On the order completeness in partially ordered linear spaces

小室 直人（NaOto Komuro）

北海道教育大学旭川校数学教室（Department of Mathematics， Asahikawa Campus，Hokkaido University of Education）

§1 Introduction and basic results

Let E be a linear space over \mathbb{R} ，and P be a convex cone in E satisfying
（P1）$E=P-P$ ，
（P2）$P \cap(-P)=\{0\}$ ．
An order relation in E can be defined by $x \leq y \Longleftrightarrow y-x \in P$ ．We call a linear space E equipped with such a positive cone P a（partially）ordered linear space，and denote it by (E, P) ．

For a subset A of E ，the generalized supremum $\operatorname{Sup} A$ is defined to be the set of all minimal elements of $U(A)$ ，where $U(A)$ is the set of all upper bounds of A ．In other words，

$$
U(A)=\{x \in E \mid y \leq x, \forall y \in A\}
$$

$\operatorname{Sup} A=\{a \in U(A) \mid b \leq a, b \in U(A) \Longrightarrow a=b\}$ ．
The generalized infimum $\operatorname{Inf} A$ and the set of all lower bounds $L(A)$ are defined similarly． The basic properties of the generalized supremum has been investigated in［3］，［4］，［5］，and a remarkable result is that this notion gives us a method to construct an order completion of E ，when it is not order complete．In constructing this theory，the condition

$$
\begin{equation*}
U(A)=(\operatorname{Sup} A)+P \quad(\text { for every subset } A \subset E) \tag{1}
\end{equation*}
$$

is extremely important．In many cases，the generalized supremum $\operatorname{Sup} A$ can be empty， even if $U(A) \neq \emptyset$ ．In the space $C[0,1]$ with the natural positive cone $P=\{f \in$ $C[0,1] \mid f(x) \geq 0(x \in[0,1])\}$ for example，it is easy to find a subset $A \subset C[0,1]$ such that $U(A) \neq \emptyset$ and $\operatorname{Sup} A=\emptyset$ ．This means that the space $(C[0,1], P)$ does not satisfy the condition（1）．For another example，let X be the space of all $n \times n$ symmetric matrices with real coeffcients，and we adopt the positive cone $P=\{A \in X \mid(A x, x) \geq$ $\left.0, x \in \mathbb{R}^{d}\right\}$ ．Then (X, P) satisfies the condition（1）while it is neither order complete nor a lattice（［4］）．In this paper，we will consider the sequence spaces l_{1}, l_{2} with typical positive cones，and investigate the condition（1）for each case．

An ordered linear space（ E, P ）is said to be monotone order complete（m．o．c．for short）if every totally ordered subset A of E with $U(A) \neq \emptyset$ has the least upper bound lub A in E ．In the case $E=\mathbb{R}^{d},(E, P)$ is m．o．c．if and only if P is closed（［5］）．In the case when E is a Banach space with a closed positive cone P satisfying $P^{*}-P^{*}=E^{*}$ ， $\left(E^{*}, P^{*}\right)$ is m．o．c．where E^{*} is the topological dual of E and $P^{*}=\left\{x^{*} \in E^{*} \mid x^{*}(x) \geq\right.$ $0, x \in P\}$ ．The proofs of these facts can be seen in a previous paper［6］．
Theorem 1．Suppose that an ordered linear space (E, P) is m．o．c．，then (E, P) satisfies the condition（1）．In particular， $\operatorname{Sup}\{a, b\} \neq \emptyset$ for every $a, b \in E$ ，and $U(a, b)=$ $(\operatorname{Sup}\{a, b\})+P$ ．

The proof of this theorem can be seen in［4］．A convex subset C of E is said to be algebraically closed if every straight line of E meets C by a closed interval．A
point x of a convex subset $C \subset E$ is called an algebraic interior point of C if for every $z \in E$, there exists $\lambda>0$ such that $x+\lambda z \in C$. Algebraic exterior points are defined similarly, and we denote the algebraic interior (exterior) of C by $\operatorname{int} C(\operatorname{ext} C)$. Moreover, $\partial C=(\operatorname{int} C \cup \operatorname{ext} C)^{c}$ is called the algebraic boundary of C. Let (E, P) be an ordered linear space and suppose that P is algebraically closed with nonempty algebraic interior. A convex subset F of P is called an exposed face of P if there exists a supporting hyperplane H of P such that $F=P \cap H$. By $\mathfrak{F}(P)$, we denote the set of all exposed faces of P. For $F \in \mathfrak{F}(P), \operatorname{dim} F$ is defined as the dimension of aff F where aff F denotes the affine hull of F. The proof of the following theorem can be seen in [5].

Theorem 2. Let (E, P) be an ordered linear space and suppose that P is algebraically closed and int $P \neq \emptyset$. If $\operatorname{dim} F<\infty$ for every $F \in \mathfrak{F}(P)$, then (E, P) satisfies the condition (1).

In [5], it is proved that the algebraic closedness of the positive cone P is a necessary condition for the monotone order completeness of (E, P). The following result is considered to be an improvement of this fact.
Theorem 3. If an ordered linear space (E, P) satisfies the condition (1) and int $P \neq$ \emptyset, then the positive cone P is algebraically closed.

For two distinct points $x, y \in E$, we denote the closed segment between x and y by $[x, y]=\{(1-t) x+t y \mid 0 \leq t \leq 1\}$. Also, the half open segment is defined by $(x, y]=\{(1-t) x+t y \mid 0<t \leq 1\} .[x, y)$ and open segments (x, y) are defined analogously. For a convex subset C of E,

$$
C^{a}=C \cup\{x \in E \mid(x, y] \subset C \text { for some } y \in C\}
$$

is called the algebraic closure of C. Clearly, C is algebraically closed, if and only if $C=C^{a}$. We note that C^{a} is not always algebraically closed, in other words, $C^{a}=\left(C^{a}\right)^{a}$ does not always hold.

Lemma 1. Let P be a convex cone in a linear space E. Then P^{a} is also a convex cone. proof. Let x be an arbitrary point of P^{a}, and take $y \in P$ such that $(x, y] \subset P$. Since P is a cone, $(1-\lambda) \mu x+\lambda \mu y=\mu((1-\lambda) x+\lambda y) \in P$ for every $0<\mu$, and $0<\lambda \leq 1$. This means that $(\mu x, \mu y] \subset P$ and $\mu x \in P^{a}$. Hence it is sufficient to show that $x_{1}+x_{2} \in P^{a}$ for every $x_{1}, x_{2} \in P^{a}$. Let y_{1}, y_{2} be such that $\left(x_{1}, y_{1}\right],\left(x_{2}, y_{2}\right] \subset P$ respectively. Since P is a convex cone, $(1-\lambda)\left(x_{1}+x_{2}\right)+\lambda\left(y_{1}+y_{2}\right)=(1-\lambda) x_{1}+\lambda y_{1}+(1-\lambda) x_{2}+\lambda y_{2} \in P$ for every $0<\lambda \leq 1$. This means that $\left(x_{1}+x_{2}, y_{1}+y_{2}\right] \in P$ and $x_{1}+x_{2} \in P^{a}$.
proof of Theorem 3. Suppose that the positive cone P is not algebraically closed. Then there exists $x \in P^{a} \backslash P$. We define a subset $A \subset E$ by

$$
A=-P^{a}
$$

Since $0 \nsupseteq-x$, we have $0 \notin U(A)$, and clearly $U(A) \subset U(-P)=P$. Moreover, we can conclude that

$$
\begin{equation*}
\operatorname{int} P \subset U(A) \subset P \backslash\{0\} \tag{2}
\end{equation*}
$$

and $U(A) \neq \emptyset$ in particular. To prove (2), we take $z \in \operatorname{int} P$, and $-x \in-P^{a}$. Then there exists $y \in P$ such that $(x, y] \subset P$. Since $z \in$ int P, we can choose a positive number $\mu>0$ such that $z+\mu(x-y) \in P$. It is easy to see that

$$
\begin{aligned}
& (x, z] \subset \operatorname{conv}\{(x, y] \cup[z, z+\mu(x-y)]\} \\
& \subset P
\end{aligned}
$$

by the convexity of P. Hence, $z-(-x)=2\left(\frac{x+z}{2}\right) \in P$. Since $z \in \operatorname{int} P$ and $-x \in-P^{a}$ can be taken arbitrarily, we obtain int $P \subset U(A)$. Now we take $u \in U(A)$ and $a \in A=$ $-P^{a}$ arbitrarily. By Lemma 1, we see $2 a \in-P^{a}$ and hence $\frac{1}{2} u-a=\frac{1}{2}(u-2 a) \in P$. This means that $\frac{1}{2} u \in U(A)$. By (2), $u \neq 0$ and $u-\frac{1}{2} u \in P$ This means that u is not a minimal element of $U(A)$. Since $u \in U(A)$ is arbitrary, we have obtained that $\operatorname{Sup} A=\emptyset$ and the condition (1) fails.
Remark. Algebraic closedness of P is obviously a necessary condition for the order completeness. However, we cannot say P is algebraically closed when (E, P) is only a lattice. The two dimensional space \mathbb{R}^{2} with lexicographical order is an example.
Corollary 1. If $\operatorname{dim} E<\infty$, then (E, P) satisfies the condition (1) if and only if P is closed.
proof. In finite dimensional cases, (E, P) is m.o.c. if P is closed([5]). Hence by Theorem 1 , it satisfies the condition (1). The converse follows directly from Theorem 3.

Next we consider the family of the generalized suprema $\{\operatorname{Sup} A \mid A \subset E\}$, and construct an order completion of (E, P) in the case $E=\mathbb{R}^{d}$ and P is closed. By Corollary 1 , the condition (1) holds in such cases. Let \mathfrak{B} and \mathfrak{B}^{\prime} be the family of all upper bounded subset and lower bounded subset in \mathbb{R}^{d} respectively, i.e.

$$
\begin{aligned}
\mathfrak{B} & =\left\{A \subset \mathbb{R}^{d} \mid A \neq \emptyset, U(A) \neq \emptyset\right\}, \\
\mathfrak{B}^{\prime} & =\left\{B \subset \mathbb{R}^{d} \mid B \neq \emptyset, L(B) \neq \emptyset\right\} .
\end{aligned}
$$

We define an equivalence relation \sim in \mathfrak{B} by

$$
A \sim B \Longleftrightarrow U(A)=U(B) \quad(A, B \in \mathfrak{B})
$$

Let \tilde{E} be the quotient set $\mathfrak{B} / \sim=\{[A] \mid A \in \mathfrak{B}\}$ where $[A]$ denotes the equivalence class of A.

For every $[A] \in \tilde{E}$, two operations $u([A])=U(A)$ and $l([A])=L(U(A))$ are well defined. By virtue of (1), \tilde{E} can be identified with the set $\{U(A) \mid A \in \mathfrak{B}\}$ or the set $\{\operatorname{Sup} A \mid A \in \mathfrak{B}\}$. We now define an order relation in \tilde{E} by

$$
[A] \leq[B] \Longleftrightarrow u([B]) \subset u([A]) \quad([A],[B] \in \tilde{E})
$$

Definition. For every $[A],[B] \in \tilde{E}$ and $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
{[A]+[B]=} & {[l([A])+l([B])] } \\
\lambda[A] & = \begin{cases}{[\lambda l([A])]} & (\lambda>0) \\
{\left[0^{+} l([A])\right]=[-P]} & (\lambda=0) \\
{[\lambda u([A])]} & (\lambda<0)\end{cases}
\end{aligned}
$$

where $0^{+} C$ denotes the resession cone of a convex set $C .([7])$
We define two subsets \tilde{P} and \tilde{E}_{1} of \tilde{E} as follows.

$$
\begin{aligned}
\tilde{P} & =\{[A] \in \tilde{E} \mid[A] \geq[-P]\} \\
& =\{[A] \in \tilde{E} \mid u([A]) \subset P\} \\
\tilde{E}_{1} & =\left\{[A] \in \tilde{E} \mid u([A])=a+P \text { for some } a \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

Note that the correspondence which assigns $a \in \mathbb{R}^{d}$ to $[A] \in \tilde{E}_{1}$ such that $u([A])=a+P$ is one to one.

Theorem 4. \tilde{E} is an order complete vector lattice with the order ' \leq ', and the vector operation defined above. Moreover,
(a) \tilde{P} is a convex cone in \tilde{E} and satisfies (P1), (P2), and $[A] \leq[B] \Longleftrightarrow[B]-[A] \in \tilde{P}$.
(b) $\quad \tilde{E}_{1}$ is a subspace which is order isomorphic to $\left(\mathbb{R}^{d}, P\right)$ by the correspondence $\mathbb{R}^{d} \ni$ $a \longleftrightarrow[A] \in \tilde{E}_{1}$ where $u([A])=a+P$.

The proof of this theorem can be seen in [2], and [3].

§2 Examples in SEQUENCE Spaces

We say that an ordered linear space (E, P) satisfies the condition (F) if it satisfies all the hypotheses in Theorem 2. In finite dimensional cases, (E, P) obviously satisfies the condition (F) whenever P is closed. In this section we consider some sequence spaces and investigate the relation among the monotone order completeness, the condition (1) and the condition (F). We denote $l_{0}=\left\{x=\left(x_{0}, x_{1}, x_{2}, \cdots\right) \mid x_{n}=\right.$ 0 except for finitely many $n \in \mathbb{N} \cup\{0\}\}, l_{1}=\left\{x=\left(x_{0}, x_{1}, x_{2}, \cdots\right)\left|\Sigma_{n=0}^{\infty}\right| x_{n} \mid<\infty\right\}, l_{2}=$ $\left\{x=\left(x_{0}, x_{1}, x_{2}, \cdots\right) \mid \Sigma_{n=0}^{\infty} x_{n}^{2}<\infty\right\}$ and define two typical positive cones as follows.

$$
\begin{aligned}
& P_{1}=\left\{x=\left(x_{0}, x_{1}, x_{2}, \cdots\right) \in l_{1}\left|x_{0} \geq \sum_{n=1}^{\infty}\right| x_{n} \mid\right\} \\
& P_{2}=\left\{x=\left(x_{0}, x_{1}, x_{2}, \cdots\right) \in l_{2} \left\lvert\, x_{0} \geq\left(\sum_{n=1}^{\infty} x_{n}^{2}\right)^{\frac{1}{2}}\right.\right\} .
\end{aligned}
$$

It is easy to see that P_{1} and P_{2} are both algebraically closed and $\operatorname{int} P_{1} \neq \emptyset, \operatorname{int} P_{2} \neq \emptyset$.
$2.1\left(l_{1}, P_{1}\right),\left(l_{2}, P_{2}\right)$
The space $\left(l_{1}, P_{1}\right)$ does not satisfy the condition (F). Indeed, $H=\left\{\left(x_{0}, x_{1}, x_{2}, \cdots\right) \in\right.$ $\left.l_{1} \mid x_{0}=\Sigma_{n=1}^{\infty} x_{n}\right\}$ is a supporting hyperplane of P_{1} and the face $F=H \cap P_{1}$ is infinite dimensional. In contrast, (l_{2}, P_{2}) satisfies the condition (F) ([4]).
Proposition 1. (l_{1}, P_{1}) is m.o.c., and it satisfies the condition (1) in particular.
For the proof of this proposition, we offer the following.
Definition. An ordered linear space (E, P) is said to be sequentially monotone order complete (s.m.o.c. for short) if every totally ordered countable subset A of E with $U(A) \neq$ \emptyset has the least upper bound lub A in E.

This condition is slightly weaker than the monotone order completeness in general.
Lemma 2. For every upper bounded totally ordered subset A in $\left(l_{1}, P_{1}\right)$, there exsits a countable subset $\left\{a_{n}\right\}_{n=1}^{\infty}$ of A such that $U(A)=U\left(\left\{a_{n}\right\}\right)$.
proof. We write $A=\left\{a_{\lambda}=\left(a_{\lambda 0}, a_{\lambda 1}, a_{\lambda 2}, \cdots\right) \mid \lambda \in \Lambda\right\}$, and let $\left(b_{0}, b_{1}, b_{2}, \cdots\right)$ be an upper bound of A. Since $a_{\lambda 0} \leq b_{0}(\lambda \in \Lambda)$, there exists $a_{0}=\sup a_{\lambda 0}$. If there exists $a_{\lambda}=\left(a_{\lambda 0}, a_{\lambda 1}, a_{\lambda 2}, \cdots\right) \in A$ such that $a_{\lambda 0}=a_{0}$, then a_{λ} is the maximum of A and the lemma is trivial. Hence we assume that $a_{\lambda 0}<a_{0} \quad(\lambda \in \Lambda)$. We can choose a sequence $\lambda_{1}, \lambda_{2}, \cdots$ such that $\left\{a_{\lambda_{n}}\right\}_{n=1}^{\infty}$ is nondecreasing and $a_{\lambda_{n}} \longrightarrow a_{0}$. For arbitrary $a_{\lambda}=\left(a_{\lambda 0}, a_{\lambda 1}, a_{\lambda 2}, \cdots\right) \in A$, there exists $n \in \mathbb{N}$ such that $a_{\lambda} \leq a_{\lambda_{n}}$, and this means that $U(A)=U\left(\left\{a_{\lambda_{n}}\right\}\right)$.
proof of Proposition 1. By Lemma 2, it suffices to show that $\left(l_{1}, P_{1}\right)$ is s.m.o.c. Let $a_{m}=\left(a_{m 0}, a_{m 1}, a_{m 2}, \cdots\right)(m=1,2,3, \cdots)$ be an upper bounded increasing sequence in $\left(l_{1}, P_{1}\right)$, and let $\left(b_{0}, b_{1}, b_{2}, \cdots\right)$ be an upper bound of $\left\{a_{m}\right\}$. Since $\left\{a_{m 0}\right\}_{m=1}^{\infty}$ is nondecreasing and $a_{m 0} \leq b_{0}(m=1,2, \cdots)$, it is a convergent sequence. Moreover, $a_{m} \leq a_{n}(1 \leq m \leq n)$ implies

$$
\begin{equation*}
a_{n 0}-a_{m 0} \geq \sum_{i=1}^{\infty}\left|a_{n i}-a_{m i}\right| \quad(1 \leq m \leq n) \tag{3}
\end{equation*}
$$

Hence, for each $i=1,2, \cdots,\left\{a_{n i}\right\}_{n=1}^{\infty}$ is a convergent sequence. Thus we can define $a_{0}=\left(a_{00}, a_{01}, a_{02}, \cdots\right)$ by $a_{0 i}=\lim _{n \rightarrow \infty} a_{n i} \quad(i=0,1,2 \cdots)$. By (3), we have for each $N=1,2, \cdots, a_{n 0}-a_{m 0} \geq \Sigma_{i=1}^{N}\left|a_{n i}-a_{m i}\right| \quad(1 \leq m \leq n)$. Hence we obtain by letting $n \longrightarrow \infty$ that $a_{00}-a_{m 0} \geq \Sigma_{i=1}^{N}\left|a_{0 i}-a_{m i}\right| \quad(m, N \in \mathbb{N})$. Since $N \in \mathbb{N}$ is arbitrary and $a_{m} \in l_{1}$, this inequality yields that $a_{0} \in l_{1}$ and

$$
a_{00}-a_{m 0} \geq \sum_{i=1}^{\infty}\left|a_{0 i}-a_{m i}\right| \quad(m \in \mathbb{N})
$$

This means $a_{0} \geq a_{m}(m \in \mathbb{N})$, and $a_{0} \in U\left(\left\{a_{m}\right\}\right)$. It remains to prove that a_{0} is the minimum of $U\left(\left\{a_{m}\right\}\right)$. For $b=\left(b_{0}, b_{1}, b_{2}, \cdots\right) \in U\left(\left\{a_{m}\right\}\right)$, we have

$$
b_{0}-a_{m 0} \geq \sum_{i=1}^{N}\left|b_{i}-a_{m i}\right| \quad(m, N \in \mathbb{N})
$$

Letting $m \longrightarrow \infty$, we obtain $b_{0}-a_{00} \geq \sum_{i=1}^{N}\left|b_{i}-a_{0 i}\right| \quad(N \in \mathbb{N})$. Since $N \in \mathbb{N}$ is arbitrary we also have $b_{0}-a_{00} \geq \sum_{i=1}^{\infty}\left|b_{i}-a_{0 i}\right|$. This means $b \geq a_{0}$ and the proof is complete.

The monotone order completeness of $\left(l_{2}, P_{2}\right)$ can be proved by analogy. We remark that there is a different way to prove the monotone order completeness of these sapces by using the fact mentioned in $\S 1$.

$2.2\left(l_{0}, P_{2}\right),\left(l_{1}, P_{2}\right)$

We rewrite $P_{2} \cap l_{0}$ and $P_{2} \cap l_{1}$ by P_{2} in these spaces. In both spaces, $\operatorname{int} P_{2} \neq \emptyset$, and the condition (F) holds. Consequently the condition (1) also holds. Moreover, (l_{0}, P_{2}) is not m.o.c.([4]).

Proposition 2. $\left(l_{1}, P_{2}\right)$ is not m.o.c.
proof. We consider the convergent series $\Sigma_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. First we show that there is a subsequence $\left\{n_{k}\right\}_{k=0}^{\infty}$ of the sequence $1,2,3, \cdots$ such that $n_{0}=1$ and

$$
\begin{aligned}
S & =\sqrt{A_{1}}+\sqrt{A_{2}}+\sqrt{A_{3}}+\cdots \\
& <+\infty \\
\text { where } A_{k} & =\frac{1}{\left(n_{k-1}+1\right)^{2}}+\frac{1}{\left(n_{k-1}+2\right)^{2}}+\cdots+\frac{1}{n_{k}^{2}} \quad(k=1,2,3, \cdots)
\end{aligned}
$$

Indeed, if we choose the subsequence $\left\{n_{k}\right\}_{k=0}^{\infty}$ by $n_{k}=2^{k}(k=0,1,2,3, \cdots)$, then

$$
\begin{aligned}
A_{k} & =\frac{1}{\left(2^{k-1}+1\right)^{2}}+\frac{1}{\left(2^{k-1}+2\right)^{2}}+\cdots+\frac{1}{2^{2 k}} \\
& \leq \frac{1}{2^{2(k-1)}}+\frac{1}{2^{2(k-1)}}+\cdots+\frac{1}{2^{2(k-1)}}=\frac{1}{2^{k-1}} .
\end{aligned}
$$

Hence we have

$$
\sum_{k=1}^{\infty} \sqrt{A_{k}} \leqq \sum_{k=1}^{\infty} \sqrt{\frac{1}{2^{k-1}}}<+\infty
$$

Now we define a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ in l_{1} by

$$
\begin{aligned}
a_{0} & =(0,0,0,0,0,0,0,0, \cdots \cdots \cdots \cdots \cdots) \\
a_{1} & =\left(S_{1}, \frac{1}{2}, \cdots, \frac{1}{n_{1}}, 0,0,0,0, \cdots \cdots \cdots \cdots \cdots \cdots\right) \\
a_{2} & =\left(S_{2}, \frac{1}{2}, \cdots, \frac{1}{n_{1}}, \frac{1}{n_{1}+1}, \cdots, \frac{1}{n_{2}}, 0,0,0, \cdots \cdots \cdots \cdots \cdot\right) \\
a_{3} & =\left(S_{3}, \frac{1}{2}, \cdots, \frac{1}{n_{1}}, \frac{1}{n_{1}+1}, \cdots, \frac{1}{n_{2}}, \frac{1}{n_{2}+1}, \cdots, \frac{1}{n_{3}}, 0,0, \cdots \cdots \cdots \cdot\right), \\
& \vdots \\
b_{0} & =(2 S, 0,0,0,0 \cdots \cdots \cdots)
\end{aligned}
$$

where $S_{n}=\sum_{k=1}^{n} \sqrt{A_{k}}(n=1,2, \cdots)$. Since $\sum_{k=1}^{n} A_{k} \leq S_{n}^{2}$ for every n, we see that

$$
\begin{equation*}
\frac{\pi^{2}}{6}-1<S^{2} \tag{4}
\end{equation*}
$$

By the definition of A_{k}, we have $\sqrt{A_{k}}=\left(\frac{1}{\left(n_{k-1}+1\right)^{2}}+\frac{1}{\left(n_{k-1}+2\right)^{2}}+\cdots+\frac{1}{n_{k}{ }^{2}}\right)^{\frac{1}{2}} \quad(k=$ $1,2,3, \cdots)$. Therefore,

$$
\begin{aligned}
a_{k}-a_{k-1} & =\left(\sqrt{A_{k}}, 0, \cdots 0, \frac{1}{n_{k-1}+1}, \cdots, \frac{1}{n_{k}}, 0, \cdots\right) \\
& \in P_{2} \quad(k=1,2,3, \cdots)
\end{aligned}
$$

Moreover, by (4), $\left(2 S-S_{k}\right)^{2}-1^{2}-\left(\frac{1}{2}\right)^{2}-\cdots-\left(\frac{1}{n_{k}}\right)^{2}=\left(2 S-S_{k}\right)^{2}-A_{1}-A_{2}-\cdots-A_{k} \geqq$ $S^{2}-A_{1}-A_{2}-\cdots-A_{k}>\frac{\pi^{2}}{6}-1-A_{1}-A_{2}-\cdots-A_{k}>0$, it follows that

$$
b_{0}-a_{k}=\left(2 S-S_{k}, 1, \frac{1}{2}, \cdots, \frac{1}{n_{k}}, 0, \cdots\right) \in P_{2}
$$

for every $k \in \mathbb{N}$. Hence the sequence $\left\{a_{k}\right\}$ is increasing and upper bounded in (l_{1}, P_{2}). Let $b=\left(b_{0}, b_{1}, b_{2}, \cdots\right)$ be an arbitrary element in $U\left(\left\{a_{k}\right\}\right)$. Since $b \in l_{1}$, there is at least a number $n \in \mathbb{N}$ such that $b_{n} \neq \frac{1}{n}$. We define

$$
b^{\prime}=\left(b_{0}, b_{1}, b_{2}, \cdots, b_{n-1}, \frac{1}{n}, b_{n+1}, \cdots\right)
$$

then $b-b^{\prime}=\left(0,0, \cdots, b_{n}-\frac{1}{n}, 0,0, \cdots\right) \notin P_{2} \cup\left(-P_{2}\right)$. This means that b and b^{\prime} are not comparable with respect to the order of P_{2}. Moreover, it follows from the relation $b \geq a_{k}(k=0,1,2, \cdots)$ that

$$
\begin{aligned}
0 \leqq\left(b_{0}-\right. & \left.S_{k}\right)^{2}-\left(b_{1}-1\right)^{2}-\left(b_{2}-\frac{1}{2}\right)^{2} \\
& \quad-\cdots-\left(b_{n-1}-\frac{1}{n-1}\right)^{2}-\left(b_{n}-\frac{1}{n}\right)^{2}-\left(b_{n+1}-\frac{1}{n+1}\right)^{2}-\cdots \\
& \leqq\left(b_{0}-\right. \\
& \left.S_{k}\right)^{2}-\left(b_{1}-1\right)^{2}-\left(b_{2}-\frac{1}{2}\right)^{2} \\
& \quad-\cdots-\left(b_{n-1}-\frac{1}{n-1}\right)^{2}-\left(b_{n+1}-\frac{1}{n+1}\right)^{2}-\cdots
\end{aligned}
$$

for sufficiently large k. This means $b^{\prime} \geq a_{k}(k=0,1,2, \cdots)$. Thus we find that b is not the minimum of $U\left(\left\{a_{k}\right\}\right)$, and since b is arbitrary it follows that $\operatorname{lub}\left\{a_{k}\right\}$ does not exist.

$2.3\left(l_{0}, P_{1}\right)$

We rewrite $P_{1} \cap l_{0}$ by P_{1}. P_{1} is still algebraically closed in l_{0}. Indeed, we can easily see that $(1,0,0,0, \cdots) \in \operatorname{int} P_{1}$. Let H be the subspace of l_{0} defined by $H=\{x=$ $\left.\left(x_{0}, x_{1}, x_{2}, \cdots\right) \mid x_{0}=\sum_{n=1}^{\infty} x_{n}\right\}$. Then H is a supporting hyperplane of P_{1}. The face $F=H \cap P_{1}$ contains the elements $(1,1,0,0, \cdots),(1,0,1,0,0, \cdots),(1,0,0,1,0, \cdots), \cdots$ and they are affinely independent. Hence $\operatorname{dim} F=\infty$ and $\left(l_{0}, P_{1}\right)$ does not satisfy the condition (F).
Proposition 3. (l_{0}, P_{1}) does not satisfy the condition (1), and hence it is not m.o.c. proof. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence in l_{0} defined by

$$
a_{n}=\left(\frac{1}{2^{n}}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots, \frac{1}{2^{n}}, 0,0, \cdots\right) \quad(n=1,2,3, \cdots)
$$

Since $a_{n}-a_{n-1}=\left(-\frac{1}{2^{n}}, 0, \cdots, 0, \frac{1}{2^{n}}, 0,0, \cdots\right) \in-P_{1}$ for every $n=1,2,3, \cdots$, $\left\{a_{n}\right\}$ is a decreasing sequence in (l_{0}, P_{1}). Also, we can see that $a_{0}=(-1,0,0,0, \cdots)$ is a lower bound of $\left\{a_{n}\right\}$. For an arbitrary lower bound $b=\left(b_{0}, b_{1}, b_{2}, \cdots\right)$ of $\left\{a_{n}\right\}$, and we define

$$
b^{\prime}=\left(b_{0}+\frac{1}{2^{m+1}}, b_{1}, b_{2}, \cdots, b_{m}, \frac{1}{2^{m+1}}, 0,0, \cdots\right)
$$

Obviously, $b^{\prime} \geq b$ holds and for sufficiently large n,

$$
a_{n}-b^{\prime}=\left(\frac{1}{2^{n}}-b_{0}-\frac{1}{2^{m+1}}, \frac{1}{2}-b_{1}, \cdots, \frac{1}{2^{m}}-b_{m}, 0, \frac{1}{2^{m+2}}, \cdots, \frac{1}{2^{n}}, 0,0, \cdots\right)
$$

Since $a_{n} \geq b$, we have

$$
\begin{aligned}
\frac{1}{2^{n}}-b_{0}-\frac{1}{2^{m+1}} & \geq\left|\frac{1}{2}-b_{1}\right|+\cdots+\left|\frac{1}{2^{m}}-b_{m}\right|+\frac{1}{2^{m+1}}+\cdots+\frac{1}{2^{n}}-\frac{1}{2^{m+1}} \\
& =\left|\frac{1}{2}-b_{1}\right|+\cdots+\left|\frac{1}{2^{m}}-b_{m}\right|+\frac{1}{2^{m+2}}+\cdots+\frac{1}{2^{n}}
\end{aligned}
$$

It follows that b^{\prime} is also a lower bound of $\left\{a_{n}\right\}$ while $b^{\prime} \geq b$. Since $b \in L\left(\left\{a_{n}\right\}\right)$ is arbitrary, $L\left(\left\{a_{n}\right\}\right)$ has no maximal element. This means that $\operatorname{Inf}\left\{a_{n}\right\}=\emptyset$ while $L\left(\left\{a_{n}\right\}\right) \neq \emptyset$, in other words, $\left(l_{0}, P_{1}\right)$ does not satisfy the condition (1).

References

[1] T. Ando, On fundamental properties of a Banach space with cone, Pacific J. Math. 12 (1962), 1163-1169.
[2] N. Komuro, The set of upper bounds in ordered linear spaces, submitted.
[3] N. Komuro, Properties of the set of upper bounds in partially ordered linear space, J. Hokkaido University of Education 51-2 (2001), 15-20.
[4] N. Komuro, S. Koshi, Generalized supremum in partially ordered linear space, Proc. of the International Conference on Nonlinear Analysis and Convex Analysis, World Scientific (1999), 199-204.
[5] N. Komuro, H. Yoshimura, Generalized supremum in partially ordered linear space and the monotone order completeness, J. Hokkaido University of Education 50-2 (2000), 11-16.
[6] S. Koshi, N. Komuro, Supsets on partially ordered topological linear spaces, Taiwanese J. of Math. 4-2 (2000), 275-284.
[7] R. T. Rockafellar, Convex Analysis, Princeton University Press (1970).
[8] A. C. Zaanen, Riesz space II, North Holland Math. Libr. 30 (1983).

Hokkaido University of Education at Asahikawa
Hokumoncho 9-chome. Asahikawa 070-8621
e-mail: komuro@atson.asa.hokkyodai.ac.jp

