\int_{0}^{\infty}\Phi(x)(p(x)+xp’(x))dx$

$=$ $E[ \Phi(\int_{0}^{T}S_{s}ds)\cdot(1+\frac{\int_{0}^{T}S_{s}dsp’(\int_{0}^{T}S_{s}ds)}{p(\int_{0}^{T}S_{s}ds)})]$ .

Now we procceed to prove that the above gives the minimal integration by parts in the sense of
variance. Obviously it is not possible to carry out the simulations unless $p’$ and $p$ are known.

Let us construct the set of all possible integration by parts. Suppose that $\mathrm{Y}$ is arandom variable
such that

$E[ \Phi’(\int_{0}^{T}S_{s}ds)\int_{0}^{T}S_{s}ds]=E[$$\Phi(\int_{0}^{T}S_{s}ds)\mathrm{Y}]$ ,

for any function $\Phi\in C_{p}^{+\infty}$ , then it is not difficult to deduce that

$E$ $[\mathrm{Y}$ $/\sigma$ ($\int_{0}T$ $S_{s}ds$) $]$ $=$ $1$ $+$

$\underline{\int_{0}^{T}S_{s}dsp}$ .
$’$

$( \int_{0}^{T}$ $S_{s}ds$ $)$

$p$
$( \int_{0}^{T}$ $S_{s}ds$ $)$

Here $\sigma(x)$ denotes the a-algebra generated by $x$ , and $E[\cdot/\cdot]$ is the conditional expectation.
Therefore the set of all possible integration by parts can be characterized as

$\mathcal{M}=\{\mathrm{Y}\in L^{2}(\Omega);E[\mathrm{Y}/\sigma(\int_{0}^{T}S_{s}ds)]=1+\frac{\int_{0}^{T}S_{s}dsp’(\int_{0}^{T}S_{s}ds)}{p(\int_{0}^{T}S_{s}ds)}\}$ .

Next in order we want to find the element in $\mathrm{Y}$ that minimizes

$\inf_{\mathrm{Y}\in \mathcal{M}}E[\Phi(\int_{0}^{T}S_{s}ds)^{2}\mathrm{Y}^{2}]$ .

As in [8] is not difficult to see which $\mathrm{Y}$ achieves the minimum. This is done as follows:

$E[ \Phi(\int_{0}^{T}S_{s}ds)^{2}\mathrm{Y}^{2}]$ $=$ $E[ \Phi(\int_{0}^{T}S_{s}ds)^{2}\cdot(\mathrm{Y}-1-\frac{\int_{0}^{T}S_{s}dsp’(\int_{0}^{T}S_{s}ds)}{p(\int_{0}^{T}S_{s}ds)})^{2}]$

$+E[ \Phi(\int_{0}^{T}S_{s}ds)^{2}\cdot(1+\frac{\int_{0}^{T}S_{s}dsp’(\int_{0}^{T}S_{s}ds)}{p(\int_{0}^{T}S_{s}ds)})^{2}]$ ,

since the mixed product is 0, due to the property of the set $\mathcal{M}$ . Therefore the minimum is

achieved at $\mathrm{Y}=(1+\frac{\int_{0}^{T}S.dsp’(\int_{0}^{T}S.ds)}{p(\int_{0}^{T}S_{*}ds)})$ . This is clearly impossible to write explicit ly as $p$

is unknown in the case of Asian options. Therefore it is still an open problem to devise good
ways to perform an efficient integration by parts so that the variance is made small rapidly and
efficiently.
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