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On the order completeness in partially ordered linear spaces
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§1 INTRODUCTION AND BASIC RESULTS

Let E be a linear space over R, and P be a convex cone in E satisfying

(P1) E=P-P,

(P2) Pn(—P)={0}.

An order relation in E can be defined by z < y <= y — £ € P. We call a linear space
F equipped with such a positive cone P a (partially) ordered linear space, and denote
it by (E, P).

For a subset A of E, the generalized supremum Sup A is defined to be the set of all
minimal elements of U(A), where U(A) is the set of all upper bounds of A. In other
words, -

U(A)={z€ E|y<z Vyc A},

SupA={acU(A)|b<a, beU(A)= a=0>}

The generalized infimum Inf A and the set of all lower bounds L(A) are defined similarly.
The basic properties of the generalized supremum has been investigated in [3],4],[5], and
a remarkable result is that this notion gives us a method to construct an order completion
of E, when it is not order complete. In constructing this theory, the condition

(1) U(A) = (SupA) + P (for every subset AC E)

is extremely important. In many cases, the generalized supremum Sup A can be empty,
even if U(A) # 0. In the space C[0,1] with the natural positive cone P = {f €
C[0,1] | f(z) > 0 (z € [0,1])} for example, it is easy to find a subset A C C[0,1] such
that U(A) # @ and Sup A = 0. This means that the space (C[0, 1], P) does not satisfy
the condition (1). For another example, let X be the space of all n x n symmetric
matrices with real coeffcients, and we adopt the positive cone P = {4 € X | (Az,z) >
0, = € R%}. Then (X, P) satisfies the condition (1) while it is neither order complete
nor a lattice ([4]). In this paper, we will consider the sequence spaces l1,l2 with typical
positive cones, and investigate the condition (1) for each case.

An ordered linear space (E, P) is said to be monotone order complete (m.o.c. for
short) if every totally ordered subset A of E with U(A) # 0 has the least upper bound
lub A in E. In the case E = R%, (E, P) is m.o.c. if and only if P is closed ([5]). In the
case when F is a Banach space with a closed positive cone P satisfying P* — P* = E*,
(E*, P*) is m.o.c. where E* is the topological dual of E and P* = {z* € E* | z*(z) >
0, € P}. The proofs of these facts can be seen in a previous paper [6).

Theorem 1. Suppose that an ordered linear space (E,P) is m.o.c., then (E,P)
satisfies the condition (1). In particular, Sup{a,b} # @ for everya,b € E, andU(a,b) =
(Sup{a,b}) + P.

The proof of this theorem can be seen in [4]. A convex subset C of E is said to
be algebraically closed if every straight line of E meets C by a closed interval. A
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point = of a convex subset C C FE is called an algebraic interior point of C if for
every z € E, there exists A > 0 such that z + Az € C. Algebraic exterior points are
defined similarly, and we denote the algebraic interior (exterior) of C by intC' (extC).
Moreover, 0C' = (intC' U extC)° is called the algebraic boundary of C. Let (E, P)
be an ordered linear space and suppose that P is algebraically closed with nonempty
algebraic interior. A convex subset F of P is called an exposed.: face of P.if there exists
a supporting hyperplane H of P such that F = PN H. By §(P), we denote the set of
all exposed faces of P. For F € §(P), dimF is defined as the dlmensmn of aff F where
affF' denotes the affine hull of F. The proof of the followmg theorem can be seen in [5].

Theorem 2.  Let (E, P) be an ordered linear space and suppose that P is algebraically
closed and int P # 0. If dimF < oo for every F € J(P), then (E,P) satisfies the
condition (1).

In [5], it is proved that the algebraic closedness of the p031t1ve cone P is a neces-
sary condition for the monotone order completeness of (E, P). The following result is
considered to be an improvement of this fact. '

Theorem 3.  If an ordered linear space (B, P) satisfies the condition (1) and int P #
0, then the positive cone P is algebraically closed.

For two distinct points z, y € F, we denote the closed segment between x and y
by [z,y] = {(1-t)zr+ty | 0 <t < 1}. Also, the half open segment is defined by
(x,y] = {1 —-t)r+ty | 0 <t < 1}. [z,y) and open segments (z,y) are defined
analogously. For a convex subset C of F,

C*=CuU{z € E|(x,y] CC for some ye C}

is called the algebraic closure of C. Clearly, C is algebraically closed, if and only if
C = C°. We note that C* is not always algebraically closed, in other words, C* = (C?)®
does not always hold.

Lemma 1. Let P be a conver cone in a linear space E. Then P® is also a convez cone.

proof. Let = be an arbitrary point of P%, and take y € P such that (z,y] C P. Since P
is a cone, (1—A)uz+Apy = p((1—A)z+ Ay) € P for every 0 < p, and 0 < A < 1. This
means that (uz, uy] C P and pz € P*. Hence it is sufficient to show that z; + z, € P°®
for every z1,z, € P®. Let y1,y2 be such that (z1,1], (z2,y2] C P respectively. Since P
is a convex cone, (1= A)(z1+Z2) +A(y1+y2) = (1= Nz1+Ay1 + (1 =Nz + Ay, € P
for every 0 < A < 1. This means that (z; + z2,y1 + y2] € P and z1 + x5 € P°.

proof of Theorem 3. Suppose that the positive cone P is not algebraically closed. Then
there exists x € P®\ P. We define a subset A C E by

A=-P%

Since 0 % —z, we have 0 ¢ U(A), and clearly U (A) C U(-P) = P. Moreover, we can
conclude that
(2) intPcU(A)CP \ {O},

and U(A) # 0 in particular. To prove (2), we take z € int P, and —z € —P%. Then
there exists y € P such that (z,y] C P. Since z € int P, we can choose a positive
number p > 0 such that z + u(x — y) € P. It is easy to see that

(z,2] C conv{(z,y] U [z,2 + u(x — y)]}
cP
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by the convexity of P. Hence, z — (—z) = 2(%£%) € P. Since z € int P and —z € —P*
can be taken arbitrarily, we obtain int P C U(A). Now we take u € U(A) anda € A =
—P® arbitrarily. By Lemma 1, we see 2a € —P® and hence Ju —a = 3(u — 2a) € P.
This means that su € U(A). By (2), v # 0 and u — su € P This means that u is
not a minimal element of U(A). Since u € U(A) is arbitrary, we have obtained that
Sup A = 0 and the condition (1) fails. :

Remark. Algebraic closedness of P is obviously a necessary condition for the order
completeness. However, we cannot say P is algebraically closed when (E, P) is only a
lattice. The two dimensional space R? with lexicographical order is an example.

Corollary 1. IfdimFE < oo, then (E, P) satisfies the condition (1) if and only if P is
closed. ' ‘

proof. In finite dimensional cases, (F, P) is m.o.c. if P is closed([5]). Hence by Theorem
1, it satisfies the condition (1). The converse follows directly from Theorem 3.

Next we consider the family of the generalized suprema {SupA | A C E}, and
construct an order completion of (E,P) in the case E = R? and P is closed. By
Corollary 1, the condition (1) holds in such cases. Let 8 and B’ be the family of all
upper bounded subset and lower bounded subset in R? respectively, i.e.

B={ACR}|A+0, UA)#0},
B8'={BCR?|B#40, L(B) # 0}.
We define an equivalence relation ~ in ‘B by
A~B<—U(A)=U(B) (A,Be*MB).

Let E be the quotient set B/ ~ = {[A] | A € B} where [A] denotes the equivalence
class of A.

For every [A] € E, two operations u([A]) = U(A) and [([A]) = L(U(A)) are well
defined. By virtue of (1), E can be identified with the set {U(A4) | A € B} or the set
{Sup A | A € B}. We now define an order relation in E by

[4] < [B] <= u([B]) C u([4]) ([4],[B] € E).
Definition. For every [A], [B] € E and A € R,
[A] + [B] = [i([A]) + L({B))]

(AN (A>0)
AlA] =4 [07i([A])] =[-P] (A=0)
[Au([A))] (A <0),

where 0T C denotes the resession cone of a convez set C.([7])

We define two subsets P and E; of E as ‘follows.
P={l4l € E|[4] > [-P}}
={[A4] € E | u([4]) c P}
E, = {[A] € E | u([A]) = a + P for some a € R%}.

Note that the correspondence which assigns a € R? to [A] € E; such that u([A]) = a+P
is one to one.
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Theorem 4. E is an order complete vector lattice with the order * < ’, and the vector
operation defined above. Moreover,

(a) P is a conver cone in E and satisfies (P1), (P2), and [A] < [B] <= [B]—[A] € P.

(b) E is a subspace which is order isomorphic to (R%, P) by the correspondence R 5
a «— [A] € E; where u([A]) = a + P.

The proof of this theorem can be seen in [2], and [3].

§2 EXAMPLES IN SEQUENCE SPACES

We say that an ordered linear space (FE, P) satisfies the condition (F) if it satis-
fies all the hypotheses in Theorem 2. In finite dimensional cases, (E, P) obviously
satisfies the condition (F) whenever P is closed. In this section we consider some se-
quence spaces and investigate the relation among the monotone order completeness,
the condition (1) and the condition (F). We denote lo = {z = (z0,71,%2," ") | Tn =
0 except for finitely many n € NU{0}},l1 = {z = (z0,Z1,Z2, ) | B ¢|Zn| < 00}, 1l =
{z = (zo,z1,%2,- ) | T2 oz% < 00} and define two typical positive cones as follows.

' 0o
Py ={z = (0,21,%2, ) € l1 | To 2 Z |Znl},
n=1

o0
Py = {z = (z0,%1,%2,"**) €la | To 2 (in)%}-
n=1

It is easy to see that P; and P, are both algebraically closed and int P; # @, int P, # 0.
2.1 (I, Py), (I, P)

The space (1, P1) does not satisfy the condition (F). Indeed, H = {(zo, 1,22, ) €
l1 | zo = £ zn} is a supporting hyperplane of P; and the face F = H N P, is infinite
dimensional. In contrast, (l2, P;) satisfies the condition (F) ([4]).

Proposition 1. (I3, P)) is m.o.c., and it satisfies the condition (1) in particular.
For the proof of this proposition, we offer the following.

Definition. An ordered linear space (E, P) is said to be sequentially monotone order
complete (s.m.o.c. for short) if every totally ordered countable subset A of E with U(A) #
0 has the least upper bound lub A in E. )

This condition is slightly weaker than the monotone order completeness in general.

Lemma 2. For every upper bounded totally ordered subset A in (11, P,), there exsits a
countable subset {an}nl; of A such that U(A) = U({a.}).

proof. We write A = {ax = (axo,axr1,ax2,---) | A € A}, and let (bo, b1,b2,---) be an
upper bound of A. Since ayo < by (A € A), there exists ap = supayg. If there exists
ax = (axo,a@r1,ar2,---) € A such that ayo = ag, then ay is the maximum of A and
the lemma is trivial. Hence we assume that ayo < ap (A € A). We can choose a
sequence Ag, Az, - -- such that {ayx, }52; is nondecreasing and a), — ao. For arbitrary
ax = (axo,@x1,ar2,"-+) € A, there exists n € N such that ay < ay,, and this means
that U(A) = U({ax, }).
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proof of Proposition 1. By Lemma 2, it suffices to show that (I, P;) is s.m.o.c. Let
am = (@m0, Am1,Ama, *+) (M = 1,2,3,---) be an upper bounded increasing sequence
in (l1, P1), and let (bo,b1,b,--+) be an upper bound of {a,}. Since {amo}pr, is
nondecreasing and amo < bo (m =1, 2 -+), it is a convergent sequence. Moreover,
am < an (1 <'m < n) implies : ' '

(3) ano — Gmo > Z |ani — ami| (1 <m < n).
i=1
Hence, for each i = 1,2,---, {ani}32, is a convergent sequence. Thus we can define

ao = (aoo,@o1,@02,*) by ag; = le ani (i =0,1,2---). By (3), we have for each
n—o0

N=1,2,-+, Gpo—amo > ZN ,|ani —ami| (1 < m < n). Hence we obtain by letting

n — 0o that ago — amo > LN ,|agi — ami] (m,N € N). Since N € N is arbitrary and

am € [y, this inequality yields that ap € [; and '

o0

ago — Gmo > Z lags — ami| (m € N).
i=1

This means a9 > a,, (m € N), and ap € U({an}). It remains to prove that ao is the
minimum of U({an,}). For b = (bo,b1,b2,---) € U({am}), we have

N
bo — amo > Z Ib, - ami| (m,N € N)
=1

Letting m — oo, we obtain by — ago > Zil |b; — api| (N € N). Since N € N is
arbitrary we also have by — ago > Y o, |bi — @o:i|- This means b > ao and the proof is
complete.

The monotone order completeness of (I2, P2) can be proved by analogy. We remark
that there is a different way to prove the monotone order completeness of these sapces
by using the fact mentioned in §1.

2.2 (lo, P), (l1,P2)

We rewrite P, Nly and P, NI, by P, in these spaces. In both spaces, int P, # 0, and
the condition (F) holds. Consequently the condition (1) also holds. Moreover, (lo, Pz)
is not m.o.c.([4]). :

Proposition 2. (I, P;) is not m. 0.c.

proof. We consider the convergent series En 15 = %-. First we show that there 1s a
subsequence {n;}$2, of the sequence 1,2,3,--- such that no =1 and '
S= A+ A+ \/ 3+-
< 400, v
: 1 ' 1 1 o
where Ay = +-t— (k=1,2,3,---).

(nk 1+ 1)2 (nk 1+ 2)2 Nk
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Indeed, if we choose the subsequence {ny}2, by ng = 2* (k=0,1,2,3,---), then

A 1 1 1
kT 21112 + (251 1 2)2 Tt o
SN DR RN SRR
= 922(k—1) 22(k-—1) 22(k-1) 9k—-1"

Hence we have

k

k=1 =1

Now we define a sequence {a,}32, in l; by

a0 =1(0,0,0,0,0,0,0,0, cooervernmmnn ),
1 1
=(S1, =, v, —, 0,0, 0,0, ccoceeerieeaeeen ,
ai ( 1 2’ ’ ’n,l’ ) 0 )
1 1 1 1
— — . il . 0,0, 0, cceeeereenes ,
Gy (52) 2: ny n1+1, ’ no y Yy )
1 1 1 1 1 1
- S, - — —, i — 0.0, cocereen ,
as (3 2’ n n1+1 an2 n2+1a ,713, y Yy )
bo = (25, 0,0,0,0 -----v--n ),

where S, =Y p_; VAx (n=1,2,---). Since Y p_; Ax < S2 for every n, we see that

7l'2

5 2
(4) s 1< 8

By the definition of Ay, we have /Ay = ((nk—i+1)2 + (nk_:+2)2 4t ;i-,,)% (k=
1, 2, 3, ---). Therefore, '

1 1
—ap_1= (VA 0, -+ 0, ———— oo = 0, -
ak — a1 = (v Ak e 1 - )
€ b, (k=1a2,3))
Moreover, by (4), (25— Sk)2—12—(3)2—---— ()2 =(25-8k)*~A1—Ag—+—Ar 2
§2— Ay —Ag—- - — A>T —1— Ay — Ay — - — Ag > 0, it follows that
1 1
bO_ak——_(zS—Ska 1)""" '1—a0a"')€P27
: 2 Nk .

for every k € N. Hence the sequence {ar} is increasing and upper bounded in ({1, Pz).
Let b = (bo, b1, ba, - -) be an arbitrary element in U({ax}). Since b € I, there is at least
a number n € N such that b,, # % We define

1
b’ = (b(), b]_, bz, ceey bn—l: ;L—’ bn+1, ...)’
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then b—b' = (0, 0, ---, by — 1, 0, 0, ---) ¢ P,U(—P,). This means that b and b’ are
not comparable with respect to the order of P,. Moreover, it follows from the relation
b>ax (k=0,1,2,--) that

1

0 (bo—54) — (b1 — 1) = (b2 — 5)°
1 2 _ __1_2_ __1__2_
== a1 = =) = (b = =) = (g — )

< (bo — Sk)? — (b1 —1)® — (b2 — %)2

1 2 1 2
Tl ) G m 2R

for sufficiently large k. This means b’ > ai (k= 0,1,2,---). Thus we find that b is not
the minimum of U({ax}), and since b is arbitrary it follows that lub{a} does not exist.

2.3 (lo, P,)

We rewrite Py N iy by P,. P, is still algebraically closed in ly. Indeed, we can easily
see that (1,0,0,0,---) € int P;. Let H be the subspace of lp defined by H = {x =
(€0, T1,Z2, ) | To = Y pey Tn}- Then H is a supporting hyperplane of P;. The face
F = H N Py contains the elements (1,1,0,0,---), (1,0,1,0,0,---), (1,0,0,1,0,---),-

and they are affinely independent. Hence dim F' = oo and (lo,Pl) does not satisfy the
condition (F).

Proposition 3. (ly, P1) does not satisfy the condition (1), and hence it is not m.o.c.

proof. Let {a,}32, be a sequence in ly defined by

1 111 1
an’—(z_ﬂa 51 Z’ §)'°'a2_na 0, 0,) (n—1’2,3a"')°
Since ap — an_y = ( —3%,0, ---, 0, 3%, 0, 0, --- ) € —P, for every n = 1,2,3,---,
{an} is a decreasing sequence in (lo, P;). Also, we can see that ag = (-1, 0, 0, 0, ---)

is a lower bound of {a,}. For an arbitrary lower bound b = (bg, b1, b2, - -) of {a,}, and
we define

1
(b0+ 2m+1’ bl) b2, MR bm) W) 0, 0’ "')'
Obviously, b’ > b holds and for sufficiently large n,
1 1 1 1 1
_b,’—(__' 0~ Sl o 1)"’)7—bma07 ——5,"'7—;a0’0"")'
om+1’ 9 2 om+ 9
Since a,, > b, we have
1 1 b 1 1 1
'27_ 0'—2m+1—|__b1|+ +|_——m|+2m+1++2_n—2m+1
1 1
=|§—b1|+' I—_bm|+2m+2 ot o

It follows that b’ is also a lower bound of {a,} while ' > b. Since b € L({an})
is arbitrary, L({an}) has no maximal element. This means that Inf{a,} = @ while
L({an}) # 0, in other words, (ly, P1) does not satisfy the condition (1).
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