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1 Introduction and Main Result

We discuss the nonlinear half-space problem of the Boltzmann equation with the
Dirichlet boundary condition at the boundary and with agiven Maxwellian at in-
finity, which arises in the theory of the kinetic boundary layer, the analysis of the
condensation-evaporation and so on[4], [12].

The linearized problem has been studied by many authors $[2],[5],[6],[7]$ , mainly in
the context of the classical Milne and Kramers problems. Thus, boundary fluxes are
specified as auxiliary conditions. In [8], an existence theorem was established for the
nonlinear case with the specular boundary condition and the method of proof does
not apply to other boundary condition including the Dirichlet condition. Recently,
nonlinear existence and stability theorems have been established for the discrete
velocity model of the Boltzmann equation [10], [垣], [13]. In this paper, we present
the first existence theorem on the full nonlinear problem. Our method provides also
anew aspect of the linearized problem (Remark 15and \S 3 below).

It should be noted that K. Aoki, Y. Sone and their group, $(\mathrm{c}.\mathrm{f}$ . [1], [12] $)$ , made an
extensive numerical computation on the nonlinear problem and have observed that
the existence of solutions depends strongly on the choice of Maxwellians specified
for the fi『 field. Our result gives apartial proof of their numerical results (Remark
16).

Thus, we consider agas filled in the half-space $\mathbb{R}_{\neq}^{3}$ . Take the $x$ -axis to be
orthogonal to the boundary so that the boundary is the plane $x=0$ and that the
half-space extends for $x>0$ . Then, our problem is,

(1.1) $\{F|_{x=0}\xi_{1}F_{x}F==arrow Q(F,,F)F_{0}(\xi)M_{\infty}(\xi),(xarrow\infty),\xi\in \mathbb{R}_{+}^{3}\xi\in \mathbb{R}^{3}x\in(0,.’\infty),\xi\in \mathrm{R}^{3}$

Here, $F=F(x, \xi)$ is the unknown which describes the mass density distribution of
gas particles at position $x\in(0, \infty)$ with velocity $\xi=(\xi_{1}, \xi_{2}, \xi_{3})\in \mathbb{R}^{3}$ where $\xi_{1}$ is
the component along the $\mathrm{x}$-axis. $Q$ is the collision operator defined by aquadrati$\mathrm{c}$
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(1.2) $Q(F, G)= \int_{\mathbb{R}^{3}\mathrm{x}S^{2}}(F(\xi’)G(\xi_{*}’)-F(\xi)G(\xi_{*}))q(\xi-\xi_{*}, \omega)d\xi_{*}d\omega$,

with

(1.3) $\xi’=\xi-[(\xi-\xi_{*})\cdot \mathrm{r}\mathrm{v}]$ $\omega$ , $\xi_{*}’=\xi_{*}+[(\xi-\xi_{*})\cdot\omega]\omega$ ,

where “.” is the inner product of $\mathbb{R}^{3}$ . We restrict ourselves to the hard sphere gas
for which the collision kernel $q$ is given by

(1.4) $q(\zeta, \omega)=\sigma_{0}|\zeta\cdot\omega|$ ,

where $\sigma_{0}$ is the surface area of the hard sphere. Here we shall recall two classical
properties of $Q$ which are needed later. See [3], [4] for details.
(i) $Q(F)=0$ if and only if $F$ is aMaxwellian,

(1.5) $M[ \rho, u, T](\xi)=\frac{\rho}{(2\pi T)^{3/2}}\exp(-\frac{|\xi-u|^{2}}{2T})$ ,

which describes an equilibrium state of agas with the mass density $\rho>0$ , flow
velocity $u=(u_{1}, u_{2}, u_{3})\in \mathbb{R}^{3}$ and temperature $T>0$ .
(ii) Afunction $\phi(\xi)$ is called acollision invariant of $Q$ if

($, $Q(F)\rangle=0$ for all $F$,

$\langle$ , $\rangle$ being the inner product of $L^{2}(\mathbb{R}^{3})$ . $Q$ has five collision invariants

(1.6) 1, $\xi_{i}(i=1,2,3)$ , $|\xi|^{2}$ .

The second equation in (1.1) is the Dirichlet boundary condition. The Dirichlet
data $F_{0}(\xi)$ can be assigned only for incoming particles, i.e. for $\xi_{1}>0$ , but not for
all $\xi\in \mathbb{R}^{3}$ . Otherwise, the problem becomes over-determined and hence ill-posed,
as seen from the estimates of solution derived in the next section.

In the third equation of (1.1), we specify astate $M_{\infty}(\xi)$ for all $\xi\in \mathbb{R}^{3}$ at $x=\infty$ .
Clearly, $M_{\infty}$ cannot be specified arbitrarily but must be azero of $Q$ , and hence a
Maxwellian. Thus, we must take

$M_{\infty}=M[\rho_{\infty}, u_{\infty}, T_{\infty}](\xi)$ ,

and $\rho_{\infty}>0$ , $u_{\infty}=(u_{\infty,1}, u_{\infty,2}, u_{\infty,3})\in \mathbb{R}^{3}$ , and $T_{\infty}>0$ are the only quantities which
we can control. By ashift of the variable 4in the direction orthogonal to the x-axis
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we can assume without loss of generality that $u_{\infty,2}=u_{\infty,3}=0$ , and then, the sound
speed and Mach number of this $\mathrm{e}\mathrm{q}\mathrm{u}$ ihbrium are given by

(1.7) $c_{\infty}=\sqrt{\frac{5}{3}T_{\infty}}$ , $\mathrm{M}^{\infty}=\frac{u_{\infty 1\prime}}{c_{\infty}}$ ,

respectively, see [4]. We will see that the Mach number $\mathrm{M}^{\infty}$ provides significant
changes on the solvability of our problem (1.1). Indeed, since our boundary condition
at $x=\circ \mathrm{o}$ is specified for all $\xi$ , it is over-determined, and as aconsequence, (1.1)

may not be solvable unconditionaly. Actually, we $\mathrm{w}\mathrm{i}\mathrm{U}$ show that the number of
solvability conditions changes with the Mach number $\mathrm{M}^{\infty}$ . To state this precisely,
set

(1.8) $n^{+}=\{\begin{array}{l}0,\mathrm{M}^{\infty}<-11,-1<\mathrm{M}^{\infty}<04,0<\mathrm{M}^{\infty}<15,1<\mathrm{M}^{\infty}\end{array}$

and introduce the weight function

(1.9) $W_{\beta}(\xi)=(1+|\xi|)^{-\beta}(M[1, u_{\infty}, T_{\infty}](\xi))^{1/2}$ ,

with $\beta\in \mathbb{R}$ . Our main result is

Theorem 1.1 Given $\rho_{\infty}>0$ , $u_{\infty,1}\in \mathbb{R}$ , and $T_{\infty}>0$ , suppose $\mathrm{M}^{\infty}\neq 0,$ $\pm 1$ .
Furthermore, let $\beta$ $>3/2$ . Then, there exiSt positive numbers $\epsilon 0$ , $\sigma$ , $C0$ , and a $C^{1}$

map

(1.10) $\Psi$ : $L^{2}(\mathbb{R}_{+}^{3})arrow \mathbb{R}^{n+}$ , $\Psi(0)=0$ ,

and the folloing holds.

(i) For any $F_{0}$ satisfying

(1.11) $|F_{0}(\xi)-M_{\infty}(\xi)|\leq\epsilon_{0}W_{\beta}(\xi)$ , $\xi\in \mathbb{R}_{+}^{3}$ ,

and

(1.12) $\Psi(F_{0}-M_{\infty})=0$ ,

the problem (1.1) has a unique solution $F$ in the class

(1.13) $|F(x, \xi)-M_{\infty}(\xi)|+|\xi_{1}F_{x}(x, \xi)|\leq C_{0}e^{-\sigma x}W_{\beta}(\xi)$ , $x\in(0, \infty)$ , $\xi\in \mathbb{R}^{3}$ .

(ii) The set of $F_{0}$ satisfying (1.11) and (1.12) forms $a$ (local) $C^{1}$ manifold of
codimension $n^{+}$ .
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Remark 1.2 The cases $\mathrm{M}^{\infty}=0,$ $\pm 1$ are not included in the theorem.

Remark 1.3 We put $\mathbb{R}^{n}+=\emptyset$ when $n^{+}=0$ . Thus, the condition (1.12) is void for
the case $\mathrm{M}^{\infty}<-1$ .

Remark 1.4 Given afar field $M_{\infty}$ , (1.11) is asmallness condition on the deviation
of $F_{0}$ from $M_{\infty}$ whereas (1.12) gives restrictions on $F_{0}$ however small it may be.
Thus, our theorem says that the problem (1.1) is solvable unconditionally for any
$F_{0}$ sufficiently close to $M_{\infty}$ if $\mathrm{M}^{\infty}<-1$ , but otherwise not. Aphysical explanation of
this is that if the far flow is supersonic and incoming to the boundary $(\mathrm{M}^{\infty}<-1)$ ,
then any phenomena near the boundary cannot affect the far field while if it is
subsonic or outgoing, some of phenomena near boundary can propagate to infinity
and affect the far field.

Remark 1.5 Asimilar theorem holds for the linearized problem of (1.1) at the far
Maxwellian $M_{\infty}$ . In this case, the map $\Psi$ becomes linear of deficiency $n^{+}$ , that is,
the set of admissible boundary data is just the orthogonal compliment of an $n^{+}$

dimensional (linear) subspace. This gives anew aspect of the linearized problem
different from that in $[2],[5],[6],[7]$ . See \S 3 below.

Remark 1.6 The numerical computation in [12] and the references therein deals
with (1.1) with $F_{0}$ fixed to be the standard Maxwellian $M[1,0,1](\xi)$ , and shows that
the set of points $(\rho_{\infty}, u_{\infty,1}, T_{\infty})\in \mathbb{R}^{3}$ which admit smooth solutions connecting $F_{0}$

and $M_{\infty}$ is aunion of athree-dimensional subdomain of the domain $\mathrm{M}^{\infty}<-1$ and
atw0-dimensional surface in $0<\mathrm{M}^{\infty}<-1$ whereas no solutions exist for $\mathrm{M}^{\infty}>0$ .
Our theorem agrees with this for the case $\mathrm{M}^{\infty}<0$ , but not for $\mathrm{M}^{\infty}>0$ . Probably
$F_{0}=M[1,0,1]$ may not satisfy the solvability condition (1.12) if $\mathrm{M}^{\infty}>0$ .

Remark 1.7 The stability of the stationary solutions obtained in Theorem 1.1 is
an important issue. In our forthcoming paper, we will show their exponentially
asymptotic stability for the case $\mathrm{M}^{\infty}<-1$ .

2Outline of the Proof

Our proof relies on the analysis of the corresponding linearized problem at $M_{\infty}$ . We
will look for the solution of (1.1) in the form

(2.1) $F(x, \xi)=M_{\infty}(\xi)+W_{0}(\xi)f(x, \xi)$ ,

where $W_{0}$ is $W_{\beta}$ of (1.9) with $4=0$. Then, the problem (1.1) reduces to

(2.2) $\{\begin{array}{l}\xi_{1}f_{x}-Lf=\Gamma(f)f|_{x=0}=a_{0}(\xi)farrow 0(xarrow\infty)\end{array}$ $\xi\in \mathbb{R}^{3}\xi\in \mathbb{R}_{+}^{3}x\in(0,,’\infty)$

, $\xi\in \mathbb{R}^{3}$ ,
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$Lf=W_{0}^{-1}[Q(M_{\infty}, W_{0}f)+Q(W_{0}f, M_{\infty})]$ ,

$\Gamma(f)=W_{0}^{-1}Q(W_{0}f, W_{0}f)$ ,

$a_{0}=W_{0}^{-1}(F_{0}-M_{\infty})$ .

The operator $L$ is linear while the remainder $\Gamma$ is quadratic.
There are two ingredients in our proof. One is to add a“damping” term con-

structed as follows. Denote by $N$ the space spanned by the collision invariants (1.6)

weighted by $W_{0}$ ,

(2.3) $N=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{W_{0}(\xi)$ , $W_{0}(\xi)\xi_{\dot{l}}(i=1,2,3)$ , $W_{0}(\xi)|\xi|^{2}\}$ ,

which we regard as a5-dimensional subspace of $L^{2}(\mathbb{R}^{3})$ . Let $N^{[perp]}$ be the orthogonal
compliment of $N$ and let

$P_{0}$ : $L^{2}(\mathbb{R}^{3})arrow N$ , $P_{1}$ : $L^{2}(\mathbb{R}^{3})arrow N^{[perp]}$ ,

be the orthogonal projections. Define the operator

(2.4) $A=P_{0}\xi_{1}P_{0}|_{N}$ .

$A$ is alinear bounded self-adjoint operator on $N$ and its eigenvalues are

(2.5) $\lambda_{1}=u_{\infty,1}-c_{\infty}$ , $\lambda_{:}=u_{\infty,1}(i=2,3,4)$ , $\lambda_{5}=u_{\infty,1}+c_{\infty}$ .

Notice that $n^{+}$ of (1.8) is the number of positive $\lambda_{:}$ ’s and denote by $P_{0}^{+}$ the eigen-
projection for them. With this, we now modify (2.2) as

(2.6) $\{\xi_{1}f_{x}-Lf=f|_{x=0}=farrow\Gamma(f),-\gamma P_{0}^{+}\xi_{1}fa_{0}(\xi)0(xarrow\infty),,x\in(0,,\infty)\xi\in \mathbb{R}_{+}^{3}\xi\in \mathbb{R}^{3},,\xi\in \mathbb{R}^{3}$

with apositive constant $\gamma$ to be determined later. Note that for the case $\mathrm{M}^{\infty}<-1$ ,

we have $n^{+}=0$ and hence $-\gamma P_{0}^{+}\xi_{1}f=0$ , giving no modification to (2.2), but
otherwise it has agood sign on the positive eigenspace $P_{0}^{+}N$ .

Another ingredient is to introduce an exponential weight function in $x$ , which is
used to get adefinitive estimate on the negative eigenspace $(1-P_{0}^{+})N$ . Thus, put

(2.7) $f=e^{-\sigma x}g$ ,

with aconstant $\sigma>0$ to be determined later. Then, (2.6) becomes

(2.8) $\{\xi_{1}g_{x}-\sigma\xi_{1}g-Lg=g|_{x=0}=garrow a_{0}(\xi)h-\gamma,P_{0}^{+}\xi_{1}g0(xarrow\infty),’ x\in(0,,\infty)\xi\in \mathbb{R}_{+}^{3}\xi\in \mathbb{R}^{3},,\xi\in \mathbb{R}^{3}$
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(2.9) h $=e^{-\sigma x}\Gamma(g)$ .

The new $\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}-\sigma\xi_{1}g$ comes from the weight function in (2.7). Seemingly, this has
not agood sign, but we can choose $\gamma$ , $\sigma>0$ so that the $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-\sigma\xi_{1}+\gamma P_{0}^{+}\xi_{1}$

has agood sign on the space $N$ if $\mathrm{M}^{\infty}\neq 0,$ $\pm 1$ .
If $h$ is assumed agiven function but not defined by (2.9), (2.8) is alinear prob-

lem. Using the good sign of the above mentioned linear combination, we can easily
establish an $L^{2}$ energy estimate for this linear problem.

Proposition 2.1 Any smooth solution $g$ of the linear problem (2.8) satisfies
(2.10) $<|\xi_{1}|g^{0}$ , $g^{0}>-+||(1+|\xi|)^{1/2}g||^{2}\leq C_{0}(<\xi_{1}a_{0}, a_{0}>++||h||^{2})$ ,

where $g^{0}=g|_{x=0}$ and $C_{0}$ is a positive constant independent of $a_{0}$ and $h$ while
$<\cdot$ , $\cdot>\pm and||\cdot||$ are the inner products of $L^{2}(\mathbb{R}_{\pm}^{3})$ and the norm of $L^{2}((0, \infty)\cross \mathbb{R}^{3})$ ,
respectively.

This is enough to construct the solution. First, the same estimate can be de-
rived for the adjoint problem to the linear problem (2.8), which then enable us,
together with the Hahn-Banach theorem and Riesz representation theorm, to show
the existence of weak $L^{2}$ solutions to the linear problem (2.8). Furthermore, tak-
ing suitable test functions, we can prove the “weak$=\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}$ ”theorem, and thus get
strong solutions satisfying the estimate (2.10).

Moreover, starting from this estimate and using the the bootstrap argument,
we can get the $L^{\infty}$ estimate, that is, (2.10) with all the $L^{2}$ norms replaced by $L^{\infty}$

norms.
Now, the contraction argument allows us to construct $L^{\infty}$ solutions of the non-

linear problem (2.8) with (2.9) for sufficently small boundary data $a_{0}$ .
In the case $\mathrm{M}^{\infty}<-1$ , this gives the solutions to $(2,2)$ and hence to the original

problem $(1,1)$ . For the case $\mathrm{M}^{\infty}>-1$ , it is clear that if the solution $g$ to (2.8) thps
obtained satisfies

(2.11) $P_{0}^{+}\xi_{1}g=0$ ,

it is also asolution of the original problem without the extra damping term. We
can show that the condition (2.11) reduces to

(2.12) $P_{0}^{+}\xi_{1}g|_{x=0}=0$ .

Clearly, $g$ and hence $g|_{x=0}$ as well is determined uniquely by the boundary data $a_{0}$

and so is the right hand side of (2.12). Put

(2.13) $\Psi(a_{0})=P_{0}^{+}\xi_{1}g|_{x=0}$ .
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Identifying the space $P_{0}^{+}N$ with $\mathbb{R}^{n^{+}}$ , we can show that this is a $C^{1}$ map as

(2.14) $\Psi$ : $L^{2}(\mathbb{R}_{+}^{3},\xi_{1}d\xi)arrow \mathbb{R}^{n^{+}}$ ,

with $\Psi(0)=0$ . Moreover, we can show, using the implicit function theorem, that

the set of ao’s such that $\Psi(a_{0})=0$ is a $C^{1}$ manifold of codimention $n^{+}$ , whence

Theorem 1.1 follows. The detail will be given elsewhere.

3 ARemark on the Linearized Problem

The linearized problem of (1.1) at $M_{\infty}$ is just (2.2) with the term $\Gamma(f)$ dropped;

(3.1) $\{\xi_{1}f_{x}-Lff|_{x=0,f},=0=a_{0}’(\xi)arrow 0(x’arrow\infty),x\in(0,,\infty)\xi\in \mathbb{R}_{+}^{3}\xi\in \mathbb{R}^{3},,\xi\in \mathbb{R}^{3}$

This problem has been solved in $[2],[5],[6],[7]$ , but specifing some of boundary fluxes.

In addition to this auxiliary condition, the solutions obtained there do not converge

to 0 at $x=\infty$ but to an element of the space $N$ of (2.3), and moreover, the proofs

do not tell us how to determine the limit element.
Our argument in \S 2 applies also to this linearized problem and gives solutions

which tend to 0at $x=\infty$ . We have only to solve (2.8) with $h=0$ and to note that

the map $\Psi$ of (2.14) is linear for this case. Then, in virtue of the Riesz representation
theorem, there exist $r:\in L^{2}(\mathbb{R}_{+}^{3}, \xi_{1}d\xi)$ , $i=1,2$ , $\cdots$ , $n^{+}$ such that

$\Psi(a_{0})=(<\xi_{1}r_{1}, a_{0}>+, <\xi_{1}r_{2}, a_{0}>+, \cdots, <\xi_{1}r_{n}+, a_{0}>+)$ .

Put $R=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{r_{1},r_{2}, \cdots, r_{n}+\}$ . Then, we conclude

Theorem 3.1 For any $a_{0}\in R^{[perp]}$ , the linearized problem (3.1) has a unique $L^{2}$ solu-
tion of the form f $=e^{-m}g$ with g satisfying the estimate (2.10) for h $=0$ .
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