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1Definitions
Let $F(X)$ and $A(X)$ be respectively the free topological group and the free abelian

topological group on aTychonoff space $X$ in the sense of Markov [6]. As an abstrac$.\mathrm{t}$

group, $F(X)$ is free on $X$ and it carries the finest group topology that induces the
original topology of $X$ ;every continuous map from $X$ to an arbitrary topological group
lifts in aunique fashion to acontinuous homomorphism from $F(X)$ . Similarly, as an
abstract group, $A(X)$ is the free abelian group on $X$ , having the finest group topology
that induces the original topology of $X$ , so that every continuous map from $X$ to an
arbitrary abelian topological group extends to aunique continuous homomorphism
from $A(X)$ .

For each $n\in \mathrm{N}$ , $F_{n}(X)$ stands for asubset of $F(X)$ formed by all words whose
length is less than or equal to $n$ . It is known that $X$ itself and each $F_{n}(X)$ are closed
in $F(X)$ . The subspace $A_{n}(X)$ is defined similarly and each $A_{n}(X)$ is closed in $A(X)$ .
Let $e$ be the identity of $F(X)$ and 0be that of $A(X)$ . For each $n\in \mathrm{N}$ and an element
$(x_{1},x_{2}, \ldots,x_{n})$ of $(X\oplus X^{-1}\oplus\{e\})^{n}$ we call $x_{1}x_{2}\cdots$ $x_{n}$ aform. In the abelian case,
$x_{1}+x_{2}+\cdots+x_{n}$ is also called aform for $(x_{1},x_{2}, \ldots,x_{n})\in(X\oplus-X\oplus\{0\})^{n}.\cdot$ We remark
that aform may contain some reduced letter. Then the reduced form of $x_{1}x_{2}\cdots x_{n}$ is
aword of $F(X)$ and that of $x_{1}+x_{2}+\cdots+x_{n}$ is aword of $A(X)$ . For each $n\in \mathrm{N}$ we
denote the natural mapping from $(X\oplus X^{-1}\oplus\{e\})^{n}$ onto $F_{n}(X)$ by $i_{n}$ and we also use
the same symbol $i_{n}$ in the abelian case, that is, $i_{n}$ means the natural mapping from
$(X\oplus-X\oplus\{0\})^{n}$ onto $A_{n}(X)$ . Clearly the mapping $i_{n}$ is continuous for each $n\in \mathrm{N}$ .

All topological spaces are assumed to be Tychonoff. By $\mathrm{N}$ we denote the set of all
positive natural numbers. Our terminology and notations follow [3]. We refer to [5] for
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elementary properties of topological groups and to [1] and [4] for the main properties

of free topological groups.

2The mappings $i_{n}$ and $F_{n}(X)$

The following problems have been studied by several mathematicians and were de-

scribed in [9].

Problem 1Characterize $space\dot{s}X$ for which the mapping $i_{n}$ is quotient (closed, z-

closed, $R$-quotierit, etc.), $n\in \mathrm{N}$ .

Problem 2Find general conditions on X implying tat $F(X)$ (or $F_{n}(X)$ for each n $\in$

N) is a k-space.

Problem 1was completely solved for $n=2$ by Pestov [7]. He proved that the mapping

$i_{2}$ is quotient iff $X$ is strongly collectionwise normal, i.e., if every neighborhood of the

diagonal in $X^{2}$ contains auniform neighborhood of the diagonal. Furthermore, the

author [12] proved that $i_{2}$ is quotient iff $i_{2}$ is closed. The author also proved in the

same paper that for ametrizable space $X$ the mapping $i_{n}$ is closed for each $n\in \mathrm{N}$ iff

$X$ is compact or discrete. They are also true for abelian case.

On the other hand, about Problem 2, Arhangel’skii, Okunev and Pestov [2] gave a

characterization of ametrizable space $X$ such that $F(X)(A(X))$ is ak-space, respec-

tively.

Theorem 2.1 ([2]) For a metrizable space $X$ the following are equivalent:

(1) $F(X)$ is a k-space,

(2) $F(X)$ is a $k_{\omega}$ -space or discrete,

(3) $X$ is locally compact separable or discrete.

Theorem 2.2 ([2]) For a metrizable space $X$ the following are equivalent:

(1) $A(X)$ is a k-space,

(2) $A(X)$ is homeomorphic to a product of a $k_{\mathrm{t}d}$ -space with a discrete space
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(3) $X$ is locally compact and the set of all nonisolated points is separable.

Furthermore, about Problem 1, the author [11] obtained acharacterization of ametriz-
able space such that every $i_{n}$ is quotient for abelian case. He proved that for ametriz-
able space $X$ the mapping $i_{n}$ for abelian case is quotient for each $n\in \mathrm{N}$ if and only if
either $X$ is locally compact and the set $dX$ of all nonisolated points in $X$ is separable,
or $dX$ is compact. As the author mentioned in [11, Proposition 4.1], for aDieudonne
complete, and hence metrizable space $Xi_{n}$ is quotient iff $F_{n}(X)(A_{n}(X))$ is ak-space
for each $n\in \mathrm{N}$ . That is, the author obtained, in [11], the following results which are
answers to Problem 2for the free abelian topological group on ametrizable space.

Theorem 2.3 For a metrizable space $X$ the following are equivalent

(1) $A_{n}(X)$ is a $k$ -space for each $n\in \mathrm{N}$,

(2) $A_{4}(X)$ is a k-space,

(3) $i_{n}$ is quotient for each $n\in \mathrm{N}$,

(4) i4 is quotient,

(5) either $X$ is locally compact and the set $dX$ of all nonisolated points in $X$ is

separable, or $dX$ is compact.

Theorem 2.4 For a metrizable space $X$ the following are equivalent

(1) $A_{3}(X)$ is a k-space,

(2) $i_{3}$ is quotient,

(3) $X$ is locally compact or the set of all nonisolated points is compact.

The aim of this note is to solve the above problems for the non-abelian free topological
group on ametrizable space. To do that, we need aneighborhood base of $e$ defined by
Uspanskii [10].

Let $P(X)$ be the set of all continuous pseudometrics on aspace $X$ . Put

$F_{0}(X)=$ { $h=x_{1}^{\epsilon_{1}}x_{2}^{\epsilon_{2}}\cdots x_{2n}^{\epsilon_{2n}}\in F(X)$ : $\sum_{\dot{|}=1}^{2n}\epsilon:=0$ , $x:\in X$ for $i=1,2$, $\ldots$ , $n$ , $n\in \mathrm{N}$}
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Then $F_{0}(X)$ is aclopen normal subgroup of $F(X)$ . It is well-known that every $h\in$

$F_{0}(X)$ can be represented as

$h=g_{1}x_{1}^{\epsilon_{1}}y_{1}^{-\epsilon_{1}}g_{1}^{-1}g_{2}x_{2}^{\epsilon_{2}}y_{2}^{-\epsilon_{2}}g_{2}^{-1}\cdots g_{n}x_{n}^{\epsilon_{n}}y_{n}^{-\epsilon_{n}}g_{n}^{-1}$

for some $n\in \mathrm{N}$ , where $Xi,y_{i}\in X$ , $\epsilon_{i}=\pm 1$ and $g_{i}\in F(X)$ for $i=1,2$ , $\ldots$ , $n$ . Take an

arbitrary $r=\{\rho_{g} : g\in F(X)\}\in P(X)^{F(X)}$ . Let

$p_{r}(h)= \inf\{\sum_{\dot{|}=1}^{n}\rho_{g:}(X:,y_{\dot{l}}) : h=g_{1}x_{1}^{\epsilon_{1}}y_{1}^{-\epsilon_{1}}g_{1}^{-1}\cdots g_{n}x_{n}^{\epsilon_{n}}y_{n}^{-\epsilon_{n}}g_{n}^{-1},n\in \mathrm{N}\}$

for each $h\in F_{0}(X)$ . Then $\mathrm{U}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}[10]$ proved that:

(1) $p_{r}$ is acontinuous seminorm on $F_{0}(X)$ and

(2) $\{\{h\in F_{0}(X) : p_{r}(h)<\delta\} : r\in P(X)^{F(X)}, \delta>0\}$ is aneighborhood base of $e$ in

$F(X)$ . $/\mathrm{N}\mathrm{o}\mathrm{t}\mathrm{e}$ that $pr(e)=0$ for each $r\in P(X)^{F(X)}.)$

Applying the above neighborhood, we can prove the following.

Theorem 2.5 For a metrizable space $X$ if $F_{n}(X)$ is a $k$ -space for each $n\in \mathrm{N}$ , then
$X$ is locally compact separable or discrete.

Corollary 2.6 For a metrizable space $X$ if the mapping $i_{n}$ is quotient for each $n\in \mathrm{N}$ ,

then $X$ is locally compact separable or discrete.

Pestov and the author [8] showed that for a metrizable space $XF(X)$ is a k-space

iff $F(X)$ has the inductive limit topology, i.e. asubset $U$ of $F(X)$ is open if each

$U\cap F_{n}(X)$ is open in $F_{n}(X)$ . Consequently, from Theorem 2.1, Theorem 2.5, Theorem

2.6 and the above result, we can obtain the following.

Theorem 2.7 For a metrizable space $X$ , the following are equivalent:

(1) $F(X)$ is a k-space,

(2) $Fo(X)$ is a $k$ -space for each $n\in \mathrm{N}$ ,

(3) $F(X)$ has the inductive limit topology,

(4) $i_{n}$ is quotient for each $n\in \mathrm{N}$ ,
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(5) $X$ is locally compact separable or discrete.

As compered with the abelian case, the above result is interesting. For, by Theorem
2.2 and Theorem 2.3, there is ametrizable space $X$ , for example the hedgehog space
such that each spininess is asequence which converges to the center point, such that
each $A_{n}(X)$ is a k-space, and hence $i_{n}$ for abelian case is quotient, but $A(X)$ is not a
fc-space. On the other hand, for non-abelian case, Theorem 2.7 shows that there is not
such ametrizable space.

3 A simple description of the topology of $F(X)$

As is well known, for aTychonoff space $X$ every compact subset of $F(X)$ is contained
in some $F_{n}(X)$ , $n\in \mathrm{N}$ . Hence, $F(X)$ is a $k$-space if and only if the two conditions hold:
first, $F(X)$ has the inductive limit topology and second, $Fn(X)$ is a $k$ space $n\in \mathrm{N}$ . If
aspace $X$ is Diedonne complete, then the above second condition can be replaced by
the quotientness of in. We consider asimple description of the topology of $F(X)$ , as
follows;

a set $U\subseteq F(X)$ is open in $F(X)$ if and only if
$i_{n}^{-1}(U\cap F_{n}(X))$ is open in $(X\oplus X^{-1}\oplus\{e\})^{n}$ for each $n\in \mathrm{N}$ .

Clearly, if $F(X)$ has the inductive limit topology and $i_{n}$ is quotient for each $n\in \mathrm{N}$,
then $F(X)$ has the above description. On the other hand, since the mapping $i_{n}$ is
continuous, if $F(X)$ has the above description, then $F(X)$ has the inductive limit
topoloy. Now, we can prove the following.

Proposition 3.1 Let $X$ be a space. If $F(X)$ has the above description, then $i_{n}$ is
quotient for each $n\in \mathrm{N}$ . The same is true for $A(X)$ .

As aconsequence, we obtain the following results.

Theorem 3.2 For a Diedonni complete space $X$ , in particular, for a paracompact
space $X$ , the following are equivalent:

(1) $F(X)$ is a k-space
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(2) $F(X)$ has the inductive limit topology and the mapping $i_{n}$ is quotient for each
$n\in \mathrm{N}$ ,

(3) a set $U\subseteq F(X)$ is open in $F(X)$ if and only if $i_{n}^{-1}(U\cap F_{n}(X))$ is open in

$(X\oplus X^{-1}\oplus\{e\})^{n}$ for each $n\in \mathrm{N}$ .

The same is true for $A(X)$ .

Furthermore, from Theorem 2.1 and Theorem 2.2, we can obtain acharacterization

of ametrizable space $X$ such that $F(X)$ and $A(X)$ has the above simple description,

respectively.

Theorem 3.3 For a metrizable space $X$ the following are equivalent:

(1) a set $U\subseteq F(X)$ is open in $F(X)$ if and only if $i_{\overline{\mathrm{n}}}^{1}(U\cap F_{n}(X))$ is open in
$(X\oplus X^{-1}\oplus\{e\})^{n}$ for each $n\in \mathrm{N}$ ,

(2) $X$ is locally compact separable or discrete.

Theorem 3.4 For a metrizable space $X$ the following are equivalent:

(1) a set $U\subseteq A(X)$ is open in $A(X)$ if and only if $i_{n}^{-1}(U\cap A_{n}(X))$ is open in

$(X\oplus X^{-1}\oplus\{e\})^{n}$ for each $n\in \mathrm{N}$ ,

(2) $X$ is locally compact and the set of all nonisolated points of $X$ is separable.

4The mapping $i_{3}$ and $F_{3}(X)$

In the last section, we shall obtain acharacterization of ametrizable space $X$ such

that $i_{3}$ is quotient, and hence $F_{3}(X)$ is a $k$-space. To obtain it, we need another

neighborhood of $e$ in $F_{n}(X)$ which is defined by the author in [12].

Let $X$ be aspace and $\overline{X}=X\oplus\{e\}\oplus X^{-1}$ , where $e$ is the identity of $F(X)$ . Fix an

arbitrary $n\in \mathrm{N}$ . For asubset $U$ of $\overline{X}^{2}$ which includes the diagonal of $\overline{X}^{2}$ , let $W_{n}(U)$

be asubset of $F_{2n}(X)$ which consists of the identity $e$ and all words $g$ satisfying the

following conditions;

(1) $g$ can be represented as the reduced form $g=x_{1}x_{2}\cdots$ $x_{2k}$ , where $x_{i}\in\overline{X}$ for

$i=1,2$ , $\ldots$ , $k$ and $1\leq k\leq n$ ,
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(2) there is apartition $\{1, 2, \ldots, 2k\}=\{i_{1},i_{2}, \ldots,i_{k}\}\cup\{j_{1},j_{2}, \ldots,j_{k}\}$ ,

(3) $i_{1}<i_{2}<\cdots<i_{k}$ and $i_{\epsilon}<j_{s}$ for $s=1,2$ , $\ldots$ , $k$ ,

(4) $(x:.,x_{j}^{-1}.)\in U$ for $s=1,2$, $\ldots$ , $k$ and

(5) $i_{s}<i_{t}<j_{s}\Leftrightarrow i_{\epsilon}<j_{t}<j_{s}$ for $s,t=1,2$, $\ldots$ , $k$ .

The author proved in [12] that $W_{n}\{U$) is aneighborhood of $e$ in $F_{2n}(X)$ for every
$U\in \mathcal{U}_{X}$ and $n\in \mathrm{N}$ . Furthermore, we need the following lemma.

Lemma 4.1 Let $X$ be a space and $m$ , $n\in \mathrm{N}$ with $n\leq m$ . If $B$ is a neighborhood of $e$

in $F_{m+n}(X)$ and $g\in F_{n}(X)$ , then $gB\cap F_{m}(X)$ is a neighborhood of $g$ in $F_{m}(X)$ .

Applying the above neighborhood $W_{2}(X)$ and Lemma 4.1 as $n=1$ and $m=3$, we can
prove the following.

Proposition 4.2 If $X$ is a locally compact metrizable space, then $F_{3}(X)$ is a k-space,
and hence $i_{n}$ is quotient.

Proposition 4.3 For a metrizable space $X$ , if the set of all nonisolated points is com-
pact, then $F_{3}(X)$ is a $k$ -space, and hence i3 is quotient.

Consequently, joining to Theorem 2.4, we have the following result.

Theorem 4.4 For a metrizable space $X$ the foll owing are equivalent

(1) $F_{3}(X)$ is a k-space,

(2) $A_{3}(X)$ is a k-space,

(3) $i_{3}$ is quotient (for both case),

(4) $X$ is locally compact or the set of all nonisolated points is compact

We remark that the author proved in [12] that ametrizable space $X$ has to be compact
or discrete in order to $i_{3}$ is closed (for both case)
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