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1 Definitions

Let F(X) and A(X) be respectively the free topological group and the free abelian
topological group on a Tychonoff space X in the sense of Markov [6]. As an abstract
group, F(X) is free on X and it carries the finest group topology that induces the
original topology of X; every continuous map from X to an arbitrary topological group
lifts in a unique fashion to a continuous homomorphism from F(X). Similarly, as an
abstract group, A(X) is the free abelian group on X, having the finest group topology
that induces the original topology of X, so that every continuous map from X to an
arbitrary abelian topological group extends to a unique continuous homomorphism
from A(X). |

For each n € N, F,(X) stands for a subset of F(X) formed by all words whose
length is less than or equal to n. It is known that X itself and each F,(X) are closed
in F(X). The subspace An(X) is defined similarly and each A,(X) is closed in A(X).
Let e be the identity of F((X) and 0 be that of A(X). For each n € N and an element
(T1,%2,...,T5) of (X ® X' & {e})" we call 2,252, a form. In the abelian case,
T1+T2+: - ++n is also called a form for (71,7, ... ,2,) € (X®—-X@{0})". We remark
that a form may contain some reduced letter. Then the reduced form of z,z5 - - - z, is
a word of F(X) and that of z; + 23+ - - - + z,, is a word of A(X). For each n € N we
denote the natural mapping from (X & X! & {e})" onto F,(X) by i, and we also use
the same symbol i, in the abelian case, that is, i, means the natural mapping from
(X & —X & {0})" onto A,(X). Clearly the mapping i,, is continuous for each n € N.

All topological spaces are assumed to be Tychonoff. By N we denote the set of all
positive natural numbers. Our terminology and notations follow [3]. We refer to [5] for
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elementary properties of topological groups and to [1] and [4] for the main properties

of free topological groups.

2 The mapplngs in and F, (X )

The followmg problems have been stud1ed by several mathernatlclans and were de—
scribed in [9].
Problem 1 Characterize spaceé‘X for which the mapping i, is quotient (closed, z-
closed, R-quotient, etc.), n € N. - ' |
Problem 2 Find general conditions on X implying tat F(X) (or Fuo(X ) for each n €
N) is a k-space.
Problem 1 was completely solved for n=2 by Pestov [7]. He proved that the mapping
io is quotient iff X is strongly collectionwise normal, i.e., if every neighborhood of the
diagonal in X? contains a uniform neighborhood of the diagonal. Furthermore, the
author [12] proved that iz is quotient iff i, is closed. The author also proved in the
same paper that for a metrizable space X the mapping i, is closed for each n € N iff
X is compact or discrete. They are also true for abelian case.

On the other hand, about Problem 2, Arhangel’skii, Okunev and Pestov [2] gave a

characterization of a metrizable space X such that F(X) (A(X)) is a k-space, respec-
tively.

Theorem 2.1 ([2]) For a metrizable space X the following are equivalent:
(1) F(X) is a k-space,
(2) F(X) is a k,-space or’ discrete,
(3l X -z's locally compact separdble _obr‘dz'..screte..

Theorem 2.2 ([2]) Fora metrizable space X the following are equivalent:
(1) A(X) is a k-space, | | |

(2) A(X) is homeomorphic to a product of a k.-space with a discrete space,
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(3) X is locally compact and the set of all nonisolated points is separable.

Furthermore, about Problem 1, the author [11) obtained a characterization of a metriz-
able space such that every i, is quotient for abelian case. He proved that for a metriz-
able space X the mapping i, for abelian case is quotient for each n € N if and only if
either X is locally compact and the set dX of all nonisolated points in X is separable,
or dX is compact. As the author mentioned in [11, Proposition 4.1], for a Dieudonné
complete, and hence metrizable space X i, is quotient iff F,,(X) (An(X)) is a k-space
for each n € N. That is, the author obtained, in [11], the following results which are
answers to Problem 2 for the free abelian topological group on a metrizable space.

Theorem 2.3 For a metrizable space X the following are equivalent:
(1) An(X) is a k-space for each n € N,
(2) A4(X) is a k-space,
(3) in is quotient for each n € N,
(4) 14 is quotient,

(5) either X is locally compact and the set dX of all nonisolated points in X is

separable, or dX 1is compact.

Theorem 2.4 For a metrizable space X the following are equivalent:
(1) As(X) is a k-space,
(2) i3 is quotient,
(3) X is locally compact or the set of all nonisolated points is compact.

The aim of this note is to solve the above problems for the non-abelian free topological
group on a metrizable space. To do that, we need a neighborhood base of e defined by
Uspanskif [10].

Let P(X) be the set of all continuous pseudometrics on a space X. Put

2n
Fo(X)={h=2525?-.. 25 € F(X): zei =0,r;€ X fori=1,2,... ,n,n € N}

=1
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Then Fy(X) is a clopen normal subgroup of F(X). It is well-known that every h €
Fo(X) can be represented as

h= gy 07 225 Y7207 -+ GnTirYn "G
for some n € N, where z;,y; € X, ¢; = +1 and ¢; € F(X) for i = 1,2,...,n. Take an
arbitrary r = {p, : g € F(X)} € P(X)F¥). Let

n .
pr(h) =inf{D  pgi(®i, ) 1 h = GaTYT T - 9T Yn " 9n ',n € N}

i=1

for each h € Fy(X). Then Uspenskii [10] proved that:
(1) p, is a continuous seminorm on Fp(X) and

(2) {{h € Fo(X) :pr(h) <d}:r € P(X)FX) § > 0} is a neighborhood base of e in
F(X). (Note that p,(e) =0 for each r € P(X)F(X).)

Applying the above neighborhood, we can prove the following.

Theorem 2.5 For a metrizable space X if Fo(X) is a k-space for each n € N, then
X is locally compact separable or discrete.

Corollary 2.6 For a metrizable space X if the mapping i is quotient for eachn € N,

then X is locally compact separable or discrete.

Pestov and the author [8] showed that for a metrizable space X F(X) is a k-space
iff F(X) has the inductive limit topology, i.e. a subset U of F(X) is open if each
UNF,(X) is open in F,(X). Consequently, from Theorem 2.1, Theorem 2.5, Theorem
2.6 and the above result, we can obtain the following.

Theorem 2.7 For a metrizable space X, the following are equivalent:
(1) F(X) is a k-space,
(2) F,(X) is a k-space for eachn € N,
(8) F(X) has the inductive limit topology,

(4) in is quotient for each n € N,
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(6) X is locally compact separable or discrete.

As compered with the abelian case, the above result is interesting. For, by Theorem
2.2 and Theorem 2.3, there is a metrizable space X , for example the hedgehog space
such that each spininess is a sequence which converges to the center point, such that
each A,(X) is a k-space, and hence i, for abelian case is quotient, but A(X) is not a
k-space. On the other hand, for non-abelian case, Theorem 2.7 shows that there is not
such a metrizable space.

3 A simple description of the topology of F(X)

As is well known, for a Tychonoff space X every compact subset of F (X) is contained
in some F,,(X), n € N. Hence, F(X) is a k-space if and only if the two conditions hold:
first, F'(X) has the inductive limit topology and second, F,(X) is a k-space n € N. If
a space X is Diedonné complete, then the above second condition can be replaced by
the quotientness of i,. We consider a simple description of the topology of F(X), as
follows;

a set U C F(X) is open in F(X) if and only if
i, (U N Fy(X)) is open in (X ® X! @ {e})" for each n € N.
Clearly, if F(X) has the inductive limit topology and i, is quotient for each n € N,
then F(X) has the above description. On the other hand, since the mapping i, is

continuous, if F(X) has the above description, then F(X) has the inductive limit
topology. Now, we can prove the following.

Proposition 3.1 Let X be a space. If F(X) has the above description, then i, is
quotient for each n € N. The same is true for A(X).

As a consequence, we obtain the following results.

Theorem 3.2 For a Diedonné complete space X, in particular, for a paracompact
space X, the following are equivalent:

(1) F(X) is a k-space,
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(2) F(X) has the inductive limit topology and the mapping i, is quotient for each
n €N,

(3) a set U C F(X) is open in F(X) if and only zfz 1(U N Fp(X)) is open in
(X ® X '@ {e})" for eachn € N.

The same is true for A(X).

Furthermore, from Theorem 2.1 and Theorem 2.2, we can obtain a characterization
of a metrizable space X such that F(X) and A(X) has the above simple description,

respectively. ,
Theorem 3.3 For a metrizable space X the following are equivalent:

(1) .a set U G F(X) is open in F(X) if and only if i (U N Fy (X)) is open in
(X ® X '@ {e})" for eachn €N,

(2) X is-locally compact separable or discrete.

Theorem 3.4 For a metrizable space X the following are equivalent:

(1) a set U S A(X) is open in A(X) if and only if i;'(U N An(X)) is open in
(X® X '@ {e})" for eachn €N, ‘ . : v

(2) X is locally compact and the set of all nonisolated points of X 1is separable.

4 The mapping i3 and F3(X)

In the last section, we shall obtain a characterization of a metrizable space X such
that i3 is quotient, and hence F3(X) is a k-space. To obtain it, we need another
neighborhood of e in F,(X) which is defined by the author in [12]. ,

Let X be a space and X=X {e} @® X!, where e is the identity of F(X ). Fix an
arbitrary n € N. For a subset U of X whlch includes the diagonal of X let W,(U)
be a subset of Fu,(X) which consists of the identity e and all words g satisfying the
following conditions;

(1) g can be represented as the reduced form g = T1Zo- -~ Lok, Where z; € X for
i = 1,2,... ,kand 1 <k < n,
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(2) there is a partition {1,2,... ,2k} = {i1,%s,... vie} U {51, 92, -+ -y Jk}
(8) h<iz<:--<irandi, < j, fors=1,2,...,k,

(4) (zi,,2;') €U for s=1,2,... ,k and

(5) i3<it <j3 @i3<jt<js fors,t=1,2,...,k.

The author proved in [12] that Wn(U) is a neighborhood of e in F3,(X) for every
U € Ux and n € N. Furthermore, we need the following lemma.

Lemma 4.1 Let X be a space and m,n € N with n < m. If B is a neighborhood of e
n Fnyn(X) and g € Fo(X), then gB N Fi(X) is a neighborhood of g in F(X).

Applying the above neighborhood W5(X) and Lemma 4.1 asn =1 and m = 3, we can
prove the following.

Proposition 4.2 If X is a locally compact metrizable space, then F(X) is a k-space,
and hence 1, is quotient.

~

Proposition 4.3 For a metrizable space X, if the set of all nonisolated points is com-
pact, then F3(X) is a k-space, and hence i3 is quotient.

Consequently, joining to Theorem 2.4, we have the following result.
Theorem 4.4 For a metrizable space X the following are equivalent:

(1) F3(X) is a k-space,

(2) As3(X) is a k-space,

(3) i3 is quotient (for both case),

(4) X is locally compact or the set of all nonisolated points is compact.

We remark that the author proved in [12] that a metrizable space X has to be compact
or discrete in order to i3 is closed (for both case).
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