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Abstract. The inflow problem for a one-dimensional compressible viscous gas
on the half line (0,+00) is investigated. The asymptotic stability on both the
viscous shock wave and a superposition of the viscous shock wave and the bound-
ary layer solution is established under some smallness conditions. The proofs
are given by an elementary energy method.

1 Introduction

The inflow problem for a one-dimensional compressible flow on the half-space
R4 is described by the following system in the Fulerian coordinates

pt + (pu)z =0, in Ry xRy,
(pu)s + (pu? + p)z = puss, in Ry x R, (1)
(P, u)|53=0 = (p—’u—)’ u- >0, '

(p’ u)|t=0 = (PO,'U«O) - (p+7u+)’ as I — oo.

Here u(Z,t) is the velocity, p(Z,t) > 0 is the density, p(p) = p” is the pressure,
7 2 1 is the adiabatic constant, u > 0 is the viscosity constant, pi,us are
prescribed constants.We assume the initial data satisfy the boundary condition
as compatibility condition. The assumption u_ > 0 implies that, through the
boundary # = 0 the fluid with the density p_ flows into the region R, and
thus the problem (1.1) is called the inflow problem. In the cases of u_ = 0
and u_ < 0, the problems where the condition p|z—¢ = p_ is removed, are
called the impermeable wall problem, the outflow problem respectively. For
the impermeable wall problem, Matsumura and Nishihara [6] and Matsumura
and Mei [5] have proved the solution to (1.1) tends to the rarefaction wave as
t tends to infinity when uy > u_ = 0 without any smallness conditions, and



the viscous shock wave when u; < u_ = 0 under some smallness conditions.
In the setting of u_ # 0, the problems become complicated and a new wave,
denoted by the boundary layer solution, or BL-solution simply, appears in the
solutions due to the presence of boundary. Matsumura [4] classified all possible
large time behaviors of the solutions in terms of the boundary values. In the
case of u_ < 0, Kawashima and Nishibata [3] showed the asymptotic stability
of the BL-solution. More recently, Matsumura and Nishihara (7] established the
asymptotic stability of the BL-solution and the superposition of a BL-solution
and a rarefaction wave for the inflow problem when (p_,u_) € Qs (see (1.3)
and (1.6)). Shi [8] studied the rarefaction wave case when (p—,u-), (p+,u+) €
quper

However, there has been no result concerning on the viscous shock wave for
both the inflow problem and the outflow one up to now. The main difficulty
is to control the value 1(0,t) (see (3.1)) on the boundary, as pomted out by
Matsumura and Nishihara (7].

In this paper, we concentrate on the viscous shock wave for the inflow
problem. We establish the asymptotic stability on both the viscous shock
wave and a superposition of the viscous shock wave and the BL-solution when
(p—,u—) € Qsup provided the viscous shock profile is far from the boundary
initially, the strength of BL-solution and the initial perturbation are small. The
main novelty of our proofs is to introduce a new variable instead of (z,t) in the
reformulated system in order to overcome the difficulty from the term (0, ).
When the energy method is applied to the new system, the first energy inequal-
ity does not contain the term 1(0,t), if |p_u_| is small. Namely, the estimates
for the term (0,t) could be exactly bypassed. Thus we obtain our desired a
priori estimates. It should be noted that the estimates for the term (0, t) are
also obtained after the stability theorems are established.

We now state our main results. As in |7}, we transform (1.1) to the problem
in the Lagrangian coordinate

ve — g =0, r>s_t,t>0,
u + p(v)z = M(%ﬁ)za z>s_tt>0, 1.9
(v, ) |z=s_t = (v-,u_), , v- = 'plf"u'— >0, (12
(v,u)|t=0 = (vo, uo)(x) — (V4,u4) = (;—t—:,u+), as T — 0o,
where 1 u : .
v=-, s =——<0. - (L3)
p [

We now consider the inflow problem (1.2) above. The characteristic speeds
of the corresponding hyperbolic system without viscosity are

—VPO), =), (14)

and the sound speed c(v) is defined by

c(v) =vy/-p'(v) = \/'71.1‘3;_1. - (1.5)
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Comparing |u| with ¢(v), we divide the (v,u) space into three regions

Qsub = {(v,u)|[u| < c(v),v > 0,u > 0},
Cirans = { (v, u)]|u| = c(v),v > 0,u > 0}, (1.6)
Qsuper = { (v, u)||ul > c(v),v > 0,u > 0}.

We call them the subsonic, transonic and supersonic region respectively. When
(v—,u_) € Qgub, since the first wave speed A1(v-) is less than the bound-
ary speed s_, we can expect a BL-solution which connects (v_,u_) and some
(v4,u4). In fact, by the arguments in [7], such BL-solution exists if (v_, u_) is
on the BL-solution line defined below (1.7). In the phase plane, the BL-solution
line and the 2-shock wave curve through (v_,u_) are defined by

BL(v—,u-) = {(v,u) € Qsup U Ftrans'% = 1—;-: =-s_}, (1.7)
Sa(v—,u-) = {(v,u) € Ry x Ry|u=u_ —s(v—v_),v_ <v}, (1.8)

with s = |/2=)=p() 5

Our main results are, roughly speaking, as follows.
(I) if (v4+,u4) € S2(v_,u_), then the viscous shock wave is asymptotically
stable provided that the conditions of theorem 2.1 hold.

(I1) if (v4,u4) € BLS2(v—,u_), then there exists (¥, ) € BL(v_,u_) such
that (vi,u4) € S2(7,%) and the superposition of the BL-solution connecting
(v—,u-) with (7, @) and the 2-viscous shock wave connecting (7, &) with (v, u.)
is asymptotically stable provided that |v_ — | is small and the conditions of
theorem 2.2 hold. That is, the BL-solution is weak and the shock wave is not
necessarily weak. '

2 Preliminaries and Main Results .

In this section, we first recall the properties of the viscous shock wave. It is well
known that the travelling wave (v,u) = (V;,U,)(n = = — st),s > 0, satisfying
(Vs,Us)(£00) = (v+,u+) exists and is unique up to shift, under the Rankine-
Hugoniot condition

{ s(we—vo)=u_—uy, SRR
(2.1
{ s(uy —u-) = p(vy) — p(v-); : 21)
and the entropy condition
Uy <U_. ' ’ , - " (22)
Namely, (V;, Us) satisfies
_3‘/3, - Us: = O’
U!
-sUL+p(V) = u(gd)s (23)

(Ve, Us)(£00) = (va, us),
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which yields :
Us = —s(Vs — v1) + us,
V! :
__3“‘/ s — 52V, —p(V,) = b=: h(Va), (2.4)
8
%(‘.‘I:OO) = V4,

where b = —s?vy — p(vy). Thus, we have

Proposition 2.1. For any (v4,uy), (v—,u_),s > 0, satisfying vy > v_ >
0,u4 > u_ > 0, and the Rankine-Hugoniot condition (2.1), there exists a unique
shock profile (V3,Us)(n = = — st) up to a shift, which connects (v—,u-) and
('U+,'U,+), and

0 <v_ < V4(n) <vy,uy <Us(n) <u-,

h(V,) > 0, W=Yfﬁs%)>0,

lll .
[Vs(n) — vi] = OQ)|vy — v_le~ M
|Us(n) — us| = O(1)|vy — v_|e—CiIn|

’ 2
asn——»:toowhemci=3¢—|p—(z.f—m>0.

(2.5)

On the other hand, there exists a boundary layer solution of the form
(’U, u) = (Vb’ Ub)(x - S_t) with (%’ Ub)(o) = ('U_, u’—)’ (Vba Ub)(+00) = (‘U+, U+),
if (v_,u_) € Qsup and (v4,u4) € BL(v_,u_) due to Matsumura and Nishihara
[7]. The BL-solution (V,, Us) satisfies

-s_V, -U; =0,
UI
—s_ Uy +p(V)' = ”(V:)I’ (2.6)
(Vb’ Ub)(o) = ('v—’ u—)7 (Vb, Ub)(+0°) = (U+’ u+)
Furthermore, we have

Proposition 2.2.Let (v_,u_) € Qqup, (V4,u4) € BL(v_,u_)()Qub, then
there exists a unique solution (Vj, Up)(n =z — s_t) to (2.6), which satisfies

[Vo(z — s_t) — vy, Up(z — 5-t) —uy| < Cluy — v_|e~cle—s-tl, (2.7)
with some ¢ > 0.
We now make a coordinate transformation, in which we can make the prob-
lem (1.2) easier to handle, by
t=t, £€=x—s_t. (2.8)
Thus, the problem (1.2) becomes
ve —Ss_vg —ug =0, £>0,t>0,
ug — s_ug + p(v)e = #(%)s, £>0,t>0,

(v,u)|e=0 = (v-,u-),
(v,u)lt=0 = (vo, o) — (v4,u+), as & — +oo.

(2.9)
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We consider the case
(v—,u_) € Qsup, (v4,uy) € BLS2(v—,u_). (2.10)

Obviously, the large time behavior of the solutions to (2.9) should be ex-
pected to the superposition of a 2-viscous shock wave and a BL-solution. In this
case, there is (U,4) € BL(v—,u_) such that (v4,us) € S2(9,4). We consider
the situation where the initial data (vo(z),uo(x)) are given in a neighborhood
of (Vp(&) + V(& — B) — 1, Up(€) + Us(€ — B) — 1) for some large constant 3 > 0.
Namely, we ask the viscous shock wave is far from the boundary initially. The
next question is how to determine the shift a such that the solution (v,u) to
(2.9) is expected to tend to (V(§) + Vs(§ — (s —s-_)t+a—B) —0,Us(&) + Us (€ —
(s—s-)t+a— ) —a). It is known that determining the shift « is difficult even
for the scalar viscous conservation laws. Fortunately, Matsumura and Nishihara
[7] have shown how to determine the shift o for the system (2.9). Their results
are

a= vo(ﬁ) Vb (§) — V(€ — B) + v]d€
(2.11)
(s—s- / [Vs(( B) — vldt}.
and
/ (. t) - V(E o B)lde
(s —s_ )/ (Vs((s= — )T+ a— B) — v)dr, (2.12)
— 0 ast — o0, .
where
V(g ta,B) = W(§) +Vs(§ - (s—s-)t+ta—p) -7 (2.13)
Let ‘
U(é,t;0,8) = Up(€) + Us(€ — (s — s )t +a — B) — 4. (2.14)

To state our main theorems, we suppose that for some 8 > 0,
vo(€) — V(£,0;0,8) € H' n LY, wuo(€) —U(E,0;0,8) € H' nL',  (2.15)
and suppose the compatibility condition
vo(0) = v—, uo(0) =u_, (2.16)

holds. Setting

Assume that
(®o, ¥o) € L2 (2.18)

We now give our main results.
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Theorem 2.1. Suppose that1l < v < 3, (v—,u_) € Qgup, (v4,u4) € So(v-,u_),
with u_ > 0,5 > 0. Assume that (2.15),(2.16) and (2.18) hold and

(v — 1)*(vy —v-) < 2yv_. (2.19)

Then there ezists a positive constant 6y depending on v_ and v,. For any given
0 <u_ =0 < do, there is a positive constant 9(8), such that if

||®o, Toll2 + 7P < £o(8), (2.20)

then (2.9) has a unigue global solution (v,u)(,t) satisfying

v(€,t) — V(& t; 0, 8) € C°([0,00), H') N L?(0, 00; HY), (2.21)

u(&,t) — U(&, t;a, B) € C°([0,00), H') N L2(0, 00; H?), (2.22)
and

Sup |(v,u)(€,t) — (V,U)(&, 8, 8)| — 0, as t — +oo, (2.23)

where a = a(fB) is determined by (2.11).

Theorem 2.2. Suppose that1 <y < 3, (v_,u-) € Quup, (v4+,uy+) € BLSa(v_,u_)

withu_ > 0.Then there exists (v, @) such that (v,4) € BL(v_,u_) and (v4,uy) €
S2(v,u). Assume that (2.15),(2.16) and (2.18) hold and

(v = 1)*(v4 — 9) < 270 (2.24)

Then there exists a positive constant 8o depending on v_ and vy. For any given
0 <u- =6 < do, there exist positive constants €9(8) and £1(d), such that if

||®o, ollz + e~°-P < £o(6), (2.25)
lv- — 7| < £1(9), (2.26)
then (2.9) has a unique global solution (v,u)(€,t) satisfying '
v(€,t) — V(& t; 0, 8) € C°([0,00), H!) N L%(0, 00; HY), (2.27)
u(é,t) — U, t;a, B) € C°([0,00), H') N L?(0, 00; H?), (2.28)
and '
Esel;gl(v,U)(&t) ~ (V,U)(€ t;a, B)] — 0, as t — oo, (2.29)

where a = a(B) is determined by (2.11).
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3 Main proofs

In this section, we focus our attention on the case (I), i.e. (v_,u_) € Sa(v_,u_)
because the case (II) can be treated by the same line although the proof is more
complicated. In this case, (V,U)(&,t;a, 8) = (Vs,Ug) (€ — (s —s-)t+a—3). Let

B(6,1) = — /‘E o, 6) - V(s , B)] dy,

" (3.1)
¢(§at) = _L [U(y,t) - U(y’t)aw@)]dyv

which means we seek the solution (v,u)(£,t) in the form

v(€,t) = de(£,t) + V(& 10, B), - (3.2)
u(é,t) = e(€,t) + Ut 0, B). 9

Substituting (3.2) into (2.9), and integrating the system on [£, +00) with respect
to &, we have

¢t —s_dpe — e =0, in Ry x Ry,

Y — s-we +p(V + ¢¢) —p(V) o (3.3)
= [_U_l_+_¢55_21.] in Ry xR | .
V+ o U

By (3.1), the initial data satisfy

) . pto0
b(€,0) = - /£ [o0(y) — V(3,03 @, B)ldy
=20+ | V@008 -V 00,8)dy (34)
= @) + [ Tor = V(E+0- B)ldo=: 9n(e),

+o00
BE0) = - /E uo(y) — U(y, 0; o, B)|dy
— (e + /E TV 0 B) - Uy, 0:0,dy  (35)
~ %)+ | “luy — UE + 06— B)ldo=: po(e).

Furthermore, we have

Proposition 3.1. (see [1]) Under the assumptions (2.15), (2. 16) and (2.18),
the initial perturbations (¢o, o) € H? and satisfies

10, %0)ll2 = 0 as ||<¢o;wo>||2So<TB) and B — +oo.  (3.6)
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By (2.11) and (2.12), the boundary data satisfy

+00 ‘
¢mn=—[ (. 1) — V(. t; o B)ldy

=) [V~ ra-p vy, OD
¢
=: A(?),
¥e(0,t) =u(0,t) — U(0,tc, B)
=u_—U((s- — s)t + a = f) (3.8)

=A'(t) +s5_(V((s- — s)t + a— B) —v_).

It is noted that if (3.7) and (3.8) hold, then ¢(0,t) = v— — V(0,¢; a, B)
automatically holds by the equation(3.3). Hence we regard (3.8) as a Neumann
boundary condition. We now rewrite the system (3.3) in the form

([ ¢t — 5_¢p¢ — e =0, in R, x Ry,
'/)t—S—d)e—f(V)d’e—%tbse =F, in R, x Ry,
\ (8,9)],_o= (0, %0), (3.9)
Ple=o = A(t),
\ 1/’€|g=0= Aty +s-(V(-(s—s-)t+a-p)—v-),

here Vi RV)—p(V)V _ K(V
f(V)=—p’(V)+“‘s/2 _ M )—‘f’ WV _ ‘(,), (3.10)

F=—{p(V +¢¢) —p(V) — zl)'(V)¢e}

(e + (Vo) (v — 3). (311)
For any i;lterval I C R4, we define the solution space X(I) by
X(I)={ (¢,9) € CO; H?);¢¢ € L*(I; H"),
ve € LX(I, H?),sup | (9, ¥)(D)ll2 < ex}, (3.12)
where €1 = Jv_. Let
N(t) = ingt(IM(T)IIz +11%(7)ll2), No = lidoll2 + llvboll2- (3.13)

By the Sobolev embedding theorem, for (¢,v) € X([0,T]), one obtains

1
(V+¢e)(§:1) 2 v- = llgellr 2 Sv-, (§,1) € Ry x [0,T],
which ensures that the system (3.9) is uniformly nonsingular on [0, T], and ~

|F| = O(|oe|® + ¢l - 1vbee))- (3.14)



Proposition 3.2.(Local Ezistence). For any T > 0, consider the problem

¢t_3 ¢§_w§=0 in%+x[7’,00),
Ve —s_tpe — f(V)ge — —weg in R4 x [, 00),
o) ¢ w 't ¢T,w-r) € H2 o (3_15)
| Ple=o = A(t), o - t>7,
| Yeleo=F(8) = A'(t) + s (V(0,t;0,8) —v_), t>T,

subject to the compatibility condition ¥¢(0,7) = f(7). Then there exists a pos-
wtive constant Cp independent of T such that: For any € € (0, %})—] and B > 1,
there exists a positive constant Ty depending on € and 3 but not on T such that,
i (¢r,¥r)ll2 < €, and sup,o(If(¢)| + | f'()]) < &, then the problem (3.15)
has a unique solution (¢,v) € X([r,T + To)) satisfying ||(¢,¥)(t)||2 < Coe for
t €[r,7+ Ty

By using the standard way, such as Leray-Schauder’s fixed-point theorem,
Proposition 3.1 can be easily verified, we omit the proof here.
We now give the a priori estimates. The complete proof can be found in [1].

Proposition 3.3. (A Priori Estimates). There exists a positive constant &g
such that, for any given 0 < u_ = § < &, there exists a positive constant 6(6)
(61 < €1) such that if (¢,¢) € X([0,T)) is a solution of (3.9) for some positive
T and N(T) < 61, then ($,v) satisfies the a priori estimates

lI(#, ¢)(t)||§+/0 {lige(T)II3 + e ()13} dr < 0(5)(II(¢0,1/)0)’|I§+¢_°‘”), (3.16)

/ | NI+ 1 H?/)f(f)ll IdT<C(5)(H(¢0>¢o)l|2+e_° ). (@317

Theorem 3.1. Suppose that the assumptions of theorem 2.1 hold. Then there
exists a positive constant £o(8), such that if (2.19) and (2.20) are satisfied, then
the initial-boundary value problem (3.9) has a unique global solution (¢,1) €

X ([0, +00)) satisfying inequalities (3.16) and (3.17) for any t > 0. Moreover,
the solution is asymptotzcally stable

gsurJ (e, $e) (€. 1) — 0, ast— +00.

Proof. From Proposition 3.2 and Proposition 3.3, we get the existence of a
unique global solution (¢,9) € X([0,+400)) satisfying inequalities (3.16) and
(3.17) for any ¢ > 0, provided that ||(¢o, 10)||2 and 3! are chosen small enough.
Furthermore, ||(¢¢¢,%ee)(t)|| is uniformly bounded over [0, +00) due to (3.16).
By the Sobolev embedding theorem, we obtain

Sup |(Be: ¥e) (& )17 < 2{lIge D)l pee (| + e (Ol 1ee ()} — O,
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as t — +o00. This completes the proof of Theorem 3.1.

Proof of Theorem 2.1. From Theorem 3.1, Theorem 2.1 is obtained at once.
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