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\S 1 INTRODUCTION AND BASIC RESULTS

Let $E$ be alinear space over $\mathrm{R}$, and $P$ be aconvex cone in $E$ satisfying
(P1) $E=P-P$,
(P2) $P\cap(-P)=\{0\}$ .

An order relation in $E$ can be defined by $x\leq y\Leftrightarrow y-x\in P$ . We call alinear space
$E$ equipped with such apositive cone $P$ a(partially) ordered linear space, and denote
it by $(E, P)$ .

For asubset $A$ of $E$, the generalized supremum Sup $A$ is defined to be the set of $\mathrm{a}\mathbb{I}$

minimal elements of $U(A)$ , where $U(A)$ is the set of all upper bounds of $A$ . In other
words,

$U(A)=\{x\in E|y\leq x, \forall y\in A\}$ ,
Sup $A=\{a\in U(A)|b\leq a, b\in U(A)\Rightarrow a=b\}$ .

The generalized infimum Inf $A$ and the set of $\mathrm{a}\mathbb{I}$ lower bounds $L(A)$ are defined similarly.
The basic properties of the generalized supremum has been investigated in $[3],[4],[5]$ , and

remarkable result is that this notion gives us amethod to construct an order completion
of $E$ , when it is not order complete. In constructing this theory, the condition

(1) $U(A)=(\mathrm{S}\mathrm{u}\mathrm{p}A)+P$ (for every subset A $\subset E$ )

is extremely important. In many cases, the generalized supremum Sup $A$ can be empty,
even if $U(A)\neq\emptyset$ . In the space $C[0,1]$ with the natural positive cone $P=\{f\in$
$C[0, 1]|\mathrm{f}(\mathrm{x})\geq 0(x\in[0,1])\}$ for example, it is easy to find asubset $A\subset C[0, 1]$ such
that $U(A)\neq\emptyset$ and Sup $A=\emptyset$ . This means that the space $(C[0,1], P)$ does not satisfy
the condition (1). For another example, let $X$ be the space of $\mathrm{a}\mathbb{I}$ $n\mathrm{x}n$ symmetric
matrices with real coeffcients, and we adopt the positive cone $P=\{A\in X|(Ax,x)$ $\geq$

$0$ , $x\in \mathrm{R}^{d}\}$ . Then $(X, P)$ satisfies the condition (1) while it is neither order complete
nor alattice ([4]). In this paper, we will consider the sequence spaces $l_{1},l_{2}$ with typical
positive cones, and investigate the condition (1) for each case.

An ordered linear space $(E, P)$ is said to be monotone order complete (m.o.c. for
short) if every totally ordered subset $A$ of $E$ with $U(A)\neq\emptyset$ has the least upper bound
lub $A$ in $E$ . In the case $E=\mathrm{R}^{d}$ , $(E, P)$ is m.o.c. if and only if $P$ is closed ([5]). In the
case when $E$ is aBanach space with a closed positive cone $P$ satisfying $P^{*}-P^{*}=E^{*}$ ,
$(E^{*}, P^{*})$ is m.o.c. where $E^{*}$ is the topological dual of $E$ and $P^{*}=\{x^{*}\in E^{*}|x^{*}(x)\geq$

$0$ , $x\in P\}$ . The proofs of these facts can be seen in aprevious paper [6].

Theorem 1. Suppose that an ordered linear space $(E, P)$ is $m.0.c.$ , then $(E,P)$

satisfies the condition (1). In particular, Sup{a, $b$} $\neq\emptyset$ for every $a$ , $b\in E$ , and $U(a, b)=$

(Sup{a, $b\}$ ) $+P$ .
The proof of this theorem can be seen in [4]. Aconvex subset $C$ of $E$ is said to

be algebraically closed if every straight line of $E$ meets $C$ by aclosed interval. A
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point $x$ of aconvex subset $C\subset E$ is called an algebraic interior point of $C$ if for
$\mathrm{e}\mathrm{v}\mathrm{e}^{J}\mathrm{r}\mathrm{y}z\in E$ , there exists $\lambda>0$ such that $x+\lambda z\in C$ . Algebraic exterior points are
defined similarly, and we denote the algebraic interior (exterior) of $C$ by intC (extC).
Moreover, $\partial C=$ $($intC $\cup \mathrm{e}\mathrm{x}\mathrm{t}C)^{c}$ is called the algebraic boundary of $C$ . Let $(E, P)$

be an ordered linear space and suppose that $P$ is algebraically closed with nonempty
algebraic interior. Aconvex subset $F$ of $P$ is called an exposed face of $P$ if there exists
a supporting hyperplane $H$ of $P$ such that $F=P\cap H$ . By $\mathfrak{F}(P)$ , we denote the set of
all exposed faces of $P$ . For $F\in S(P)$ , $\dim F$ is defined as the dimension of affF where
affF denotes the affine hull of $F$. The proof of the following theorem can be seen in [5].
Theorem 2. Let $(E, P)$ be an ordered linear space and suppose that $P$ is algebraically
closed and int $P\neq\emptyset$ . If dirn $F<\infty$ for every $F\in \mathrm{f}\mathrm{f}(P)$ , then $(E, P)$ satisfies the
condition (1).

In [5], it is proved that the algebraic closedness of the positive cone $P$ is aneces-
sary condition for the monotone order completeness of $(E, P)$ . The following result is
considered to be an improvement of this fact.
Theorem 3. If an ordered linear space (E, P) satisfies the condition (1) and int P $\neq$

$\emptyset$ , then the positive cone P is algebraically closed.
For two distinct points $x$ , $y\in E$ , we denote the closed segment between $x$ and $y$

by $[x, y]$ $=\{(1-t)x+ty|0\leq t\leq 1\}$ . Also, the half open segment is defined by
$(x, y]=\{(1-t)x+ty|0<t\leq 1\}$ . $[x, y)$ and open segments $(x, y)$ are defined
analogously. For aconvex subset $C$ of $E$ ,

$C^{a}=C\cup$ {$x\in E|(x,$ $y]\subset C$ for some $y\in C$}
is called the algebraic closure of $C$ . Clearly, $C$ is algebraically closed, if and only if
$C=C^{a}$ . We note that $C^{a}$ is not always algebraically closed, in other words, $C^{a}=(C^{a})^{a}$

does not always hold.

Lemma 1. Let P be a convex cone in a linear space E. Then $P^{a}$ is also a convex cone.
proof. Let $x$ be an arbitrary point of $P^{a}$ , and take $y\in P$ such that $(x, y]\subset P$ . Since $P$

is acone, $(1-\lambda)\mu x+\lambda\mu y=\mu((1-\lambda)x+\lambda y)\in P$ for every $0<\mu$ , and $0<\lambda\leq 1$ . This
means that $(\mu x, \mu y]\subset P$ and $\mu x\in P^{a}$ . Hence it is sufficient to show that $x_{1}+x_{2}\in P^{a}$

for every $x_{1}$ , $x_{2}\in P^{a}$ . Let $y_{1}$ , $y_{2}$ be such that $(x_{1}, y_{1}]$ , $(x_{2}, y_{2}]\subset P$ respectively. Since $P$

is aconvex cone, $(1-\lambda)(x_{1}+x_{2})+\lambda(y_{1}+y_{2})=(1-\lambda)x_{1}+\lambda y_{1}+(1-\lambda)x_{2}+\lambda y_{2}\in P$

for every $0<\lambda\leq 1$ . This means that $(x_{1}+x_{2}, y_{1}+y_{2}]\in P$ and $x_{1}+x_{2}\in P^{a}$ .
proof of Theorem 3. Suppose that the positive cone $P$ is not algebraically closed. Then
there exists $x\in P^{a}\backslash P$ . We define asubset $A\subset E$ by

$A=-P^{a}$ .
Since $0\not\geq-x$ , we have $\mathrm{O}\not\in U(A)$ , and clearly $U(A)\subset U(-P)=P$ . Moreover, we can
conclude that

(2) int $P\subset U(A)\subset P\backslash \{0\}$ ,

and $U(A)\neq\emptyset$ in particular. To prove (2), we take $z\in \mathrm{i}\mathrm{n}\mathrm{t}$ $P$ , and $-x\in$ -Pa. Then
there exists $y\in P$ such that $(x, y]\subset P$ . Since $z\in \mathrm{i}\mathrm{n}\mathrm{t}$ $P$ , we can choose apositive
number $\mu>0$ such that $z+\mu(x-y)\in P$ . It is easy to see that

$(x, z]\subset \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{(x, y]\cup[z, z+\mu(x-y)]\}$

$\subset P$

73



by the convexity of $P$ . Hence, $z-(-x)=2( \frac{x+z}{2})\in P$ . Since $z\in \mathrm{i}\mathrm{n}\mathrm{t}P\mathrm{a}\mathrm{n}\mathrm{d}-x\in-P^{a}$

can be taken arbitrarily, we obtain int $P\subset U(A)$ . Now we take $u\in U(A)$ and $a\in A=$

$-P^{a}$ arbitrarily. By Lemma 1, we see $2a\in-P^{a}$ and hence $\frac{1}{2}u-a=\frac{1}{2}(u-2a)\in P$ .
This means that $\frac{1}{2}u\in U(A)$ . By (2), $u\neq 0$ and $u- \frac{1}{2}u\in P$ This means that $u$ is
not aminimal element of $U(A)$ . Since $u\in U(A)$ is arbitrary, we have obtained that
Sup $A=\emptyset$ and the condition (1) fails.

Remark. Algebraic closedness of $P$ is obviously anecessary condition for the order
completeness. However, we cannot say $P$ is algebraically closed when $(E,P)$ is only a
lattice. The two dimensional space $\mathbb{R}^{2}$ with lexicographical order is an example.

Corollary 1. If $\dim E<\infty$ , then $(E, P)$ satisfies the condition (1) if and only if $P$ is
closed.

proof. In finite dimensional cases, $(E, P)$ is m.o.c. if $P$ is closed([5]). Hence by Theorem
1 it satisfies the condition (1). The converse follows directly from Theorem 3.

Next we consider the family of the generalized suprema $\{\mathrm{S}\mathrm{u}\mathrm{p}A|A\subset E\}$ , and
construct an order completion of $(E, P)$ in the case $E=\mathbb{R}^{d}$ and $P$ is closed. By
Corollary 1, the condition (1) holds in such cases. Let $\mathfrak{B}$ and $\mathfrak{B}’$ be the family of $\mathrm{a}\mathbb{I}$

upper bounded subset and lower bounded subset in $\mathrm{R}^{d}$ respectively, i.e.
$\mathfrak{B}=\{A\subset \mathbb{R}^{d}|A\neq\emptyset, U(A)\neq\emptyset\}$,

$\mathfrak{B}’=\{E\subset \mathrm{R}^{d}|B\neq\emptyset, L(B)\neq\emptyset\}$ .
We define an equivalence relation $\sim \mathrm{i}\mathrm{n}$ $\mathfrak{B}$ by

$A\sim B\Leftrightarrow U(A)=U(B)$ $(A, B\in \mathfrak{B})$ .

Let $\tilde{E}$ be the quotient set $\mathfrak{B}/\sim=\{[A]|A\in \mathfrak{B}\}$ where $[A]$ denotes the equivalence
class of $A$ .

For every $[A]\in\tilde{E}$ , two operations $u([A])=U(A)$ and $l([A])=L(U(A))$ are $\mathrm{w}\mathrm{e}\mathbb{I}$

defined. By virtue of (1), $\tilde{E}$ can be identified with the set $\{U(A)|A\in \mathfrak{B}\}$ or the set
{Sup $A|A\in \mathfrak{B}$ }. We now define an order relation in $\tilde{E}$ by

$[A]\leq[B]\Leftrightarrow u([B])\subset u([A])$ $([A], [B]\in\tilde{E})$ .

Definition. For every $[A]$ , $[B]\in\tilde{E}$ and $\lambda\in \mathrm{R}$ ,

$[A]+[B]=[l([A])+l([B])]$

$\lambda[A]=\{\begin{array}{l}[\lambda l([A])](\lambda>0)[0^{+}l([A])]=[-P](\lambda=0)[\lambda u([A])](\lambda<0)\end{array}$

where $0^{+}C$ denotes the resession cone of a convex set $C.([7])$

We define two subsets $\tilde{P}$ and $\tilde{E}_{1}$ of $\tilde{E}$ as follows.
$\tilde{P}=\{[A]\in\tilde{E}|[A]\geq[-P]\}$

$=\{[A]\in\tilde{E}|u([A])\subset P\}$

$\tilde{E}_{1}=$ { $[A]\in\tilde{E}|u([A])=a+P$ for some $a\in \mathbb{R}^{d}$ }.

Note that the correspondence which assigns a $\in \mathrm{R}^{d}$ to $[A]\in\tilde{E}_{1}$ such that $u([A])=a+P$
is one to one
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Theorem 4. $\tilde{E}$ is an order complete vector lattice with the order $‘\leq’$ , and the vector
operation defined above. Moreover,

(a) $\tilde{P}$ is a convex cone in $\tilde{E}$ and satisfies (PI), (P2), and $[A]\leq[B]\Leftrightarrow[B]-[A]\in\tilde{P}$ .
(b) $\tilde{E}_{1}$ is a subspace which is order isomorphic to $(\mathbb{R}^{d}, P)$ by the correspondence $\mathbb{R}^{d}\ni$

$a-[A]\in\tilde{E}_{1}$ where $u([A])=a+P$ .

The proof of this theorem can be seen in [2], and [3].

\S 2 EXAMPLES 1N SEQUENCE SPACES

We say that an ordered linear space $(E, P)$ satisfies the condition (F) if it satis-
fies all the hypotheses in Theorem 2. In finite dimensional cases, $(E, P)$ obviously
satisfies the condition (F) whenever $P$ is closed. In this section we consider some se-
quence spaces and investigate the relation among the monotone order completeness,
the condition (1) and the condition (F). We denote $l_{0}=\{x=(x_{0},x_{1}, x_{2}, \cdots)$ $|x_{n}=$

$0$ except for finitely many $n\in \mathrm{N}\cup\{0\}\}$ , $l_{1}=\{x=(x_{0}, x_{1}, x_{2}, \cdots)|\Sigma_{n=0}^{\infty}|x_{n}|<\infty\}$ , $l_{2}=$

$\{x= (x_{0}, x_{1}, x_{2}, \cdots) |\Sigma_{n=0^{X}n}^{\infty 2}<\infty\}$ and define two typical positive cones as follows.

$P_{1}= \{x=(x_{0}, x_{1}, x_{2}, \cdots)\in l_{1}|x_{0}\geq\sum_{n=1}^{\infty}|x_{n}|\}$ ,

$P_{2}= \{x=(x_{0}, x_{1}, x_{2}, \cdots)\in l_{2}|x_{0}\geq(\sum_{n=1}^{\infty}x_{n}^{2})^{\frac{1}{2}}\}$ .

It is easy to see that $P_{1}$ and $P_{2}$ are both algebraically closed and int $P_{1}\neq\emptyset$ , int $P_{2}\neq\emptyset$ .
2.1 $(l_{1}, P_{1})$ , $(l_{2}, P_{2})$

The space $(l_{1}, P_{1})$ does not satisfy the condition (F). Indeed, $H=\{(x_{0}, x_{1}, x_{2}, \cdots)\in$

$l_{1}|x_{0}=\Sigma_{n=1}^{\infty}x_{n}\}$ is asupporting hyperplane of $P_{1}$ and the face $F=H\cap P_{1}$ is infinite
dimensional. In contrast, $(l_{2}, P_{2})$ satisfies the condition (F) ([4]).

Proposition 1. $(l_{1}, P_{1})$ is $m.0.c.$ , and it satisfies the condition (1) in particular.

For the proof of this proposition, we offer the following.

Definition. An ordered linear space $(E, P)$ is said to be sequentially monotone order
complete (s.m.o.c. for short) if every totally ordered countable subset $A$ of $E$ with $U(A)\neq$

G) has the least upper bound lub $A$ in $E$ .

This condition is slightly weaker than the monotone order completeness in general.

Lemma 2. For every upper bounded totally ordered subset A in $(l_{1}, P_{1})$ , there exsits $a$

countable subset $\{a_{n}\}_{n=1}^{\infty}$ of A such that $U(A)=U(\{a_{n}\})$ .

proof We write $A=\{a_{\lambda}= (a_{\lambda 0}, a_{\lambda 1}, a_{\lambda 2}, \cdots) |\lambda\in\Lambda\}$ , and let $(b_{0}, b_{1}, b_{2}, \cdots)$ be an
upper bound of $A$ . Since $a_{\lambda 0}\leq b_{0}$ (A $\in\Lambda$), there exists $a_{0}= \sup a_{\lambda 0}$ . If there exists
$a_{\lambda}=(a_{\lambda 0}, a_{\lambda 1}, a_{\lambda 2}, \cdots)\in A$ such that $a_{\lambda 0}=a_{0}$ , then $a_{\lambda}$ is the maximum of $A$ and
the lemma is trivial. Hence we assume that $a_{\lambda 0}<a_{0}$ (A $\in\Lambda$). We can choose a
sequence $\lambda_{1}$ , $\lambda_{2}$ , $\cdots$ such that $\{a_{\lambda_{n}}\}_{n=1}^{\infty}$ is nondecreasing and $a_{\lambda_{n}}arrow a_{0}$ . For arbitrary
$a_{\lambda}=(a_{\lambda 0}, a_{\lambda 1}, a_{\lambda 2}, \cdots)\in A$ , there exists $n\in \mathrm{N}$ such that $a_{\lambda}\leq a_{\lambda_{n}}$ , and this means
that $U(A)=U(\{a_{\lambda_{n}}\})$ .
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proof of Proposition 1. By Lemma 2, it suffices to show that $(l_{1}, P_{1})$ is s.m.o.c. Let
$a_{m}=$ $(a_{m0}, a_{m1}, a_{m2}, \cdots)$ $(m=1,2,3, \cdots)$ be an upper bounded increasing sequence
in $(l_{1}, P_{1})$ , and let $(b_{0}, b_{1}, b_{2}, \cdots)$ be an upper bound of $\{a_{m}\}$ . Since $\{a_{m0}\}_{m=1}^{\infty}$ is
nondecreasing and $a_{m0}\leq b_{0}$ $(m=1,2, \cdots)$ , it is a convergent sequence. Moreover,
$a_{m}\leq a_{n}(1\leq m\leq n)$ implies

(3) $a_{n0}-a_{m0} \geq\sum_{\dot{l}=1}^{\infty}|a_{n}:-a_{m}:|$ $(1\leq m\leq n)$ .

Hence, for each $i=1,2$, $\cdots$ , $\{a_{n}:\}_{n=1}^{\infty}$ is a convergent sequence. Thus we can dffine
$a\circ=$ $(a_{00}, a_{01}, a_{02}, \cdots)$ by $a0:= \lim_{narrow\infty}a_{n}$ : $(i=0,1, 2\cdots)$ . By (3), we have for each
$N=1,2$ , $\cdots$ , $a_{n0}-a_{m0}\geq\Sigma_{=1}^{N}.\cdot|a_{n}:-a_{m}:|$ $(1\leq m\leq n)$ . Hence we obtain by letting
$narrow\infty$ that $a_{00}-a_{m0}\geq\Sigma_{\dot{\iota}=1}^{N}|a\mathrm{o}\mathrm{e}$. $-a_{m}:|$ $(m, N\in \mathrm{N})$ . Since $N\in \mathrm{N}$ is arbitrary and
$a_{m}\in l_{1}$ , this inequality yields that $a_{0}\in l_{1}$ and

$a_{00}-a_{m0} \geq\sum_{\dot{l}=1}^{\infty}|a_{0\dot{l}}-a_{m}:|$ (m $\in \mathrm{N})$ .

This means $a0\geq a_{m}(m\in \mathrm{N})$ , and $a_{0}\in U(\{a_{m}\})$ . It remains to prove that $a\mathit{0}$ is the
minimum of $U(\{a_{m}\})$ . For $b=(b_{0}, b_{1}, b_{2}, \cdots)\in U(\{a_{m}\})$ , we have

$b_{0}-a_{m0} \geq\sum_{\dot{|}=1}^{N}|b:-a_{m}:|$ $(m, N\in \mathrm{N})$ .

Letting $marrow\infty$ , we obtain $b_{0}-a \mathit{0}\mathit{0}\geq\sum_{\dot{|}=1}^{N}|b:-a_{0:}|$ $(N\in \mathrm{N})$ . Since $N\in \mathrm{N}$ is
arbitrary we also have $b_{0}-a_{00} \geq\sum_{\dot{l}=1}^{\infty}|b:-a_{0:}|$ . This means $b\geq a_{0}$ and the proof is
complete.

The monotone order completeness of $(l_{2}, P_{2})$ can be proved by analogy. We remark
that there is adifferent way to prove the monotone order completeness of these sapces
by using the fact mentioned in \S 1.

2.2 $(l_{0}, P_{2})$ , $(l_{1}, P_{2})$

We rewrite $P_{2}\cap l\circ$ and $P_{2}\cap l_{1}$ by $P_{2}$ in these spaces. In both spaces, int $P_{2}\neq\emptyset$ , and
the condition (F) holds. Consequently the condition (1) $\mathrm{a}\mathrm{k}\mathrm{o}$ holds. Moreover, $(l_{0}, P_{2})$

is not m.o.c.([4]).

Proposition 2. $(l_{1}, P_{2})$ is not $m.0.c$.

proof. We consider the convergent series $\Sigma_{n=1}^{\infty}\frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ . First we show that there is a
subsequence $\{n_{k}\}_{k=0}^{\infty}$ of the sequence 1, 2, 3, \cdots such that $n_{0}=1$ and

$S=\sqrt{A_{1}}+\sqrt{A_{2}}+\cdot\sqrt{A_{3}}+\cdots$

$<+\infty$ ,

there $A_{k}= \frac{1}{(n_{k-1}+1)^{2}}+\frac{1}{(n_{k-1}+2)^{2}}+\cdots+\frac{1}{n_{k^{2}}}$ (k $=1,$ 2,3, \cdots ).
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Indeed, if we choose the subsequence $\{n_{k}\}_{k=0}^{\infty}$ by $n_{k}=2^{k}(k=0,1,2,3,$\cdots ), then

$A_{k}= \frac{1}{(2^{k-1}+1)^{2}}+\frac{1}{(2^{k-1}+2)^{2}}+\cdots+\frac{1}{2^{2k}}$

$\leq\frac{1}{2^{2(k-1)}}+\frac{1}{2^{2(k-1)}}+\cdots+\frac{1}{2^{2(k-1)}}=\frac{1}{2^{k-1}}$ .

Hence we have

$\sum_{k=1}^{\infty}\sqrt{A_{k}}\leqq\sum_{k=1}^{\infty}\sqrt{\frac{1}{2^{k-1}}}<+\infty$.

Now we define asequence $\{a_{n}\}_{n=0}^{\infty}$ in $l_{1}$ by

$a_{0}=$ $($0, 0, 0, 0, 0, 0, 0, 0, $\cdots\cdots\cdots\cdots$ $\cdots)$ ,

$a_{1}=$ $(S_{1}, \frac{1}{2}, \cdots, \frac{1}{n_{1}},0,0,0,0, \cdots\cdots\cdots\cdots\cdots\cdots)$ ,

$a_{2}=(S_{2}, \frac{1}{2}, \cdots, \frac{1}{n_{1}}, \frac{1}{n_{1}+1}, \cdots, \frac{1}{n_{2}},0,0,0, \cdots\cdots\cdots\cdots)$ ,

a3 $=(S_{3}, \frac{1}{2}, \cdots, \frac{1}{n_{1}}, \frac{1}{n_{1}+1}, \cdots, \frac{1}{n_{2}}, \frac{1}{n_{2}+1}, \cdots, \frac{1}{n_{3}},0,0, \cdots\cdots\cdots)$ ,

.$\cdot$

.

$b_{0}=$ $(2S, 0,0,0,0\cdots\cdots\cdots)$ ,

where $S_{n}= \sum_{k=1}^{n}\sqrt{A_{k}}(n=1,2, \cdots)$ . Since $\sum_{k=1}^{n}A_{k}\leq S_{n}^{2}$ for every $n$ , we see that

(4) $\frac{\pi^{2}}{6}-1<S^{2}$ .

By the definition of $A_{k}$ , we have $\sqrt{A_{k}}=(\frac{1}{(n_{\mathrm{k}-1}+1)^{2}}+\frac{1}{(n_{k-1}+2)^{2}}+\cdots+\frac{1}{n_{k^{2}}})^{1}2$ $(k=$

$1,2,3$, $\cdots$ ). Therefore,

$a_{k}-a_{k-1}=( \sqrt{A_{k}}, 0, \cdots 0, \frac{1}{n_{k-1}+1}, \cdots, \frac{1}{n_{k}}, 0, \cdots)$

$\in P_{2}$ $(k–1,2,3, \cdots)$ .

Moreover, by (4), $(2S-S_{k})^{2}-1^{2}-( \frac{1}{2})^{2}-\cdots-(\frac{1}{n_{k}})^{2}=(2S-S_{k})^{2}-A_{1}-A_{2}-\cdots-A_{k}\geqq$

$S^{2}-A_{1}-A_{2}- \cdots-A_{k}>\frac{\pi^{2}}{6}-1-A_{1}-A_{2}-\cdots-A_{k}>0$, it follows that

$b_{0}-a_{k}=$ $(2S-S_{k}, 1, \frac{1}{2}, \cdots, \frac{1}{n_{k}}, 0, \cdots)\in P_{2}$ ,

for every $k\in \mathrm{N}$ . Hence the sequence $\{a_{k}\}$ is increasing and upper bounded in $(l_{1}, P_{2})$ .
Let $b=$ $(b_{0}, b_{1}, b_{2}, \cdots)$ be an arbitrary element in $U(\{a_{k}\})$ . Since $b\in l_{1}$ , there is at least
anumber $n\in \mathrm{N}$ such that $b_{n} \neq\frac{1}{n}$ . We define

$b’=$ $(b_{0}, b_{1}, b_{2}, \cdots, b_{n-1}, \frac{1}{n}, b_{n+1}, \cdots)$,
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then b $-b’\ovalbox{\tt\small REJECT}$ (0, 0, \cdots ,
$b_{n}-\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT},$0,0, \cdots ) f $v_{2}$ u $(-P_{2})$ . This means that b and $b^{t}$ are

not comparable with respect to the order of $P_{2}$ . Moreover, it follows from the relation
b $\ovalbox{\tt\small REJECT}$

$a_{\mathit{1}}.\ovalbox{\tt\small REJECT}$ (k $\ovalbox{\tt\small REJECT}$0,1,2,$\ovalbox{\tt\small REJECT}$) that

$0 \leqq(b_{0}-S_{k})^{2}-(b_{1}-1)^{2}-(b_{2}-\frac{1}{2})^{2}$

$- \cdots-(b_{n-1}-\frac{1}{n-1})^{2}-(b_{n}-\frac{1}{n})^{2}-(b_{n+1}-\frac{1}{n+1})^{2}-\cdots$

$\leqq(b_{0}-S_{k})^{2}-(b_{1}-1)^{2}-(b_{2}-\frac{1}{2})^{2}$

$- \cdots-(b_{n-1}-\frac{1}{n-1})^{2}-(b_{n+1}-\frac{1}{n+1})^{2}-\cdots$ ,

for sufficiently large $k$ . This means $b’\geq a_{k}$ $(k=0,1,2, \cdots)$ . Thus we find that $b$ is not
the minimum of $U(\{a_{k}\})$ , and since $b$ is arbitrary it follows that $1\mathrm{u}\mathrm{b}\{a_{k}\}$ does not exist.
2.3 $(l_{0}, P_{1})$

We rewrite $P_{1}\cap l_{0}$ by $P_{1}$ . $P_{1}$ is still algebraically closed in $l\circ\cdot$ Indeed, we can easily
see that $(1, 0, 0, 0, \cdots)\in \mathrm{i}\mathrm{n}\mathrm{t}P_{1}$ . Let $H$ be the subspace of $l\circ$ defined by $H=\{x=$
$(x_{0}, x_{1}, x_{2}, \cdots)$ $|x_{0}= \sum_{n=1}^{\infty}x_{n}\}$ . Then $H$ is a supporting hyperplane of $P_{1}$ . The face
$F=H\cap P_{1}$ contains the elements (1, 1, 0, 0, $\cdots$ ), (1, 0, 1, 0, 0, $\cdots$ ), $(1, 0, 0, 1, 0, \cdots)$ , $\cdots$

and they are affinely independent. Hence dirn $F=\infty$ and $(l_{0}, P_{1})$ does not satisfy the
condition (F).

Proposition 3. $(l_{0}, P_{1})$ does not satisfy the condition (1), and hence it is not $m.0.c$ .
proof. Let $\{a_{n}\}_{n=1}^{\infty}$ be asequence in $l_{0}$ defined by

$a_{n}=$ $( \frac{1}{2^{n}}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots, \frac{1}{2^{n}}, 0,0, \cdots)$ $(n=1,2,3, \cdots)$ .

Since $a_{n}-a_{n-1}=$ $(- \frac{1}{2^{n}}, 0, \cdots, 0, \frac{1}{2^{n}}, 0,0, \cdots)\in-P_{1}$ for every $n=1,2,3$ , $\cdots$ ,
$\{a_{n}\}$ is adecreasing sequence in $(l_{0}, P_{1})$ . Also, we can see that $a_{0}=(-1,0,0,0, \cdots)$

is alower bound of $\{a_{n}\}$ . For an arbitrary lower bound $b=$ $(b_{0}, b_{1}, b_{2}, \cdots)$ of $\{a_{n}\}$ , and
we define

$b’=$ $(b_{0}+ \frac{1}{2^{m+1}}, b_{1}, b_{2}, \cdots, b_{m}, \frac{1}{2^{m+1}},0, 0, \cdots)$ .

Obviously, $b’\geq b$ holds and for sufficiently large $n$ ,

$a_{n}-b’=( \frac{1}{2^{n}}-b_{0}-\frac{1}{2^{m+1}}, \frac{1}{2}-b_{1}, \cdots, \frac{1}{2^{m}}-b_{m}, 0, \frac{1}{2^{m+2}}, \cdots, \frac{1}{2^{n}}, 0,0, \cdots)$ .

Since $a_{n}\geq 6$ , we have

$\frac{1}{2^{n}}-b_{0}-\frac{1}{2^{m+1}}\geq|\frac{1}{2}-b_{1}|+\cdots+|\frac{1}{2^{m}}-b_{m}|+\frac{1}{2^{m+1}}+\cdots+\frac{1}{2^{n}}-\frac{1}{2^{m+1}}$

$=| \frac{1}{2}-b_{1}|+\cdots+|\frac{1}{2^{m}}-b_{m}|+\frac{1}{2^{m+2}}+\cdots+\frac{1}{2^{n}}$ .

It follows that $b’$ is also a lower bound of $\{a_{n}\}$ while $b’\geq b$ . Since $b\in L(\{a_{n}\})$

is arbitrary, $L(\{a_{n}\})$ has no maximal element. This means that $\mathrm{I}\mathrm{n}\mathrm{f}\{a_{n}\}=\emptyset$ while
$L(\{a_{n}\})\neq\emptyset$ , in other words, $(l_{0}, P_{1})$ does not satisfy the condition (F).
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