Inverse Problems from Economics and Game Theory

Hidetoshi Komiya (小宮 英敏) Faculty of Business and Commerce Keio University (慶応大学商学部)

1 Introduction

We discuss open problems concerning inverses of theorems appearing in economics and game theory. We often finds the following Berge maximum theorem under convexity as a mathematical tools for optimal control problems in economics and game theory:

Theorem 1 [Berge] Let X be a subset of *l*-dimensional Euclidean space R^l and let Y be a subset of *m*-dimensional Euclidean space R^m . Let $u : X \times Y \to R$ be continuous and quasi-concave in its second variable, let $S: X \to Y$ be continuous and nonempty compact and convex-valued. Then, the correspondence $K: X \to Y$ defined by

$$K(x) = \{ y \in S(x) : u(x, y) = \max_{z \in S(x)} u(x, z) \}, \quad x \in X$$
(1)

is upper semicontinuous and compact and convex-valued.

It is known that inverses of Theorem 1 hold (cf. [3], [5]) and we shall treat a related open inverse problem in Section 2.

Let $(\Omega, \mathscr{F}, \mu)$ be a finite measure space, $u : \Omega \times R_+^l \to R_+$ a function with appropriate properties and $e \in L_1(\Omega, R_+^l)$. Then, for each $S \in \mathscr{F}$, define

$$v(S) \equiv \sup\left\{\int_{S} u(\omega, x(\omega)) \, d\mu(w) : x \in L_1(S, R^l_+), \ \int_{S} x \, d\mu = \int_{S} e \, d\mu\right\}.$$
(2)

The map v on \mathscr{F} is called a *market game*. It is known that a market game is totally balanced and inner continuous at any $S \in \mathscr{F}$. (cf. [4]) We shall treat an open inverse problems concerning market games in Section 3.

2 Berge maximum theorem

In [3], the following inverse problem of Theorem 1 is considered:

Let X be a subset of \mathbb{R}^l and let Y be a convex subset \mathbb{R}^m . Let $K: X \to Y$ be a nonempty compact convex-valued upper semicontinuous correspondence and let $S: X \to Y$ be a compact convex-valued continuous correspondence such that $K(x) \subset S(x)$ for $x \in X$. Then does there exist a continuous function u: $X \times Y \to R$ such that

(i)
$$K(x) = \{y \in S(x) : u(x, y) = \max_{z \in S(x)} u(x, z)\}$$
 for $x \in X$;

(ii) u(x, y) is quasi-concave in y for $x \in X$?

and is obtained the following result:

Theorem 2 Let X be a subset of \mathbb{R}^l . Let $K : X \to \mathbb{R}^m$ be a nonempty compact convex-valued upper semicontinuous correspondence. Then there exists a continuous function $v : X \times \mathbb{R}^m \to [0, 1]$ such that

(i)
$$K(x) = \{y \in \mathbb{R}^m : v(x, y) = \max_{z \in \mathbb{R}^m} v(x, z)\}$$
 for any $x \in X$;

(ii) v(x, y) is quasi-concave in y for any $x \in X$.

It is tried to generalize Theorem 2 to infinite dimensional case and a result is obtained in [5].

For a topological space X and a subset Y of a topological vector space, a correspondence $K: X \to Y$ is said to be σ -selectionable if there exists a sequence $\{K_n\}$ of continuous correspondences $K_n: X \to Y$ with compact convex values such that

- (a) $K_{n+1}(x) \subset K_n(x)$ for any $x \in X$ and any $n \in \mathcal{N}$; and
- (b) $K(x) = \bigcap_n K_n(x)$ for any $x \in X$.

It is known that an upper semicontinuous correspondence $K : X \rightarrow \mathbb{R}^m$, $X \subset \mathbb{R}^l$, with compact convex values is σ -selectionable and hence the following theorem obtained in [5] is a generalization of Theorem 2.

Theorem 3 Let X be a topological space, and Y a metric t.v.s. whose balls are convex, and $K: X \twoheadrightarrow Y$ a σ -selectionable map. Then there exists a continuous function $u: X \times Y \to [0, 1]$ such that

(i)
$$K(x) = \{y \in Y : u(x, y) = \max_{z \in Y} f(x, z)\}$$
 for any $x \in X$; and

(ii) u(x, y) is quasi-concave in y for any $x \in X$.

It is not known that the assumption of σ -selectionability of the correspondence K can be removed or not even in the case that X and Y are subsets of Banach spaces. Thus we have a conjecture:

Conjecture 1 Let X be a subset of a Banach space, Y a Banach space and $K: X \rightarrow Y$ a compact convex-valued upper semicontinuous correspondence. Then there exists a continuous function $u: X \times Y \rightarrow [0, 1]$ such that

(i)
$$K(x) = \{y \in Y : u(x, y) = \max_{z \in Y} f(x, z)\}$$
 for any $x \in X$; and

(ii) u(x, y) is quasi-concave in y for any $x \in X$.

3 Market games

Let $(\Omega, \mathscr{F}, \mu)$ be a finite measure space. A game v is a nonnegative real valued function, defined on the σ -field \mathscr{F} , which maps the empty set to zero. An *outcome* of a game v is a finitely additive real valued function α on \mathscr{F} scuh that $\alpha(\Omega) = v(\Omega)$. For an outcome α of v, an integrable function f satisfying $\int_S f d\mu = \alpha(S)$ for all $S \in \mathscr{F}$ is said to be an *outcome density* of α with respect to μ . An outcome indicates outcomes to each coalitions while an outcome density designates outcomes to every players. The core of v is the set of outcomes α satisfying $\alpha(S) \geq v(S)$ for all $S \in \mathscr{F}$.

To every game v we associate an extended real number |v| defined by

$$v| = \sup\left\{\sum_{i=1}^{n} \lambda_i v(S_i) : \sum_{i=1}^{n} \lambda_i \chi_{S_i} \le \chi_\Omega\right\},\tag{3}$$

where $n = 1, 2, ..., S_i \in \mathscr{F}, \lambda_i$ is a real number. The notation χ_A denotes the characteristic function of a subset A of Ω . For a game v with $|v| < \infty$, we define two games \overline{v} and \hat{v} by

$$\overline{v}(S) = \sup\left\{\sum_{i=1}^{n} \lambda_i v(S_i) : \sum_{i=1}^{n} \lambda_i \chi_{S_i} \le \chi_S\right\}, \quad S \in \mathscr{F},\tag{4}$$

$$\hat{v}(S) = \min \left\{ \alpha(S) : \alpha \text{ is additive, } \alpha \geq v, \ \alpha(\Omega) = |v| \right\}, \quad S \in \mathscr{F}, \quad `(5)$$

following [6]. A game v is said to be balanced if $v(\Omega) = |v|$, totally balanced if $v = \overline{v}$ and exact if $v = \hat{v}$, respectively. It is proved in [6] that the core of a game is nonempty if and only if it is balanced, every exact game is totally balanced, and every totally balanced game is balanced.

A game v is said to be monotone if $S \subset T$ implies $v(S) \leq v(T)$ for any S and T in \mathscr{F} . A game v is said to be inner continuous at S in \mathscr{F} if it follows that $\lim_{n\to\infty} v(S_n) = v(S)$ for any nondecreasing sequence $\{S_n\}$ of measurable sets such that $\bigcup_{n=1}^{\infty} S_n = S$. Similarly, a game v is said to be outer continuous at S in \mathscr{F} if it follows that $\lim_{n\to\infty} v(S_n) = v(S)$ for any nonincreasing sequence $\{S_n\}$ of measurable sets such that $\bigcup_{n=1}^{\infty} S_n = S$. A game v is continuous at S in \mathscr{F} if it is both inner and outer continuous at S.

We denote utilities of players by a Carathéodory type function u defined on $\Omega \times R_+^l$ to R_+ , where R_+^l denotes the nonnegative orthant of the l-dimensional Euclidean space R^l , and R_+ is the set of nonnegative real numbers. The nonnegative number $u(\omega, x)$ designates the density of the utility of a player ω getting goods x. We always use the ordinary coordinatewise order when having concern with an order in R_+^l . We suppose that the function $u: \Omega \times R_+^l \to R_+$ satisfies the conditions:

- 1. The function $\omega \mapsto u(\omega, x)$ is measurable for all $x \in R^l_+$;
- 2. The function $x \mapsto u(\omega, x)$ is continuous, concave, nondecreasing, and $u(\omega, 0) = 0$, for almost all ω in Ω ;
- 3. $\sigma \equiv \sup\{u(\omega, x) : (\omega, x) \in \Omega \times B_+\} < \infty$, where $B_+ = \{x \in R_+^l : \|x\| \le 1\}$, and $\|x\|$ denotes the Euclidean norm of $x \in R_+^l$.

For any set S in \mathscr{F} , the set of integrable functions on S to R_{+}^{l} is denoted by $L_{1}(S, R_{+}^{l})$. We take an element e of $L_{1}(\Omega, R_{+}^{l})$ as the density of initial endowments for the players. For any S in \mathscr{F} , define

$$v(S) \equiv \sup\left\{\int_{S} u(\omega, x(\omega)) \, d\mu(w) : x \in L_1(S, \mathbb{R}^l_+), \ \int_{S} x \, d\mu = \int_{S} e \, d\mu\right\}.$$
 (6)

The set function v defined above is called a *market game* derived from the market $(\Omega, \mathscr{F}, \mu, u, e)$.

The following theorem is proved in [4]:

Theorem 4 The market game defined above is totally balanced and inner continuous at every $S \in \mathscr{F}$.

Every exact game which is continuous at Ω , equivalently inner continuous at Ω , is continuous at every S in \mathscr{F} according to [6], but it is known that a market game is not necessarily continuous at every $S \in \mathscr{F}$. Thus we are interested in the following conjecture as an inverse problem of Theorem 4 to understand the difference between totally balanced games and exact games.

Conjecture 2 A totally balanced game that is inner continuous at any S in \mathscr{F} is a market game, that is, a game derived from a market.

References

- [1] R.J. Aumann and L.S. Shapley Values of Non-Atomic Games. Princeton University Press, Princeton, 1974.
- [2] C. Berge, Espaces Topologique Fonctions Multivoques, Dunod, Paris, 1959
- [3] H. Komiya, Inverse of the Berge maximum theorem, Econ. Th. 9, 371– 375 (1997).
- [4] H. Komiya, A market game with infinitely many players, mimeo (2000).
- [5] S. Park and H. Komiya, Another inverse of the Berge maximum theorem, J. Nonlinear Convex Anal. 2, 105-109 (2001).
- [6] D. Schmeidler, Cores of Exact Games, I, J. Math. Anal. Appl. 40, 214– 225 (1972).
- [7] L.S. Shapley and M. Shubik, On Market Games, J. Econ. Theory 1, 9–25 (1969).