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On the steady flow of compressible viscous fluid
and its stability with respect to initial disturbance

Rk BT MHYP ¥ (Koumei TANAKA)
Department of Mathematical Sciences, Waseda Univ.

1 Introduction

The motion of a compressible viscous isotropic Newtonian fluid is formulated by the following
initial value problem of the Navier-Stokes equation for viscous compressible fluid:

pe+ V- (pv) = G(z),
v+ (v-V)v= %Av + I—‘-i’;i’V(V- v) — —V—%@ + F(z), (1.1)

(p,v)(0,z) = (p0, v0)(2),

where t > 0, z = (21, T2, z3) € R%; p = p(t,z) (> 0) and v = (n1(¢, z), v2(t, =), v3(t, z)) denote
the density and velocity respectively, which are unknown; P(:) (P’ > 0) denotes the pressure;
p and y' are the viscosity coefficients which satisfy the condition: pu > 0 and g’ +2u/3 > 0;
F(z) = (Fi(z), F2(z), F3(z)) is a given external force and G(z) is a given mass source. The
stationary problem corresponding to the initial value problem (1.1) is

{ V- (pv) = G(z),

(v-V)z) = %Av + ’_‘l;—"-'v(v.v) _v (1;(0)) +F(z), (1.2)

where £ = (1,2, 23) € R%; p = p(z) (> 0) and v = (v1(z), v2(), v3(z)) are unknown functions;
F(z), G(z) and the other symbols are the same as in (1.1). In this note, we consider the case
where the external force F is given by following form:

F=V-F+F, (1.3)

where F; = (F1,:j(2))1<i,j<3 and Fp = (Fa,4(T))1<i<3-
Before stating our results, we introduce some function spaces. Let Ly denote the usual L,
space, .%' the set of all tempered distributions both on R3. We put

H* = {4 € Lyjee | Iulle <00} = {ue.s | |F7A+ KDl < oo},
A* = {u€ Lo | Vue B}, flull = lullza, llulle = 5o 190l
and furthermore for short we use the notation:
Hkt = {(o,v) | o€ H* ve H'}, okt = {(o,v) | o€ H* ve A},
HIRL — { (o,v,w) | cecHi veH" we H‘},
(o, 0)llke = liolle + llvlle,  ll(o, v, w)lljke = llolls + ol + llwlle.

This note is based on a joint work with Prof. Y. Shibata, Department of Mathematical Sciences, Waseda
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Definition 1.1
F={oc B | ollx<e}, JE={ue | olp<e},

where

Ilzs = llolzac+ | 25|+ She N1+ el 9ol + 11+ fal ol

T v - : X
Ioll g = olza-+ [ ]|+ X8ms 12+ el 1070 + 552 _g 10 + fa)*+ 97l

Moreover we put
IEt={(o,v) | o e IF, ve JE),
IRt = {(o,v) € #¥* | V-v=V-V1+Vy for some Wi, V3
such that ||(1+ |2])*VillLe+ (1 + |2) " Vall, < €},
(o, V)llpre = lloll e+ vl ye.

The first theorem is about the existence of stationary solution for (1.2) and its weighted-Lo,
Lo, estimates.

Theorem 1.1 Let p be any positive constant. Then, there erist small constants ¢y > 0 and
€ > 0 depending on p such that if (F,G) satisfies the estimate:

v=0 L+ [2) IV Fll + |1 + 2] Fll oo+ (1 + |22 Fi | Lot |1 Fall,
HIL+ 2Dl + oy 11 + eV Gl|
+ 200 1+ [2)* 2V Gl Lo+ 11 + |2]) 2G|, < coe,
then (1.2) admits a solution of the form: (p,v) = (p + o,v) where (o,v) € I35, Furthermore

the solution is unique in the following sense:

There exists an €; with 0 < €; < € such that if (p+01,v1) and (p+02,v2) satisfy (12)
with the same (F, G), and ||(o1,v1)|| g3.4, [|(01,v1) || s34 < €1, then (a1,v1) = (02, v2).

Next we consider the stability of the stationary solution of (1.2) with respect to initial
disturbance. Let (p* v*) be a solution of (1.2) obtained in Theorem 1.1. The stability of (p* v*)
means the solvability of the non-stationary problem (1.1). Let us introduce the class of functions
which solutions of (1.1) belong to.

Definition 1.2 ‘
€(0,T; 5£5%) = {(o,v) | o(t,z) € C°(0,T; H*) n C*(0,T; H*?),
| w(t,z) € C°(0,T; HY) n CY(0,T; H*?)}.

Then, we have the following theorem.

Theorem 1.2 There exist C > 0 and § > 0 such that if ||(po — p*,v0 — v*)|l3,3 < & then (1.1)
admits a unique solution: (p,v) = (p*+0,v*+w) globally in time, where (o, w) € €(0, 00; H#33),
Vo, wy € Ly(0,00; H?), Vw € Ly(0,00; H3). Moreover the (o, w) satisfies the estimate:

i
)@+ [ 190, Y, w)(e)B52ds < Clltoo = 00— )5 (1)

for anyt > 0.
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Remark 1.1 When Theorem 1.2 holds, we shall say that the stationary solution (p*,v*) of
(1.2) is stable in the H3-framework with respect to small initial disturbance.

Matsumura and Nishida [4] first proved the stability of constant state (p,0) in H3-framework
with respect to initial disturbance, namely they proved Theorem 1.2 in the case where (p* v*) =
(5, 0). When the external force is given by the potential: F = —V®, F; =G =0in (1.2) and
(1.3) where ® is a scalar function, the stationary solution (p* v*)(z) of (1.2) in a neighborhood
of (5, 0) in %2 has the form:

/p‘(z) P(n) dn+ ®(z) =0, v*(z)=0.
p n

In this case, Matsumura and Nishida [5] proved the stability of (p*(z),0) in the H 3_framework
with respect to initial disturbance in an exterior domain.

The purpose of this note is to consider the case where the external force is given by the
general formula (1.3) and also mass source G appears. In this case, the stationary solution
(p*,v*)(z) is non-trivial in general, especially v* # 0. We are interested only in strong solutions.
Then, when F is small enough in a certain norm and G = 0, Novotny and Padula [6] proved
a unique existence theorem of solutions to (1.2) in an exterior domain. In their proof, they
decomposed the equations into the Stokes equation, transport equation and Laplace equation.
Since we consider the problem in R3, that is, the boundary condition is not imposed, we can solve
(1.2) without any such decomposition technique. In fact, in §2, we establish the corresponding
linear theory to (1.2) in the L,-framework by the usual Banach closed range theorem, after
obtaining some weighted-L estimates for solutions.

The stability of the stationary solutions (p* v*)(z) of (1.2) in H 3_framework has not been
studied yet. As we stated in Remark 1, Theorem 2 tells us the stability of stationary solutions
(p%,v*)(z) in H3-framework. The main step of our proof of Theorem 2 is to obtain a priori
estimate for solutions of (1.1) as usual. In §3, we shall obtain a priori estimates by choosing
several multipliers and using the integration by parts. Compared with the case where v* = 0,
we have to give more consideration to choice of multipliers.

Recently, Kawashita [3] and Danchin [1,2] consider the optimal class of initial data regarding
the regularity. We think that our result will be improved in this direction.

2 Stationary Problem

We study the stationary problem (1.2). Take any constant p > 0. Substituting p = p + o into
(1.2) and putting v = P'(p), (1.2) is reduced to the equation:

v G
V.v+ (;):{-—G.V)Uz m,
—pAv — (p+ )V (V-v) + Ve = —(p+0)(v-V)v
— [P(p+0) — P'(p)]Vo + (p + 0)F.

(2.1)

Our goal in this part is to prove Theorem 1.1 by application of weighted-L, method to the
linearized problem for (2.1). '
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2.1 Weighted-L, theory for linearized problem

In this section, let k be an integer fixed to k = 3 or k = 4. We shall consider the linearized
equation of (2.1):

{ V-v+(a-V)o =g, (2.2)
—plAv — (u+ u)V(V-v) +9Ve = —(b-V)ec + f, (2.3)

where a = (a1(z), a2(z),a3(z)), b = (bi(x), b2(x), b3(2)), ¢ = (c1(z), c2(z), c3(z)) and (f,9) €
%1% are given. Throughout this section, we assume that

a€ HY, ||(1+]e))alle+ Xooi 1+ |2)) 7 V7al| <6, bce J5*, (2.4)
SoZollX + ) VP I+ I(L + e Dgll + Zo_1 (1 + |z])*V*gll < co. (2.5)

Solution to approrimate problem. First, we solve the approximate problem:
V-v+(a-V)o—eAo +e0 =g, (2.6)
{ —pAv— (u+p)\V(V-v)+9Vo+ev=—(b-V)c+ f=h (2.7)
in #22. In the next lemma, we shall prove some fundamental a priori estimate needed later.

Lemma 2.1 There exists &g = do(7, i, ') > 0 such that if § in (2.4) satisfies § < do then we
have the following estimates: ' ' L : ’

(i) If 0 < € £ 1 and (0,v) € H#>? is a solution to (2;6)—(2.7), then . '
IVli? + Vol + e{llo])? + llo]® + V20 ]*} < Ce (R, 9)II%. - (28)
(ii) Ifo<e<1 and (o,v) € H#?%? is a solution to (2.6)—(2.7), then ' '
1(Vo, V?v)|l < C{llvll + lI(h, V9)II}- (2.9)
Here, C > 0 is a constant depending only on u,u’ and '7 | | B .

Proof. (i) Multiplying (2.6) and (2 7) by o and v respectlvely, using integration by parts, we
have | :

(hyv) = pl Vol + (i + w)IV-2ll* + ¥(Vo,v) + e||v||2,
(9,0) =—-(v,Vo) + (a Vo,o0) + t:'||Va||2 +€||o||?
Canceling the term of (Vo,v) in the above two relatlons, we obtain
plIvol® + erllol® + €||v||2 <(e-Vo, o)l +1(h,v) +7l(g,9)|- (2.10)
Differentiating (2.6) and (2.7), and employmg the same argument, we have o
plV20|* + ev[|V20 | < 7I(V(a-Vo), Vo)| + |(Vh, V)| +7|(Vg, Vo). (2.11)
Adding (2.10) and (2.11), we have
| WVl + e{ ol + vllol2 + 717202}

e (2.1=2)
< S [NV (a:Va), 90)| + [(V*h, V*0)| +7(V¥, woll.
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IVal? < Cop {IV0II + ellvll® + 1117} o (213)
as follows from (2.7), it follows from (2.12) that ‘
| IVoll} + Vol + e{llvl® + lloll® + 192011}
<Yl _ol(V¥(a Vo), Vo) (2.14)
+ Co[ B2 + T {I(V*R, V*0)| +|(V¥9,V*0)|}] = i + Iy, o
where the constants C; > 0 (j = 1,2) depend only on u,u' and . Now, integration by parts
and the Hardy inequality imply that

1 < G [|(lele-vo, )|+ X {l(6za-vo, 820)| + 21((v-a)02a, 820)|}]
T e 2 (2.15)

< C3{ll(1 + |z)allLee+ IVallLo HIVel? < C38||Val?,
whereas

1
I < Collh® + S {ellvll® + IV*o* + elloll? + €l V301 }
c? (2.16)
+ {7 bl + IR1% + € llgl® + € llgh}-

Combining (2.14)-(2.16), we have (2.8) if § < 1/4Cj.
(ii) Using the Friedrichs mollifier, we may assume that (o, v) € 5#°>°. Employing the same
argument as in the beginning of proof for (i), we have (2.11) and (2.13). Adding (2.11) and
(2.13), we have
(Yo, V20)|1? < Ci[ll(v, B)I? + |(V(a-Va), V)| + {I(Vh, Vv)| +|(Vg, Vo) }]

(2.17)
= C{l@w,W)I? + I + B},

where the constant C; > 0 depends only on u,u’ and 7. By the same calculation as in (2.15)

I) < C26||Va||? (C; depends only on p,u’ and ), (2.18)
whereas integration by parts implies that
1 C
B < 5 {1Vl + IVo1} + (AP + 19317} (2.19)
Combining (2.17)-(2.19), we have (2.9) if § < 1/4C;. '

Now, we employ the closed range theorem to prove the existence of solution. We introduce
the operator A defined on D(A) C L into Ly by A(c,v) = (A1(0,v), A2(0,v)), where D(A) =
2 and .

Ai(o,v) =V-v+ (a-V)o — Ao + €0,
As(o,v) = —pAv — (p+ u')V(V-v) + 7Vo + ev.

Lemma 2.1 (i) implies that for each 0 < € < 1 the range of A is closed. Since the dual operator
of A has the essentially the same form as A itself, we can show the a priori estimate for the
dual of A, and therefore we have the follwing proposition.
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Proposition 2.1 There exists g = do(7y, p, p') > 0 such that if § in (2.4) satisfies § < 8o then
for 0 < e <1, (2.6)-(2.7) has a solution (o,v) € %2 which satisfies

oy v)ll2,2 < C(e) I (A, 9)I, (2.20)
where the constant C(e) depends on p,p',v,e and C(e) = oo asel 0.
Furthermore, by the regularity theorem of the properly elliptic operator, we have

Corollary 2.1 Let (o,v) € H2? be solution to (2.6)- (2 7) obtamed in Proposztzon 2 1. Then
(0,v) € HPFHLA+1 and '

(@, ) lk+1641 < CE)[I(R, g)||k-1,k;1, | (2.21)

where the constant C(e) > 0 depends on u, i',v, e and C(e) = oo as € | 0.

Solution to linearized problem (2.2)—(2.3) and its L, estimate. Next, we shall discuss the
estimate for solution to (2.6)-(2.7) independent of 0 < e < 1.

Lemma 2.2 Let 0 < € < 1 and (0,v) € s5T1E+L pe solution to (2.6)—(2.7) which satisfies
(2.21). Then, there exists 8o = do(v, u, ') > 0 such that zf d in (2.4) satisfies § < &o, then we
have the estimate:

1(Vo, Vo)llk-16 < C{IL + |z (B, 9l + 1 (VA, Vg)llk-2,6-1}, (2.22)

where the constant C depends only on u, ' and 7.

Proof. By aid of the Friedrichs mollifier, we may assume that (o,v) € H#°°°. The same
argument as in the proof of Lemma 2.1 (i) implies that

Ivoll} + 1I1Val® < CLIIAIE + Zizo{I(V*h, V¥0)| + (V*g, V¥0) | }].

For the right hand side, using the Hardy inequality, we have

o {7, 970)| + (775,90} < 5 {IVoli+ Vo)
+C'{IIL+ Dbl + 11 + |zDgll® + 1 ValI”}
So we obtain
1(Vo, Vo)llox < C{lI( + I21)(h, 9)Il + 'Vall}, (2.23)

where the constant C' > 0 depends only on u,u’ and . Moreover, for any multi-index a with
1 < |a| £ k-1, applying 82 to (2.6)—(2.7) and employing Lemma 2.1 (ii) for the resultant
equations, we have

I(Ve*1g, lel+20) || < C{|IV10]| + [Volljai-1 + I(VI¥IR, Vist+ig)| 1}, (2.24)

if > 0 is small enough. Combining (2.23) and (2.24), we obtain (2.22). ]

From Proposition 2.1, Corollary 2.1 and Lemma 2.2, it follows that for each 0 < € <
1, (2.6)—(2.7) admits a solution (o€ v¢) € H#*TLE+1 guch that ||(0%v¢)||Le + [[(o8v¢)/|z||| +
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(Vo Vo) ||x < CK, where K = ||(1+]|z])(h, )| +|(Vh, Vg)|lk—2,k—1. Choosing an appropriate
subsequence, there exists (o,v) € Lg, (8,w) € Lo, (6%, w') € 5%~k such that

€ o€
(0%, v¢) — (o0,v) weakly in Lg, %T—l — (8, w) weakly in Lo,
€ € . .
(g%_, g:_) — (6%, w') weakly in HE-LE
i 0T

as € | 0. Thus, we have

Proposition 2.2 There erists 8 = do(7, 4, ') > 0 such that if § in (2.4) satisfies 6 < do then
for 0 < X <1, (2.2)-(2.3) admits a solution (0,v) € HPEETL which satisfies the estimate:

e, 0)llzq+ ||(—‘|’;'|’—’|| +1(Vo, Vo)l < CLIL+ |z (B 9)ll + (VR V) llk-2k-1}, (225)

where the constant C > 0 depends only on pu, ' and 7.

Weighted-L, estimate for solution to the linearized equation (2.2)—(2.3). At last, we shall
give weighted-L; estimate for the solution to (2.2)—(2.3).

Lemma 2.3 Let (o,v) € %51 be solution to (2.2)-(2.3) which satisfies (2.27). Then, there
ezists 8o = Oo(7y, p, i) > 0 such that if § in (2.4) satisfies § < &g then for any integer with
1 < ¢ < k, we have the estimate:

L1+ 12])” (V9a, Vo)l < Cllbll s il e
| + Vol + Tl + 1) (VO VIl
where C is a constant depending only on p,p' and 7.

Proof. Let (o,v) € #%**1 be a solution to (2.2)—(2.3) satisfying (2.25). We shall prove the
lemma by induction on £. Let £ be any integer with 1 < £ < k and if £ > 2, we assume that

LA+ [21)* (990, v o) || < C[lbll el gesa
+ Vol + ZoAN @ + 1) (777 £, 9 9)l]

Using the Fiedrichs mollifier and a cut-off function, we may assume that (o,v) € Cg° (R3).
We apply 8% (1 < |a| < 4) to (2-2) and (2.3); multiply the resultant equation by (1 +|z|)lo2o
and (1 + |z|)2*/8%v respectively. Summing up the resultant equations and canceling the term
of (V8%a, (1 + ||)*d2v), we obtain

I + 2]y v ol? < C[(IV4 ], (1 + |=]) 27 [ VEol)
+ (IV%], (1 + |z)) 71| Vial) + | (V¥(a- Vo), (1 + |2)*V’0)|
+ (Y4, 1 + |2y Vi)| + [(Ve, (1 + |2])*Vi0)|
+[(VH{(b-V)e}, (1 +2)* V)],
where the constant C depends only on u,u’ and 7. Since
(L + |2y V4012 < Copue [I11 + |2]) V02
I+ VAR + (Vb V)eh, (1 + [2l)9%) .

(2.26)

(2.27)

(2.28)
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as follows from (2.3), combining this with (2.28), we have
1@+ ) (V*+10, V4o) 12 < €| (V4(a-Vo), (1 + |e])*V%o)|
+Co[ll(1+ |27 V)2 + |1+ |2V £
+ |(VEf, (1 + |2)29%) | + | (Vig, (1 + |z])*V¢0)]] (2.29)
+ Cs|(VE{(b-V)c}, (1 + |z])* V)|
+ Ca|(VEH(b-V)e}, (1 + [2))2Ve0) | = h + L + I3 + I,

where the constants C; (j = 1,2, 3) depend only on y, ' and 7.
Now, we estimate the right hand side of (2.29) respectively. Integration by parts and the
Sobolev inequality imply that

L <Ce i___1l|(1 + |:1:|‘)"V”0||2 in the same way as (2.15), ‘
b < g1+ (90, V1) | (2:30)
+C{II(1 + |2y V%l? + (1 + ) (VL £, V) I}
Moreover, noting that for mﬁlti-index a, B with |o|, |B]| < k+1
@ ) o185 | < Cllbll e llellerr B Jal S lor (B <1,  (2.31)
we can show that '
Is+ I < g1+ [2]) (VYo 4+ 10) | S
11+ 2 V%) + Bl llclas: €=1,2,8, . (2:82)
{ (1 +121)2(V30, V40) 12 + bl Fass lellFnss €= 4. '

Indeed, I3 is estimated as follows: If £ = 1 or 2, since (1 + |z|)**1V¢{(b-V)c} € L; as follows
from (2.31), we have

I < C{IL + 2} V40 + [l wss el 2 }-

If £ = 3 or £ = 4, reforming I3 into the following two parts:

L=CY ( )y (g) @ V)ofer 3 (g) (@226-9)0fe, 1+ lxl)?‘a:vv)

la|=£ * B<La B<La ™

|8|=¢-2 18l=1 | o (2 33)
3 .
X ({3 + D) (3)er et 0oz ) =it
|q|=l BLa BLa BLa ‘ S L i

IBi=0 |8|=t-1 |Bi=¢
Using integration by parts for I3;, we have
In S C||(1 + 12])*Vb|lL [I(1 + [2]) 72 VE el + [2]) 9 ||
T2l + [2]) VP ellll(1 + |2]) ¢ v oll]
+ (the same terrri except for thé exchaxige of band ¢) |

< 2@+ 12V + C{IA + 12D VAP + [l Fas llell T},

(SN ]
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and for I3; we can use (2.31) directly as in the case £ =1 or 2,
I < C{IL+ ) V0l + [bl2uns lel3as },
where the constant C depends only on p, p' and v. Further, as for Iy: If £ = 1,2 or 3, since
(1+ |2|)!VE{(b-V)c} € L2 as follows from (2.31), we have
1 .
Li<zllA+ |z Vo || + CllblFus llchFess-

If £ = 4, integration by parts implies that

. . o z
1< G Y [|(V-82{(b-V)el, (1 +[a)a20)| + | (32 {(b-W)e}, 81 + [el) 220 ) |
ja|=3
Then, decomposing each term as in (2.33) (the first term same as I3 with £ = 4 and the second
term same as I3 with £ = 3) and using integration by parts, we have

1
L < 1+ ey Vol + C{lIL + l2)* V20 |? + ol Fers el s }

where the constant C depends only on u, u' and 7.
Combining (2.29), (2.30), (2.32) and (2.27) if £ > 2, we obtain (2.26). This completes the
proof of Lemma 2.3. i

Now combining Proposition 2.2 and Lemma 2.3, we have the following theorem.

Theorem 2.1 There exists 69 = 0o(7, u, ') > 0 such that if & in (2.4) satisfies § < do, then
(2.2)-(2.3) admits a solution (o,v) € H**+1 which satisfies the estimate:

g,v Ve v— v
oMo+ [ G2 + E5oal + )Vl + SEEN -+ e~ v

< C[ M50+ TESNQ + 1) V£l + (L + |2Dgll + o, (1 + 121) 9 gll],

where the constant C > 0 is depending only on u,u’' and vy. Furthermore the uniqueness is held
in A2 N Lg.

Proof. The existence and the estimate follows from Proposition 2.2 and Lemma 2.3 directly.
The uniqueness follows from an argument similar to Lemma 2.1 (ii). [

2.2 A Proof of Theorem 1.1

In this section, we shall construct a solution to (2.1), by use of the contraction mapping principle
in #° We employ the following system of equations:

] G
V-v+ (_p+&'V)a = _ﬁ+&, (2'34)
—plAv — (p+ ' )V(V-v) +yVo = —(p+6)(9-V)d

—[P'(5+5) — P(p)]Vé + (5 +6)F, (2.35)

where (&, 7)(z) € £ is given.
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Introduction of the solution map T for (2.34)—(2.35). First and foremost, we put
a=9/(+3), b=c=ptt, 9=GC/(p+3),
f = ~5(5-V)5— [P(5+5) — P(p)] Vo + (6+ 5)F. (2.36)
If we assume that |
Ko = |1+ |e)Gll + Zooll(1 + |al)* 'V F|| + Th_, 111 + |¢|)"V"Gil <oo, . (237)
then we can check (2.4)-(2.5) easily and additionally we have
I+ lzDgll + Zoooll (@ + |2 V¥ Fl + Ti_ il (1 + )" V¥gll < C{¥ + Ko} (2:38)

for some constant C = C(p, u, u'). Applying Theorem 2.1 with k = 4 for (2 34)-(2:35), we have
the following lemma.

Lemma 2.4 Let (F,G) € 5#3* satisfies (2.37). Then, there ezists €o such that if € < €g then
(2.34)~(2.35) with (5,9) € £ has a solution (0,v) € 45 which satisfies the estimate:

o 0lze+ |

” + 0o ll(L+ |2) V|
+ A+ (=) V7ol < C{ € + Ko},

(2.39)

where the constant C > 0 depends only on pu, p' and p.

Hence, we can consider the solution map T : (5,9) — (0,v) ; Fe?® — H#45 for (2.34)—(2.35).
Next, we have to show that (&,7) € I5 leads to (o,v) € IS The following lemma plays
an important role when we estimate the solution by Le.-norm. -

Lemma 2.5 Let E(z) be a scalar function satisfying
02E@)| < —2 (o] =0,1,2)
e = |z|leal+t P

(i) If ¢(x) is a smooth scalar function of the form: ¢ = V-, + ¢ satisfying
Li(#) = I+ o)l 11+ [2]) 21 ot lidellz, < oo,
then we have for any multi-inder o with |a| = 0,1
102(E * ) )] < ﬁﬁmw):
(ii) If $(x) is a smooth scalar function of the form: ¢ = g1y satisfying
Lo(@) = (1 + [2)2llzet (1 + [ol)3 (V1) dallzot (1 + [])*01(V2)ll1 < oo,

then we have for any multi-indez a with |a| = 1,2

102(E * )(z)] < =2

o L2(9)

Here, C, denotes a constant depending only on a.
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Now, with aid of the Helmholtz decomposition and the Fourier transform, we shall estimate
Loo-norm of the solution to (2.34)—(2.35).

Lemma 2.6 Let (F,G) satisfy following estimate (for Ko defined by (2.37)):
K = Ko+ (1 + |2])*Flleot (1 + [2)2Fill Lt I Fallzy + ool (1 + 2)* 2 V¥ G| o< 00

Then, if (,v) € H% is a solution to (2.34)~(2.35) with (5,7) € F:*° and satisfies (2.39) then
(0,v) satisfies the estimate:

(1 + |2 20| Lot Tpzoll(L + 1))+ V¥ 0|1, < C{€* + K}, (2.40)
where the constant C > 0 depends only on pu, ' and p.

Proof. In view of the Helmholtz decomposition, v is written of the form: v = w + Vp (w €
Lg, Vp € Ms). Here and hereafter

Ms={Vp|p€ Lot Vpe Ls}, L ={weCE |V-w=0}"

where =Ls means the compepletion of - with respect to the Lg-norm. Substituting this formula
into (2.34)—(2.35), we have

v G
—pAw +V® = —-p(9-V)o + f = h, (2.42)
® =0 - (2u+u')Ap. (2.43)

Thus we have the representation for ® and w:
OE
P = Z 0w hi, wiz)= ZE.-]- * hi(z), (2.44)
=1

where Eo(z) = —(47)~}/|z| and Eij(z) = (8mp) ™" (8;/|2| - zizj/|z[?).
We shall apply Lemma 2.5 (i) to estlmate ® and w. Therefore, in order to estimate (2.44)
we need to take a look at h. By (5,) € S there exist Vi = (V1,4)1<i<a and V3 such that

Vi =V-Vi+ Ve, [0+ ) Villet 11+ el Vel < € (2.45)

and so we can calculate

[ Z {—v,v_, + 5V} + V-{(p + &) F1,. }]

j=1
96 ~
{ (Vi-V); + png, - (9-V)o;— Q(a)a%— Vo-Fi;. +(p+ a)Fg,;}
%

= V' hl + h‘2,

where Q(o) = fo P"(p + 00) df. By (5,9) € £ and (2.45), using the Sobolev inequality, we
have

1 + l21)%hsll et I + |2)?Ai |zt IB2NL, < C{€® + K1},
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where K is defined by K = ||(1+|z|)3F ||+ (1 +|2|)2F1|| Lo+ || F2|lz, and C > 0 is a constant
depending only on p. Thus, applying Lemma 2.5 (i) to (2.44), we have

l2*|@(2)| + ol2]+! |V w(z)| < CKi. (2.46)

As for p, we have from (2.41)

3 . 3
P——Eo*( E ﬁ+&6$i+ﬁ+5)_ Eo*i§=1q1q2+Eo*r. (2.47)

i=1
Since (5,3) € F° it follows from (2.39) and the Sobolev inequality that
11+ 120)°q) gallzet 11 + [2)3(Va)) ghll oot 111 + [2])3gE (V)1 < C{ €® + Ko},
v=oll(L+ [2]) V771, < CELLII(L + [2))*+2V*ClL, = Ko,

where the constant C' > 0 depends only on p. Applying Lemma 2.5 (ii) to each term of (2.47)
respectively, we also have

2_1lz’|V¥p(z)| < C{€® + Ko + K2} (2.48)

Now, we are ready to estimate v and o. First, we consider the case where |z| > 1. Returning
to v = w + Vp and combining (2.46) and (2.48), we obtain

Y=ol + |2+ |V*u(z)| < C{€® + Ko + K1 + Ka}. (2.49)
Besides by (2.43) we have 0 = vy~ 1{(2u + p/)Ap + ®}. Combining (2.46) and (2.48), we get
(1+ [2l)’lo(@)] < C{ e + Ko + K1 + Ka}. (2.50)

Next, we consider the case where || < 1. The Sobolev inequality and the Hardy ineqﬁality
imply that

(L+[e)?lo(@)] + Zimo(1 + [2])|V¥0(2)| < C||(Vo, Vo)ll12 < C{? + Ko} (2.51)
Consequently by (2.49); (2.50) and (2.51), we have |
12+ 12)? V0|l Eomg 11 + |2))*+1 V0] 1, < C[e2 + £3_,K;] < C{* + K}.

This completes the proof of Lemma 2.6. o I
We combine Lemmas 2.4 and 2.6 to prove that the solution (o, v) € N

Proposition 2.3 There ezist co > 0 and € > 0 such that if (F,G) € 5#3* satisfies
K+ |1+ |z))"'G|lL, < coe (K is defined in Lemma 2.6), = (2.52)
then (2.34)-(2.35) with (5,9) € £ admits a solution (o,v) = T (6, %) € S5,

Proof. By Lemmas 2.4, 2.6 and (2.52), it follows that (2.34)—(2.35) has a solution (o,v) € I,
which satisfies

(0, v)llras < C{® + K} < C{€? + coe},
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where the constant C > 0 depends only on g, u’ and p. Thus if we take co <1 /2C and € > 0
sufficiently small, it follows that (o,v) € FA5 At last, we define V; and V2 by

0] v G

Vi=—— y Ve = V- py + = =~

1= 576 2 ( p+a ) PR

Then immediately from (2.34)
Vu=V-V1 + V.

Moreover, by (&,9) € Z3° and (2.40), using Sovolev inequality, we have
(1 + |2)*Valloot (1 + |$|)_1"2||L1 <C{eE+K+1+z)7'CllL, },

further by (2.52)
<C{E +cpe} <CE +€/2<¢,

if co < 1/2C and e > 0 is sufficiently small. This completes the proof of Proposition 2.3. )

Contraction of the solution map T'. Finally, we shall show that the solution map T for (2.34)-
(2.35) is contract. We suppose that (69,%) € S % and (07,v) = T(67, %) for j = 1,2. Then it
immediately follows from (2.34)—(2.35) that

V- (v - %-( —V)(e'- ) =,
— pA@ - v?) = (u+ u’)V{V- (v'=v})} + V(o' = 0?)
=—p(E"V)i' + 5" V)T + f,

(2.53)

where (f,g) € H#33 is

_ (P P \ge. (S __C
I="\r+5 p+é? p+ol p+a2)

f=-§'(@ V)i + @ -V)e? - [P'(p+6') - P(p)] V!
- [P'(p+38%) - P(p))V&* + (3" - &2)F.

Since
2_ 1@ + =)V £l + I+ gl + 5ol + =) Vgl
< C{e+ Ko}||(8' - & 9" — )| s34
as follows from the Sobolev inequality for Ko defined in (2.37), by application of Theorem 2.1
with k = 3 to (2.53), we obtain
% vl—v?) |
||

+ 300+ (2 V¥ (e = )l + Tho I+ lal) T o (o - o))
< C{e+ Ko} ||(6" - 6% 7" — 7*)ll o

(o'—0

I(e*~ 0% v' = o))lca+ |
(2.54)
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Next, we decompose (2.53) as in the proof of Lemma 2.6: Putting v!— v? = w + Vp (we
Le, Vp € M), we have

,51

Ap+ (ﬁ+&1 'V)("l‘ "2) =9

—plAw + Ve = -5 V)o! + 592 V)5? + f = h,
® =(0'-0?) - (2u+ 1) Ap.

The same argument as in the proof of Lemma 2.6 implies that

0+ 120 = 0%t Shoollt + ) 1901 = 7)1,
< C{e+ K}||(6'— 6% 0 — 9?)|| p5.a : (2.55)
+Ce[ll(L+ 12DV = )|zt II(L + [2)) 7 (V3 = V)L, ],

where Vlj , 172’ (4 = 1,2) are functions satisfying
V- =V + V], W+ 1]V et 11+ |2) 7 T 2, < e. (2.56)

Moreover, if we define V{, VJ (j = 1,2) as

. Y . . oI G
J J J . : .
i=-577% V2_(v p+&j)+p+&i’ (2.57)
then
I+ 12DV = V)Lt (L + J2) 72V = VD)L, (258)
S Cle+ (1 + [2))CllLe (61— 6% ' = 52)| 5.4

Combining (2.54), (2.55) and (2.58), we obtain

(e” = 0% v! = )l gaat (1 + [2)* (V! = VDot (1 + [2) (V3 = V)L,
< C{e+ K}~ 6% ' = °)|| gss |
+Ce[ll1+ 12V = V)llzot 11+ |2)) (V5 = VD)L, -
Therefore, we have the following proposition.

Proposition 2.4 There exist co > 0 and € > 0 such that if (F,G) € #°%4 satisfies K < cge
(K is defined in Lemma 2.6), then for (&%, %) € £ and (o7, v7) = T(&7, ) (j=1,2)

I(e" = 0%, 0! = v?)l| g+ (1 + &3 (V! = VD)l ot I(1 + )71 (V3 = V),
%[H(U =%, 0 = %)l pnat (1 + |2 (! = V) lnoot 11 + [2) (V5 = VD)1, ),
where (Vlj, Vz’) (4 = 1,2) are functions satisfying (2.56) and (Vlj, sz) (7 = 1,2) are defined by
(2.57).

Hence, by Propositions 2.3 and 2.4, the contraction mapping principle implies the existence
and uniqueness of solution to (1.2) which we have stated in Theorem 1.1.
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3 Non-stationary Problem

In this section, we consider stability of the stationary solution with respect to the initial distur-
bance (po, vo)- Let 5 be a positive constant and let (F,G) be small in the sense of Theorem 1.1.
We denote the corresponding stationary solution obtained in Theorem 1.1 by (p*% v*). Putting

o(t,z) = p*(z) + o(t,3), v(t,z) = v*(z) + w(t,)

into (1.1), we have the system of equations for (o, w):

ar(t) + V-{(p*+ o(t))w(t)} = V- (v'a(t)), (3.1)
w(®) = o [HAw(t) + (u-+ #)V(V-w(B)] + AOVo () = £0), (3:2)
(0’, 'LU)(O, (D) = (pO - p*1 Yo — v‘)(z), (33)

where A(t) = P'(p*+ o(t))/(p*+ o(t)) and
F(t) = —(*V)w(t) — (w(t)-V)(v*+ w(t)) - %{P’(P‘*r a(t)) — P'(p")}Vp*

e WA+ w) + (s W)V{T- (074wt} — P+ 0 (@) 9]

Our goal in this section is to give a proof of Theorem 1.2. The proof consists of the following
two steps. One is local existence:

Proposition 3.1 If (o, w)(0) € 33, then there eziststo > 0 such that the initial value problem
(3.1)-(3.2) with initial data (0,w)(0) admits a unique solution (o, w)(t) € €(0, to; H33).
Moreover, (o, w)(t) satisfies

(o, w)(®) 133 < 2ll(o, w)(0)1I3 5
for any t € [0, to].
And the other is a priori estimate:
Proposition 3.2 Let (o,w)(t) € €(0,t1; H#33) be a solution to (3.1)-(3.2). Then there exists

€0 > 0 such that if € < € and supg<;<t, l|(0,w)(t)ll33, |(p*— P, v*)||sas <€, then

t
(o, w)(®)3 3 + /0 Vo, Vw, we)(s)|3,3.2 ds < Cli(o, w)(O)II35 (3.4)

for any t € [0, t1], where C > 0 is a constant depending only on p and '

Concerning the local existence, we can apply the Matsumura-Nishida [4] method directly. So
we shall devote the following sections to the proof of Proposition 3.2.

Some estimates for f(t) and its derivatives.

Lemma 3.1 Let o be a multi-index with 0 < |a| < 3 and let us write 35 f(t) of the form:

021(0) = e s [ WOZ(E) + (1 + W)V (V-OFw(V)] + Filt)
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Then, there ezists € > 0 such that if ||(o,w)(t)||33, ||(0* — B, v*)|| sas < € then F,(t) satisfies
Vo lw(®)] + (Jo*] + w(t)]) V()| + (|Vp*| + V%)) o (8)]
if a=
VIt w(t)] + I (9 w(e)] + ZJ""“(IV”p*I + V%)) o (1))
+ 300 VYo ()] + Ray(t) i la] =1,2,3.

Here, C > 0 is a constant depending only on p,p’; Ryi(t) = 0 and Ri(t) (k = 2,3) satisfies the
following estimates:

IB2(2)]| < Cel|V3w(®)]), IRkl < Cell(V20, V2w)(®)lk-24-2 (k =2,3). (3.6)

|[Fa(t)] < C (3.5)

Proof. By combination of the Leibniz rule and the Sobolev embedding: H? G Lo, we can
easily check (3.5) with

0 if k=1, [VZiw(t)||V2a(t)] if k=2,
B®)=1 V@IV + (V)] +IVu@)VPo0l+
(IV2p*| + IV4*)) Vo (8)] + (IV26*| + |V2w(t)[) [V2w(t)|
Then, using the Gagliard-Nirenberg inequality and the Sobolev inequality, we obtain (36) [

k=23

Estimates for Vw(t) and its derivatives up to V4w(t).
Lemma 3.2 Let (o,w)(t) € €(0, t;; H#33) be a solution to (3.1)—(3.2). Then, there exist
€0, Ao > 0 and oy > 0 such that if e < € and ||(o,w)(t)||33, [|(0*— B, v*)|| sas < € then

d ‘

2 le®I + (BOw(®), w(®))] + a0l Vu(t)[? < Cel|Va(t))?, - (37

dit[”V’ca(t)“"’ + (B(t)V"w(t), ka(t))] + akllvk+lw‘(t)ll2 ; J (38)
< Cle+ N(Va, we) )12y o1+ CA Y|V (t)][2_,

for 1 <k <3 and any A with 0 < XA < A\g, where C > 0 is a constant dependmg only on pu,
and B(t) = (p*+ a(t))?/P'(p* + o(t)).

Proof. Using the Friedrichs mollifier, we may assume that (o, w)(t) € €(0, tg; I#°>). For
any multi-index a with 0 < |a| < 3, applying 8% to (3.1) and (3.2); multiplying the resultant
equation by 0z0(t) and (p + o(t))A(t) "102w(t) respectively, we have

5 dtlla"a(t)llz (6" + ()07 w(t), VOFo(t)) = (=02 (v*o(t)) + L(t), Voo (t),

(B0, 030(0) - (202 {(wdw(e) + (s + W)V(T- w(e))}, 20 )
+ (0" + o)) V020 (t), 02w(t)) = (27(t) + Ja(t), BORWE)

by integration with respect to z, where I,(t). and J,(t) are defined by

L= (g) (08(o* + o(t))) Bu(t),

B<a

1) = 3 (5) [(02 %) o2 uwt + (u+ p’>v<v- v} + (072 A®) voLuls)).

B<a
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Canceling the term of ((p + o(t))0gw(t), Va2a(t)) by the above two formulas and writing the
first term of second formula as follows:

(Bezu(e), 52u(t) = 5 (BOGE®), 92() - 5 (BLOFE (), 82w(0),

and using integration by parts for the second term of second formula, we have

5 dt{"f"" o@)|1? + (B()o2w(t), 85w(®)) } + BowlVoZw(®)|*
< |(8e(*a(t)), VOZa(®)| + | (92£(1), B(t)Fz w(t))]

+ [| (), vazo®)| + | (Ju), B()ozu(t))|] + 1|(B,(t)a:w(t),agw(t))| | (3.9)
+ [u (( B(t))Va"‘w(t) 6°w(t))|+(y+u)|( B(t ))Va“w(t),a‘;w(t))”

= K; + K2 + K3 + K4 + K,

where By = min,, /2<s<2pp 8 2/P'(s).
Now we estimate the right hand side of (3.9), using the Sobolev inequality and the Gagliard-
Nirenberg inequality. If o = 0, employing the Hardy inequality, we have

K < 10+ Dol | |’ |ivo® < celva@I?. (3.10)
If 1 < |a| < 3, by integration by parts, we can show that

K1 < Ce[|Vo®)llEy-1- (3.11)

To use Lemma 3.1, we divide K> into the following two parts:

[wa02a() + @ +4)9(T-22()], 22000

K, < (Fal?), 102w(t)]) + (W

= Ko + Ko.
Concerning K23, using integration by parts, we have
Koy < Cel|[VO2w(t)||>. (3.12)
To estimate K21, we use (3.5). If a =0,
. w(t . w(t
Ko < {10 + 10 o 2D 10+ o et |

+ @z IV (@)l + 1L + 12D (V6% V20 s (t) Sl TVOTI S

< Ce||(Va, Vo) )|,
and if 1 < |a| <3,
K < C{IVH 10" [[w@) o1V w () s+ Tht IV w@ IV w ()]
+ Sl (970t v )l () e 1V w(®) s
+ T IV e @IVl + R 8l g IV w ()|}
< Cle + NI(Vo(t), Vw() -y e+ CA IV @)

(3.14)



133

For 1 < |a| < 2, we can easily check that
K < Cel[(Vo(t), Vo)1 o (3.15)

It also turns out to be true for |a| = 3, using the following inequality: ||lw(t)/(1 + |z|)||z. <
C||Vw(t)|l1, which follows from combination of the Sobolev inequality and the Hardy inequality.
In order to estimate K4, we use (3.1). Then

Ky = |(B(t)os(t) 02w(t), 82w(t))|
= |[(V-{(p*+ o(t))w(t) + v*o(t)}, B(t) 82w(t)- agw(t))|
< C|(w(t) + v*o(t), V{05w(t)- 82w (t)} + {VB(t)} 02w(t) - 0%w(t))|
< C{(lw@®)llze+ " |6 lo @)l 6) I VOSw(E) 10w (2) || g

+ [l(w, ) (B)l|e (Vo Vo)) 105w (D) 113 }
< Ce||VaZw(®)|,

(3.16)

where B(t) is defined by B(t) = (p*+0(t)) [2—P"(p*+0 (1)) (p*+0a(t)) /P (p*+0o(t))]/P'(p* + o(t)).
We also have
Ks < Cl(Ve', Vo (b)) llLs IVOz w(t) |07 w(t)|zs < Ce||VaZw(®)]|. (3.17)

Combining (3.9)—(3.17), we obtain (3.7) and (3.8), if we choose €, A > 0 small enough. 1

Estimates for we(t) and its derivatives up to V2w,(t).

Lemma 3.3 Let (o, w)(t) € €0,t1; H#33) be a solution to (3.1)-(3.2). Then, there ezist eg > 0
and B > 0 such that if € < €p and ||(o, w)(t)||33, ||(0*~ po,v*)|| se5s < € then we have

i(W(t), Vo (t)) + Billw@)|® < Cel| Vo (@) + ClIVu(®)|, (3.18)

d
@t
for 2 < k <3, where C > 0 is a constant depending only on u and u'.

VElu(t), VRo (1)) + Bl VE T un(8)|1* < CIl(Vo, Vo, VE2we) ()R _g 0 (3-19)

Proof. Using the Friedrichs mollifier, we may assume that (o, w)(t) € €(0, to; S#°*). For
any multi-index a with 0 < |a| < 2, applying 82A(t)~! to (3.2) and multiplying the resultant
equation by 0%w(t), we have

20 wt), 03 wt(t))

= (a°{ 7 L) + (u+ W) (T-w(e)] + }t)f(t)—ut)},a:wt(t)),

where I, (t) is defined by

(VO2a(t), Own(2)) + (

LMH=Y ( ﬁ) (ag-ﬂ . (t)) 8Bwy(t).

B<a

The first term can be written in following form:

(Végo(t), 0un(t)) = 5 (Va2o(t), 62u(®) + (0%0:(t), V- B2w(t).
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So putting A; = maX,,/2<s<2p, P'(5)/s, we have
2 (V9go(t), 33(®) + - 2w P
< (6"{ AD) [pAw(t) + (u+ 4')V(V- w(t))] }, 8;'wt(t))} + | (Ia(t), B2we(t)) | (3.20)

( a{A(t } ’a:""(t))

Now we estimate the right hand side of (3.20), using the Sobolev inequality and the Gagliard-
Nirenberg inequality. First, we can easily check that

Ky < AVRlw @) + ON V2w, Kz < CelVur@liy-1, (3:21)

+|(820¢(t), V- 82w(t))| = K1 + K2 + K3 + Ky

furthermore if @ = 0, (by using Lemma 3.1) |
K3 < Cel|(Vo, Vw, we) (#)II3.1,0 (3.22)
If 1 <|a| <2, we divide K3 as

K3 < Y |({027PA() "} OB £ (2), OZwe(t))| + | (A(8) 1 BS£(2), B5we(t))| = Kan + K.

B<a

Then, using Lemma 3.1, we have
K31 s CE"(VO’, Vw, Vlal‘uk)(t) "|2a|—1,|a|+l,0’
K < C{|IV0* s llw(®)lle + ZE01 (V6% V410" s o (2) 12

+ (Vo (®), Vo) llja-1ja1+1+ I R @)}V (@)
< MV @)1 + CAT (Vo (t), Vo) i -1 japs1-

(3.23)

At last, in order to estimate K,, we substitute (3.1) into o; as in (3.16): Indeed, if a =0,

Ko < |(V-{("+ o®)w®)}, V-w(®) | + | (*a(), V(V-w(t))|
< {I(Ve" VoD@ eI Vo)l

+ Vw2 + (L + |z|)v'||Lw||%||||v2w(t>||} -
< Cel|(Va(t), V2w @) + CIVw(®)I?,
and if 1 < |a| < 2,
< |(@2{(6 + a®)w(t) +v*o(®)}, V(V-02w(®)))|
< ¢ Y {162 Pp", 02 Pa )Ll 8w (Bl + llOZw (D) 525
1B L 18e )l + 120 (OI}IV25 )
< Cl(Va(t), Vo) Iy -1 af1-
Combining (3.20)—(3.25), we obtain (3.18) and (3.19), if we take €, A > 0 small enough. 1

Estimates for Vo(t) and its derivatives up to V3o (t).
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Lemma 3.4 Let (o, w)(t) € €0,t1; I33) be a solution to (3.1)—(3.2). Then, there exist eg > 0
and B > 0 such that if € < €9 and ||[(o,w)(t)||33, ||(p*— po,v*)|| #1.5 < € then we have

IVa @I < (Vw, w)®)]13 0, (3.26)
IVEa@)I? < Cll(Vo, Y, VE wr) (£)]1Z -5 4,0 (3.27)
for 2 <k <3, where C > 0 is a constant depending only on u and .

Proof. Using the Friedrichs mollifier, we may assume that (o,w)(t) € (0, to; #°>). For
any multi-index a with 0 < |a| < 2, applying 82 to (3.2) and multiplying the resultant equation
by Vd¢o(t), we have

AdllVoza(®)|® < | (85wi(t), Voga(t))|
+ (é‘{;l;[qu(t)+(u+u’)V(V-w(t))]},V6Sd(t))' +|(La(), VOZo(®)|  (3:28)

+ l(@;"f(t),vaga(t))l = K1+ K2+ K3 + Ky,

where Ag = min,, /2<s<2,, P'(8)/s and
L) =Y (g) (85 P A(t)) VOLo(t).
B<a
It immediately follows from the Sobolev inequality that
Ky < M|VEFo )7 + OX [V twe (8) 17,
Kz S M|V (0)|2 + CA Y V2u(t)IIE,  Ks < Cel|Va()[1%, ~(3'2912)

We employ Lemma 3.1 to estimate K4. Using the Sobolev inequality and the Gagliard-N 1renberg
inequality, we have :

Ka S O{9V lialiolee + SE NP TP eslo s
+ 1Yo (), V0D ot ot + IR}V o) (330
<AV @O + CXHI(Vo (1), Vo) a1 o+

for 1 < |a] < 2. This calculatlon is also true for a = 0, if we regard Ro(t) and ||Va(t)|| 1 as
zero. Combining (3.28)-(3.30), we obtain (3.26) and (3.27) if we take €, A > 0 small enough. §

A Proof of Proposition 3.2. Let (o,w)(t) € €(0,t; ; #%3) be a solution to (3.1)—(3.2) locally
in time. Furthermore, we suppose that supp<i<;, ||(o, w)(t)||3,3, [|(p*— po,v*)|| #4.5 < €, where
€ > 0 is small enough such that at least we can use Lemmas 3.2 through 3.4. We use the

notation:

* 0’ '\)2 .
(o wla(t) = o) + (B(tyu(),u), BE) = o).

Summing up (3.7), (3.8) with k=1, (3.18) and (3.26) (after rhultiplying (3.7), (3.8), (3.18)
with small numbers respectively), we have

dt{ EV_Oa,, Yo,V'w|p + B1(w, Vo) } + [|(Ve, Vuw, wt)”o 10 <0, (3.31)
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if we take €, A > 0 sufficiently small. Here and hereafter, o, Bk > 0 are constants depending
only on p and 4. Similarly, summing up (3.8), (3.19), (3.27) with k = 2 and (2.31), we have

d ~1,, ov

{0 [V¥0, V7 w]p +32_8,(V"'w, v¥0)} + |(Vo, Vw, we)[121 < 0. (3.32)
Also, by (3.8), (3.19), (3.27) with k = 3 and (2.32), we obtain

d - 1 4

Z{ Zheoe[ V70,V ulp + X0 B (VT w0, V7o) } + [[(Vo, Vu, w332 <0,  (3.33)

for any t € [0, t;]. Then, integration of (3.33) on [0, ¢] implies that
t
Nalo,wlt)+ [ 19, Vo, w)@)l a2 ds < Nalo,w](0), (3.34)

where Np[o,w](s) is defined by
Ng[o,w](s) = 33 _oa[V¥0, V¥w]B(s) + oy B (V¥ w(s), V¥a(s))
for each s > 0. : ,
Let us denote Bo = minmlgsaszpo{82/PI(8), 1} and Bl = maxpo/zs,sgpo{sz/P'(s), 1} Since
we may assume without loss of generality that ax < ax—1 and B < axmin{By,1}/4 for k =
1,2, 3, it follows from a simple calculation that

a

'fBo (o, w)(3)lI35 < Nalo,w)(s) < 2B1l(o, w)(s)lI35 (3.35)
for each s € [0,t;]. Combining (3.34) and (3.35), we obtain (3.4), which completes the proof of
Proposition 3.2. |
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