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Abstract Let $G=(V, E)$ be asimple undirected graph with aset $V$ of vertices and aset $E$ of

edges weighted by nonnegative reals. For agiven real $k>0$ , it is known that there exists alaminar

family $\mathcal{X}_{k}$ of subsets of vertices such that each subset corresponds to acut with size less than $k$

and destroying all cuts in $\mathcal{X}$ by adding anew vertex $s$ and some weighted edges between $s$ and $V$

destroys all other cuts with size less than $k$ . We prove that such laminar families $\mathcal{X}_{k}$ for all positive

reals $k>0$ can be obtained as acompact representation which we $\mathrm{c}\mathrm{a}\mathrm{U}$ aranged laminar family.

The time complexity for computing the ranged laminar family is $O(|V||E|+|V|^{2}\log|V|)$ . As an

application of this, we show that given ranged laminar family the source location problem for all

demands $k>0$ can be solved simultaneously in $O(|V|^{2})$ time.

1Introduction

The connectivity in graphs is one of the basic concepts, and has wide applications in practice, such as

the design and analysis of reliable networks. For example, the problem of augmenting agiven graph

to be ahigher connected graph by adding asmallest number of new edges is applied to design of re

liable networks. The problem is called the connectivity augmentation problem, and has been studied

extensively (see [3, 5] for arecent survey). Given agraph $G$ and an integer $k>0$ called atarget,

the problem of making $Gk$-edge connected by adding asmallest set of new edges is called the edge

connectivity augmentation problem. Watanabe and Nakamura [12] first proved that the problem is

polynomially solvable, and Frank [2] gave ageneral framework to handle the edge connectivity aug-

mentation problem by using the edge splitting technique. Based on the Frank’s algorithm and anice

property in the minimum cut algorithm [9], Nagamochi et al. [7] proved that the real weighted version

of the edge connectivity augmentation problem (where edges of $G$ are weighted by nonnegative reals

and the objective is to minimize the sum of weights of edge to be added to make $G$ $\mathrm{f}\mathrm{c}$-edge connected

can be solved for all real targets $k>0$ in the sense that optimal solutions for all $k$ are represented by a

compact representation.
On the other hand, Nagamochi and Ibaraki [6] modified the minimum cut algorithm so as to reduce

the time complexity of the Frank’s algorithm. As abyproduct, they [8] obtained the following result:

For agiven real $k>0$ , there exists alaminar family $\mathcal{X}_{k}$ of subsets of vertices such that each subset

corresponds to acut with size less than $k$ and destroying all cuts in $\mathcal{X}$ by adding anew vertex $s$ and

some weighted edges between $s$ and $V$ destroys all other cuts with size less than $k$ . Recently, by using

this result, it was shown [1] that the source location problem with uniform demand $k>0$ can be solved

in linear time (see section 4for the definition of the problem).

In this paper, we prove that such laminar families $\mathcal{X}_{k}$ for all positive reals $k>0$ can be obtained as a

compact representation which we call aranged laminar family. The time complexity for computing the
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ranged laminar family is $O(|V||E|+|V|^{2}\log|V|)$ . As an application of this, we show that from agiven
ranged laminar family, the source location problem for all demands $k$ $>0$ can be solved simultaneously
in $O(|V|^{2})$ time.

2Preliminaries

Let $G=(V, E)$ be an edge weighted undirected graph with aset $V$ of vertices, aset $E$ of edges. We
denote $|V|$ by $n$ and $|E|$ by $m$, and we may write the vertex set and the edge set of agraph $G$ as $V(G)$

and $E[\mathrm{q}$ , respectively. We denote edge weights by afunction $cc$ : $Earrow R^{+}$ , where $R^{+}$ denotes the set
of nonnegative reals, and we may write the weight $cc(e)$ of edge $e=(u, v)$ as $cc(u, v)$ Asingleton set $x$

may be simply written as $x$ . For two disjoint subsets $X$, $\mathrm{Y}\in V$ , we denote by $E_{G}(X, \mathrm{Y})$ the set of edges,
one of whose end vertices is in $X$ and the other is in $\mathrm{Y}$ , and we define $dc(X, = \sum_{e\in E_{G}(\mathrm{X},\mathrm{Y})}cc(e)$ .
Acut is defined as asubset $X$ of $V$ with $\emptyset\neq X\neq V$, and the size of cut $X$ is defined by $d_{G}(X, V-X)$ ,
which may be written as $d_{G}(X)$ . Acut separates $x$ , $y\in V(G)$ is called an $(x, y)$ cut An $(x, y)$ cut
with minimum size called aminimum $(x, y)$ -cut, and its size is defined by $\lambda_{G}(x, y)$ . Atotal ordering
$v_{1}$ , $v_{2}$ , $\ldots$ , $v_{n}$ of all vertices in $V(G)$ maximum adjacency ordering ($MAO$, for short) if it satisfies

$d_{G}( \{v_{1}, v_{2}, \ldots, v:\}, v:+1)=\max_{+u\in \mathrm{t}^{v}\cdot 1,\ldots,v_{n}\}}d_{G}(\{v_{1}, v_{2}, \ldots, v:\}, u)(1\leq:\leq n-1)$ .

Lemma 2.1 [6, 9, 11] For an $MAOv_{1}$ , $v_{2}$ , $\ldots$ , $v_{n}$ , $\lambda_{G}(v_{n-1}, v_{n})=d_{G}(\{v_{n}\}, V(G)-\{v_{n}\})$ holds for the
last two vertices $v_{n-1}$ and $v_{n}$ . An $MAO$ in a graph $G$ uridm vertices and $m$ edges can be found in
0$(m+n\log n)$ time. $\square$

Notice that we can choose an arbitrary vertex as the first vertex $v_{1}$ in an MAO and that if $d_{G}(u)\geq k$

for all $u\in V-v_{1}$ then there exists apair of vertices $s$ and $t$ with $\lambda_{G}(s,t)\geq k$ .
Afamily $\mathcal{X}=\{X_{1},X_{2}, \ldots, X_{\mathrm{p}}\}$ of sets of vertices is called alaminar family if it satisfies $X_{\dot{1}}$ $\cap X_{j}=$

$\mathfrak{g}$ , $\mathrm{x}_{:}\subset X_{j}$ or $X_{\mathrm{j}}\subset X.\cdot$ for each $X_{\dot{1}}$ , $X_{j}\in \mathcal{X}$. Amember $X$ in alaminar family $\mathcal{X}$ is called maximal
(resp., minimal) in $\mathcal{X}$ if there is no member $\mathrm{Y}\in \mathcal{X}$ with $\mathrm{Y}\supset X$ (resp., $\mathrm{Y}\subset X$ ). For afunction
$t$ : $Varrow R^{+}$ , we may write $\sum_{v\in X}t(v)$ as $t(X)$ .

Definition 2.1 For a graph $G=(V, E)$ and a target $k\geq 0$ , a $k$ laminar family of $G$ is defined to be $a$

laminar family of subsets of $V$ such that

(1) $d_{G}(X)<k$ for all $X\in \mathcal{X}$ ,

(2) For any $|V|$ -dimensiorud vector $t$ such that $d_{G}(X)+t(X)\geq k$, $X\in \mathcal{X}$ , it holds

$d_{G}(\mathrm{Y})+t(\mathrm{Y})\geq k$ , $\mathrm{Y}\in 2^{V}-\{\emptyset, V\}$ .

For example, Fig. 1shows a7-laminar family $\mathcal{X}_{7}$ in the graph, In section 3.1, we review how to
compute a $k$-laminar family for agiven $G$ and $k\geq 0$ .

For two reals $a$ , $b\in R^{+}$ with $a<b$ , the interval $[a, b]$ is called arange and its size $\pi([a, b])$ is
defined as $b-a$ . For arange $r=[a, b]$ , $a$ and $b$ are denoted by $L(r)$ and $U(r)$ , respectively. Let
$R=$ $\{[a_{1}, b_{1}], [\mathrm{a}, b_{2}], \ldots, [a_{q}, b_{q}]\}$ be aset of ranges. The size of $R$ denoted by $\pi(R)$ , is defined as
the sum $\sum(b:-a:)$ of all range sizes in $R$. For agiven $h\in R^{+}$ , the upper $h$-truncation(resp., under
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Figure 1: A $k$-laminar family for $k=7$.

$h$-truncation)of aset $R$ of ranges is defined by $R|^{h}= \{[a_{i}, \min\{h, b_{i}\}]|a_{i}<h, i=1,2, \ldots, q\}$ (resp.,

$R|_{h}= \{[\max\{a_{i}, h\}, b_{\dot{l}}]|b_{i}>h, i=1,2, \ldots, q\})$. Aranged laminar family is afamily $\mathcal{X}$ of cuts $X$ with

arange $r(X)$ . For areal $k\geq 0$ and aranged laminar family $\mathcal{X}$ , we denote by $\mathcal{X}/k$ the laminar family

$\{X\in \mathcal{X}|L(r(X))<k<U(r(X))\}$ .

Definition 2.2 A ranged laminar family $\mathcal{X}$ is called valid if $\mathcal{X}/k$ is a $k$ -larninar family for each target

$k\geq 0$ .

Fig. 2shows aranged laminar family $\mathcal{X}$ of the graph $G$ in Fig. 1. Notice that $\mathcal{X}/7$ is equal to $\mathcal{X}_{7}$ in

Fig. 1.
In this paper, we design an $O(nm+n^{2}\log n)$ time algorithm for computing avalid ranged laminar

family.

3Computing aRanged Laminar Family

In this section, we give an algorithm for computing aranged laminar family after describing the algorithm

[8] for computing a $k$-laminar family for agiven real $k\geq 0$ .

3.1 Computing $\mathrm{a}/\mathrm{c}$-laminar family

We describe the algorithm in [8] for computing a $k$-laminar family $\mathcal{X}_{k}$ . Given agraph $G=(V, E)$ , we

first add to $G$ anew vertex $s$ to obtain agraph with the designated vertex $s$ . We then add anew

edge between $s$ and each vertex $u\in V(G)$ with $d_{G}(u)<k$ , where weight of the edge $(s, u)$ is given by

$k-d_{G}(u)$ so that $d_{H}(u)=k$ holds in the resulting graph $H$ . Then, we initialize alaminar family $\mathcal{X}_{k}$ of

subsets of $V(G)$ by $\{\{u\}|dc(u)<k\}$ .
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Figure 2: Agiven graph $G$ and aranged laminar family $\mathcal{X}$ for $G$.

Then we repeat the following procedure for contracting two vertices into asingle vertex until the
graph has three vertices (including $s$). We maintain the condition that

$d_{H}(u)\geq k$ holds for all $V(H)-s$ (1)

in the current graph $H$ (this holds for the initial graph $H$). By (1) and Lemma 2.1, there exits apair
of vertices $v$ , $w\in V(H)-s$ such that $\lambda_{H}(v, w)\geq k$ (such $v$ , $w$ are given by the last two vertices in an
MAO starting ffom $s$ as the first vertex). Since no cut with size less than $k$ separates these $v$ and $w$ , we
contract $u$ and $v$ into asingle vertex $x^{*}$ . After this, we check whether (1) still holds or not, i.e., whether
$d_{H}(x^{*})\geq k$ holds or not. If $d_{H}(x^{*})\geq k$ , then we repeat the same procedure. Otherwise, we repeat the
same procedure after updating $H$ and $\mathcal{X}_{k}$ as follows. We increase weight of edge $(s,x^{*})$ by $k-d_{H}(x^{*})$ ,
and we add to $\mathcal{X}_{k}$ the set $X^{*}$ of all vertices in $V(G)$ that have been contracted into $x^{*}$ . Thus,

for each cut $X\in \mathrm{X}\mathrm{k}$ , $d_{H}(X)=k$ holds in the graph $H$ immediately after $X$ is added to $\mathcal{X}_{k}$ (2)

Clearly, the final $\mathcal{X}_{k}$ is alaminar family of subsets of $V(G)$ . The algorithm is described as follows.

ALGORITHM fc-LAMINAR-FAMILY
Input :An edge weighted graph $G=$ $(\mathrm{V} , Cq)$ and areal $k\in R^{+}$ .
Output :A $k$ laminar family $\mathcal{X}_{k}$ .
1 Let $U=\{u_{1}, u_{2}, \ldots, u_{p}\}$ be the set of vertices $u:\in V$ such that do(ui) $<k$ .
2 $V’=V\cup\{s\};E’=E\cup\{(s, u_{1}), (s, u_{2}), \ldots, (s, u_{p})\}$ ;
3for each $u:\in U$ do
4 $c_{H}(s, u:):=k-d_{G}(u:)$

5end;
6 Let $H=(V’, E’, c_{H})$ be the obtained graph.
7 $\mathcal{X}_{k}:=\{\{u_{1}\}, \{u_{2}\}, \ldots, \{u_{p}\}\}$ ;
8while $V(H)>4$ do
9Find two vertices $v$ , $w\in V(H)-s$ such that $\lambda_{H}(v, w)\geq k$;
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10 Contract $v$ and $w$ into asingle vertex $x^{*}$ , and let $H$ be the resulting graPh;

11 if $d_{H}(x^{*})<k$ then
12 Let $H$ denote the graph obtained from $H$ by setting $c_{H}(s,x^{*}):=c_{H}(s, x^{*})+$

$k-d_{H}(x^{*})$ (after creating edge $(s,x^{*})$ with $c_{H}(s,x^{*}):=0$ if $(s,x^{*})\not\in E[H]$ );

13 Let $X^{*}$ denote the set of vertices in $V(G)$ that have been contracted into $x^{*}$

so far, and set $\mathcal{X}k:=\mathcal{X}k\cup\{X^{*}\}$ ;

14 end
15 end;

16 Output $\mathcal{X}_{k}$ .

Theorem 3.1 [8] For a graph $G$ and a target $k\geq 0$ , Algor ithm k-LAMINAR-FAMILY correctly

computes a $k$ -laminar family in $O(nm+n^{2}\log n)$ time. $\square$

3.2 Algorithm for computing aranged laminar family

The basic idea for finding aranged laminar family is to use the same approach for computing the edge

connectivity augmentation function [7]. We try to perform Algorithm k-LAMINAR-FAMILY for all

targets $k\geq 0$ . In order to execute this in afinite space, we maintain the computation process for all

$k$ using acompact representation. Por this, we represent graphs $H$ during execution of k-LAMINAR-

FAMILY for all $k\geq 0$ by aranged graph, which is defined as follows. Let $H=(V\cup\{s\},$ $E\cup E_{H}(s)$

have adesignated vertex $s$ , aset $E$ of edges not incident to $s$ and aset $E_{G}(s)$ of edges incident to $s$ ,

where each edge $e\in E$ has anonnegative weight $c_{H}(e)$ , but each vertex $v\in V$ has aset $R(v)$ of ranges

(instead of anonnegative weight). Such agraph $H$ is called aranged graph, which represents infinitely

many weighted graphs in the following sense.

Definition 3.1 Given an arbitrary target $k\geq 0$ , we let $H$ and $k$ correspond to an edge-weighted graph

$H|^{k}=(V\cup\{\mathrm{s}\}, E\cup E_{H}(s))$ such that

$c_{H|^{k}}(e)=c_{H}(e)$ for $e\in E$ and $c_{H|^{k}}(e)=\pi((R(v)|^{k}))$ for $e=(s,v)\in E_{H}(s)$

(see Section 2for the definition of $\pi(\cdot)$ and $R|^{k}$ ).

With the notion of ranged graphs, let us perform Algorithm k-LAMINAR-FAMILY for all targets

$k\geq 0$ . Given an edge weighted graph $G=(V, E)$ , we first add anew vertex $s$ to $V$ , and add one edge

between $\mathrm{s}$ and each $v\in V$ , where $E_{H}(s)$ denotes the set of all edges between $s$ and $V$ . Now we set a

range set $R(v)$ of each $v\in V$ to be $R(v)=\{[dc(v), \infty]\}$ . It is easy to see that for each $k\geq \mathrm{O}H|^{k}$ is the

graph constructed in line 6of fc-LAMINAR-FAMILY. In what follows, we use $K$ as asufficiently large

value in the sense that for any two $k$ , $k’\geq KH|^{k}$ and $H|^{k’}$ have the essentially same structure (we will

see that $K=2 \max_{v\in}vd_{G}(v)$ suffices). Then let each each $v\in V$ has range

$R(v)=\{[d_{G}(v), K]\}$ .

At this point, the initial laminar family $\mathcal{X}_{k}$ in line 7of k-LAMINAR-FAMILY may be different for each
$k$ . However, all these families $\mathcal{X}_{k}$ can be compactly represented by aranged laminar family. That is,

we initialize aranged laminar family $\mathcal{X}$ by $\{\{u\}|u\in V(G)\}$ and set the range $r(X)$ of each $X\in \mathcal{X}$ by

$[d_{G}(u), K]$ . We easily see that $\mathrm{X}/\mathrm{k}$ is equal to $\mathcal{X}_{k}$ in line 7of fc-LAMINAR-FAMILY
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Now we proceed to the procedure of contracting vertices in fc-LAMINAR-FAMILY. Here we have
to resolve an important problem such that if apair of two vertices $v$ , $w\in V(H)-s$ to be contracted
are different for distinct targets $k$ and $k’$ , we cannot maintain the computation process by asingle
ranged graph $H$ . Fortunately, it is ensured that there is acommon pair of vertices $v$ and $w$ such that
$\lambda_{H|^{k}}(v,w)\geq k$ for all $k\geq 0$ .

Lemma 3.1 [7] Let H $=(V\cup\{s\}, E\cup E_{H}(s))$ be a ranged graph with $|V(H)|\geq 3$ . Assume that for
each vertex u $\in V(H)-s$ ,

the range set $R(u)$ contains a range $r$ with $L(r)$ $\leq d_{H}(u, V(H)-\{s, u\})$ and $U(r)$ $=K$ . (3)

Then, for the last two vertices $v$ , $w$ in an $MAO$ starting from $s$ in the weighted graph $H|^{K}$ , $such$ that
$\lambda_{H|^{k}}(v,w)\geq k$ holds for all $0\leq k\leq K$ . 0

Lemma 3.1 shows that $u$ , $v$ can be used in common as pair of vertices to be contracted for all $k$ and
such apair can be found in $O(m+n\log n)$ time.

We finally consider how to update the range sets $R(v)$ , $v\in V(H)$ and the ranged laminar family $\mathcal{X}$

after contracting two vertices $v$ and $w$ . Suppose that

for each $u\in V(H)-s$ , all ranges $r\in R(v)$ satisfy $U(r)=K$ (4)

(this is true for the initial ranged graph $H$). For the vertex $x^{*}$ just contracted from $v$ and $w$ , we set $R(x^{*})$

to be the union of $R(v)$ and $R(w)$ . In the resulting ranged graph $H$ , if $d_{H|^{k}}(x^{*})\geq k$ for all $k\in[0, K]$ ,
then we can proceed to the next iteration of the procedure. Assume $d_{H|^{k}}(x^{*})<k$ for some $k\in[0, K]$ .
That is, by (4), $R(x^{*})$ contains no range $r$ with $L(r)\leq d_{H}(x^{*}, V(H)-\{s, x^{*}\})$ (in other words, $x^{*}$ does
not satisfies (3) $)$ . In this case, we modify some ranges in $R(x^{*})$ . Let $k^{*}=d_{H}(x^{*}, \mathrm{V}(\mathrm{H})-\{s, x^{*}\})$ . For
this, we compute $k’$ such that $\pi(R(x^{*})|^{k’})=k’-k^{*}$ .

Note that for atarget $k$ with $k\leq k^{*}$ or $k\geq k’$ , the current ranged laminar family $\mathcal{X}$ satisfies the
condition (2) with $\mathcal{X}_{k}=\mathcal{X}/k$ . To meet (2) for targets $k\in[k^{*}, k’]$ , we divide each range

$r\in R(x^{*})$ with $L(r)<k’<U(k)$ (5)

into two ranges $r’=[L(r), k’]$ and $r’=[k’, U(r)](U(r) =K)$ , and then replace the set of all ranges
$r’=[L(r), k’]$ by asingle range $[k^{*}, k’]$ , where we merge the $[k^{*}, k’]$ and some range $[k’, K]$ into $[k^{*}, K]$

to satisfy (4). (Note that this operation can be written as $R(x^{*}):=(R(x^{*})-\{r\})|k’\cup\{ \mathrm{s}, K]\}$ for a
range $r\in R(x^{*}).)$

we need to add to $\mathcal{X}$ the set $X^{*}$ of vertices in $V(G)$ contacted into $x^{*}$ , setting its range $r(X^{*})=$

$[d_{H}(x^{*}, V(H)-\{s,x^{*}\}), k’]$ . Then for the resulting $\mathcal{X}$ and all $k\in[0, K]$ , the condition (2) holds for
$\mathcal{X}_{k}=\mathcal{X}/k$ . This implies that for each target $k\in[0, K]$ , $H|^{k}$ and $\mathcal{X}/k$ can be viewed as those $H$ and $\mathcal{X}_{k}$

computed during the execution of fc-LAMINAR-FAMILY. Therefore, the final ranged laminar family $\mathcal{X}$

obtained by the algorithm is valid. Note that it suffices to choose $K$ so that the $k’$ in line 13 is always
less than $U(r)$ in (5). Therefore, by setting $K:=1+2 \max_{v\in}vd_{G}(v)$ , any $k’$ is less than $U(r)=K$. the
choice of $K$ The algorithm description is given as follows.

ALGORITHM RANGED-LAMINAR-FAMILY
Input :An edge weighted undirected graph $G=(V, E, c_{G})$
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Output :Aranged laminar family $\mathcal{X}$

1begin
2 $V’:=V\cup\{s\};E(s)=\{(s, v)|v\in V\}$ ;

$\mathcal{X}:=\emptyset;K:=1+2\max_{v\in V}d_{G}(v)$ ;

3for each vertex $u\in V$ do
$R(u):=\{[d_{G}(u), K]\};X:=\{u\};r(X):=[d_{G}(u), K];\mathcal{X}:=\mathcal{X}\cup\{X\}$ ;

4 end;

5Let $H=(V’, E’=E\cup E(s))$

be the resulting ranged graPh;

6while $|V(H)|\geq 4$ do

7Find vertices $v$ , $w\in V(H)-s$ such that $\lambda_{H|^{k}}(u, v)\geq k$ holds for all $0\leq k\leq K$ ;

8 Contract $v$ and $w$ into asingle vertex $x^{*};$

$R(x^{*}):=R(v)\cup R(w)$ ;

9Let $H$ be the resulting ranged graPh;

10 $k^{*}:=d_{H}(x^{*}, V(H)-\{s, x^{*}\})$ ;

11 Let $X^{*}\subset V(G)$ be the set of vertices contracted into $x^{*};$

$/*\mathrm{W}\mathrm{e}$ assume $R(x^{*})=\{[a_{1}, K], [a_{2}, K], \ldots, [a|\mathrm{x}\cdot|, K]\}$,

where $a_{1}\leq a_{2}$ $\leq\cdots\leq a|x*|*/$

12 if $k^{*}<a_{1}$ then
13 Find $k’\in R^{+}$ such that $\pi(R(x^{*})|^{k})=k’-k^{*};$

14 $R(x^{*}):=(R(x^{*})-\{[a_{1}, K]\})|_{k’}\cup\{[k^{*}, K]\}$ ;

15 $\mathcal{X}:=\mathcal{X}\cup\{X^{*}\};r(X^{*}):=[k^{*}, k’]$ ;

16 end;

17 Denote the ranged graph resulting as $H$ ;

18 end;

19 Output $\mathcal{X}$ ;

20 end.

Clearly, $|\mathcal{X}|\leq 2n-2$ . Since we need to compute the MAO at most $n-1$ times and other computations

are minor, the running time of RANGED-LAMINAR-FAMILY is $O(nm+n^{2}\log n)$ .

Theorem 3.2 For a given graph $G$ , Algorithm RANGED-LAMINAR-FAMILY correctly computes $a$

valid ranged laminar family $\mathcal{X}$ in $O(nm+n^{2}\log n)$ time. $\square$

4The source location problem for all demands

Let $G=(V, E)$ be asimple undirected graph with acost function cost : $Varrow R^{+}$ , aweight function

$cc$ : $Earrow R^{+}$ A general form of the source location problem [10] asks to find aminimum cost subset

$S\subseteq V$ for ademand function $d$ : $Varrow R^{+}$ such that for each $v\in V-S$ there are $d(v)$ edge disjoint (or

vertex-disjoint) paths between $v$ and $S$ . This has an application to the problem of finding an optimal

location of mirror servers on computer networks $[1, 4]$ .
In what follows, we consider the source location problem which asks to find aminimum cost subset

$S\subseteq V$ for auniform demand $k>0$ such that there are $k$ edge disjoint paths between each vertex
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vE V–S and S. It is known [1] that this source location problem can be solved in linear time if a
k-laminar familiy $?1\ovalbox{\tt\small REJECT}$. has been obtained. In this paper, we shows that the source location problem for
all demands k can be solved simultaneously by using avalid ranged laminar family.

4.1 Algorithm for the source location problem for afixed demand
We solve the source location problem for afixed demand $k$ by using a $k$-lminar family $\mathcal{X}_{k}$ . Since
$d_{G}(X)<k$ holds for each cut $X\in \mathcal{X}_{k}$ by Definition 2.1(1), we must choose at least one source from
each minimal subset $X\in \mathcal{X}_{k}$ (otherwise, removal of $E_{G}(X)$ would separate some vertex $v\in X$ and $S$).
Conversely, if we select avertex ffom each minimal subset $X\in \mathcal{X}_{k}$ then any other cut $\mathrm{Y}$ with do(Y) $<k$

includes at least one source Definition 2.1(2). If acost function cost : $Varrow R^{+}$ is given, then it suffices
to choose avertex with the minimum cost from each minimal subset $X\in \mathcal{X}_{k}$ .

$*\mathrm{s}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{e}$

Figure 3: An obtained location of sources for $k=7$.

Theorem 4.1 The source location problem for a demand $k$ can be solved in $O(n)$ time by using k-
laminar family. $\square$

For the graph $G$ in Fig. 2and demand $k=7$, the $S$ of minimum number of sources is shown in Fig.
3.

4.2 Algorithm for the source location problem for all demands
Suppose that for agiven graph $G$, avalid ranged laminar family $\mathcal{X}$ is obtained. To solve the source
location problem for all demands, we first sort boundary values $L(r(X))$ , $U(r(X))$ for all cuts $X\in \mathcal{X}$,
and let $Z=\{z_{1}, z_{2}, \ldots, z_{q}|z_{1}<z_{2}<\cdots<z_{q}\}$ be the resulting sequence $(q\leq 2n-2)$ . Though structure
of ak-laminar family may be changed at each boundary values $z_{\mathrm{j}}(1\leq j\leq q)$ , it does not change in
the interval $(z_{j}, z_{j+1})(1\leq j<q)$ . Therefore, by computing asolution for each interval, we can obtain
optimal source sets for all demands $k$ .

Let $\mathcal{X}[z_{\dot{f}},z_{\mathrm{j}+1}]$ be the $k$-laminar family for $k\in(zj, zj+1]$ . Then we choose avertex with the minimum
cost ffom each minimal subset $X\in \mathcal{X}[z_{j},z_{\dot{g}+1}]$ . The set $s_{1^{z_{f},z_{\mathrm{j}+1}}1}$ of chosen vertices is an optimal source
set for demand $k\in(z_{j}, z_{j+1}]$ .

164



Theorem 4.2 For a given graph G and a valid ranged laminar family f of G the source location

problem for all demands can be solved in $O(n^{2}$ time. Cl

5Conclusion

In this paPer, we gave an $O(nm+n^{2}\log n)$ time algorithm for computing aranged laminar family for a
given graph. As an application of this, we showed that the source location problem for all demands $k$

can be solved in $O(n^{2})$ time ffom a given ranged laminar family.
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