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Certain covering-maps and k-networks

HREERE HPFRHE (Yoshio Tanaka)

The characterization for nice images of metric spaces is one of the most i,mbor_taht
problems in General Topology. Various kinds of characterizations have been obtained by
means of certain k-networks. For a survey in this field, see [T5], for example.

In this paper, we shall introduce a general type of covering-maps, o-(P)-maps associ-
ated with certain covering properties (P), in terms of o-maps defined by [L1].- Then, we
unify lots of characterizations and obtain new ones by means of these maps.

All spaces are regular and T , and all maps are continuous and onto. . -

Let P be a cover of a space X. Let (P) be a certain covering-property of P. Let us
say that P has property o-(P) if P can be expressed as U{P; : i € N}, where each P; is
a cover of X having the propery (P) such that P; C Pis1, and P; is closed under finite
intersections. (Sometimes, we may assume that X € P;). When P = Pi = Py for all
¢ € N, we shall say that P has property (P) (instead of o-(P)). -

In this paper, we shall restrict (P) to the covering-property which is (*): Locally finite;
Countable; Locally countable; Star-countable; or Point-countable.

Let us say that amap f: X - Y is a 0-(P)-map (resp. (P)-map) if, for some base
B = {B,: a} in X, the family f(B) = {f(B.) : a} has property g-(P) (resp. (P)).

Remark 1. In the above definition, we assume that the family f(B) = {f(Ba) : a}
is to be interpreted in the strict ” indexed ” sense, hence, the sets f(B,) are not requied
to be different. Thus, by the restriction (*), the base B = {Ba : a} must be at' least
point-countable, and f be an s-map (i.e., every f ~!(y) is separable). When f(B) is o-
locally finite, then X is a metrizable space with the o-locally finite base B ; Y is a o-space
with the o-locally finite network f(B)); and f~(L) is Lindelsf for every Lindelof subset
L of Y. When f(B) is locally countable or star-countable, then X is a locally separable,
metrizable space with the locally countable base B.

For map f: X — Y, the following hold in view of the above.

(a) If f is a o-(locally finite)-map, then X is metrizable.

(b) If f a (locally countable)-map or a (star-countable)-map, then X is locally sepa-
rable, metrizable.

(c) (i) f is a (countable)-map iff X is separable metric.

(ii) f is a (locally-finite)-map iff X and Y are discrete.

We do not consider a trivial case of (locally finite)-maps.

S. Lin [L1] introduced the concept of o-maps; that is, a map is a o-map if it is a
o-(locally finite)-map. Related to o-maps, let us review certain maps which are useful in
the theory of networks. K. Nagami [N] introduced a o-map f : X — Y in the following
sense: For every o-locally finite open cover G of X, f(G) has a refinement F such that
F is a o-locally finite closed cover of Y. Let us call such a map f a weak o-map here,
but we need not the closedness of the cover F. Related to o-maps of [N], E. Michael [E1]
(or [E2]) defined a o-locally finite map f : X — Y as follows: Every o-locally finite (not
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necessarily open) cover of X has a refinement P such that f ( ) is a o-locally finite cover
of Y. : L

The follow1ng 1rnphcatlon holds o-maps — o-locally ﬁnlte maps — weak o-maps,
but each converse need not hold; see Remark 2 below. »

For a cover P of a space X, we recall the following definitions. These are generahza—
tions of bases. For a survey around k-networks, see [T5], for example. -
P is a k-network if, for any compact set K and for any open set U such that K cU,
K C UF'C U for some finite F C P. (When K is a single pomt such a cover P is called
‘a network (or net)). As is well- known, a space X is called an R- space (resp No-space) if
X has a o-locally finite k-network (resp countable k-network).

P is a cs-network (resp. cs*- -network) if, for each z € X, each nbd % of z, and each
’convergent sequence L with the limit pomt z, there ex1sts P € P such that rePCV,
and P contalns L eventually (resp. frequently) :

P = U{’Pz 1T € X} Wlth each P closed under ﬁmte 1ntersect10ns is a weak base
if (a) each P € P, contains x; (b) for each z € X, and each nbd G of z, there exists

P(z) € P, such that P(z) C G; and (c) G C X is open in X if, for each z € G, there

exists P(z) € P, such that P(z) C G. A space X is called g-metrizable [S2] if X has a
o-locally finite weak base.

P = U{P,: z € X} satisfying the above (a) and’ (b) is an sn-network [L2] 1f for each
z € X,any Pe Py isa sequentlal nelghborhood of T (1 e., any sequence convergmg tozx
is eventually contained in P). ”

Remark 2. (i) Amap f: X =Y isa weak o-map 1f the followmg (a) or (b) holds.

(a) f is a closed map such that X is a o-space.

(b) f is an open map such that Y is subparacompact.

(In fact, for case (a), every open cover G of X has a refinement P wh1ch is a o-locally
finite closed network for X. But, f(P) is a o-closure preserving closed network for Y.
‘Thus, f(P) has a refinement which is a o-discrete closed network F in view of the proof
of [SNa; Theorem]. Then, F is a o-locally finite refinement of f(G)).

(ii) Let f : X — Y be a map. If (a) or (b) b) below holds, then fiso- locally finite ([M1]
or [M2]). Conversely, if f : X — Y is o-locally finite, then for any closed and w;- compact
‘subset L of Y (i.e., every uncountable subset of L has an accumulatlon po1nt) f- (L) is

wi-compact.

(a) fisa closed map wrth every f~(y) Lindeldf, and X or Y is subparacompact

(b) f(P) is o- locally ﬁn1te for some network P in X. (Thus, X and Y must be
o-spaces).
~ (iii) Let f : X — Y be amap such that X is a o-space. Then (a) < ~ (b) — (c) holds.
When f is closed, (a), (b), and (c) are equivalent, and (a) and (c) are equivalent under X
being subparacompact. (In fact, these hold by means of (n ) and [E2; Proposition 2. 2)).

(a) f is a o-locally finite map.

(b) f(P) is o-locally finite for some network P in X.

(c) Every f~'(y) is Lindelof.

The above shows that every o-locally finite image of a o-space is a o-space.” But,
every weak o-image (actually, open s- image) of a metric space need not be a g-space (by
the Michael-Line).

* For closed maps, we have the following. In (a) or (b), f can not been weaken to be a
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weak o-map in view of (i).

(iv) For a closed map f : X — Y with X metric, the following are equivalent.

(a) f is a o-map.

(b) f is a o-locally finite map.

~ (c) f is an s-map.

(d) X has a point-countable k-network consisting of closed subsets.

(e) X is an R-space.

(Indeed, (a) — (b) — (c) is already shown. For (c) « (d), see [T2], For (c) — (a),
since f is a closed s-map with Y paracompact, every o-locally finite base for X has a
refinement B such that B is a base for X and f(B) is o-locally finite in Y. (c) — (e)
holds by [Ga; Theorem 1)).

Concerning characterizations for o-spaces by means of maps, the following holds. (a)
< (b); (a) & (d) < (e); and (a) & (c) is respectively due to [L1]; [N]; and [E1] or [E2].

(v) For a space X, the following are equivalent. In (b), (c), and (e), the map can be
chosen to be one-to-one. In (d) and (e), the condition of the weak o-map is essential; see
(iii).

(a) X is a o-space.

(b) X is the image of a metric space under a o-map.

(c) X is the image of a metric space under a o-locally finite map.

(d) X is the image of a metric space under a one-to-one, weak o-map.

(e) X is the image of a metric space under a weak o-map f such that f~!(z) is
compact for every z € X.

Proposition: For amap f: X — Y, (1), (2), and (3) below hold.

(1) The following are equivalent.

(a) f is a (point-countable)-map.

(b) X has a point-countable base, and f is an s-map.

(c) X has a point-countable base, and f (B) is point-countable for any point-countable
base B in X. :

(2) Let X be locally separable, metric. Then the following are equivalent. ,

(a) f is a (locally countable)-map (resp. (star-countable)-map).

(b) Each point y € Y has a nbd V, with f71(Vy) (resp. each point £ € X has a nbd
W, with f~1(f(W,))) separable in X. _

(c) f(B) is locally countable (resp. star-countable) for any locally countable (resp.
star-countable) base B in X.

(d) f(B) is locally countable (resp. star-countable) for any star-countable base B in
X.

(3) Let X be locally separable, metric. Then the implications (a) — (b) — (c); and
(d) — (e) — (b) and (c) hold. When f is quotient, (a) ~ (f) are equivalent.

(a) f is a (locally countable)-map. ‘

(b) f~Y(L) is Lindeldf for every Lindeldf subset L of Y.

(c) f is a (star-countable)-map.

(d) f is a o-map.

(e) f is a o-locally finite map.

(f) f~1(L) is separable for every separable subset L of Y.

(Indeed, (1) holds in view of Remark 1(i). (2) would be routinely shown (cf. [TX;
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Proposition 1.1], but note that any star-countable base for X is locally countable. We
show (3) holds, but the implication (a) — (b) — (c) is routine, and (d) — (e) is already
shown. (e) — (b) holds by Remark 2(ii). For (e) — (c), let f be a o-locally finite map,
and let B be a o-locally finite base for X consisting of hereditarily Lindelof subsets. Then,
B has a refinement F such that f(F) is o-locally finite. For each B € B, f (B) meets
only countably many f(F,) € f(F) with F, € F, for f(B) is Lindelof. While, each
Lindelsf subset F, meets only countably many elements of B. Hence, each f(B) meets
only countably many elements of f(B). Then, f (B) is a star-countable cover of Y. Thus,
fisa (star-countable)-map. For the latter part, let (c) hold. Since f is quotient, ¥ is
determined by a star-countable cover C = f(B) for some base B in X. Thus, as in the
proof of [T3; Theorem 1], Y is the topological sum of subspaces, where each subspace is
a countable union of elements of C. Thus, the cover C is locally countable and o-locally
finite in Y. Thus (c) implies (a), (d), and (f). (f) — (c) would be routine).

Remark 3. In view of (a) « (d) in (2), (locally countable)-maps (resp. (star-
countable)-maps) coincide with locally countable maps (resp. star-countable maps) dis-
cussed in [TX].

We note that it is impossible to replace “ any star-countable base " by “ any locally
countable base ” in (d) for the parenthetic part.

Corollary 1. For a quotient map f : X — Y such that X is a locally separable,
metric space, the following are equivalent.

(a) f is a (locally countable)-map.

(b) f is a (star-countable)-map.

(c) f is a o-map.

(d) f is a o-locally finite map.

(¢) f~Y(L) is Lindeldf for every Lindeldf subset L of Y.

(f) f~1(S) is separable for every separable subset SofY.

For a map f : X — Y, let us recall the following definitions around compact-covering
maps.

f is sequence-covering [S1], if each convergent sequence in Y is the image of some
convergent sequence in X.

~ fis sequence-covering of [GMT), if each convergent sequence L in Y is the image

of some compact subset of X. In this paper, let us call such a sequence-covering map
of [GMT] pseudo-sequence-covering as in [ILuT]. (When “ convergent sequence L " is
replaced by “ compact set L ”, as is well-known, such a map f is called compact-covering).

f is subsequence-covering [LLuD], if for each y € Y, and each sequence L in Y con-
verging to y, there exists a convergent sequence K in X such that f(K) is a subsequence
of L. S
f is 1-sequence-covering [L3], if for each y € Y, there exists z € f~1(y) such that for
each sequence K converging to y, there exists a sequence L converging to z such that
f(L) = K. For 1-sequence-covering maps, see [LY], for example.

Let f : X — Y be a map such that X is sequential. If f is pseudo-sequence-covering,
then f is subsequence-covering. Also, f is quotient iff f is subsequence-covering such
that Y is sequential ([T4]).
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Lemma: Let f: X — Y be a o-(P)-map. Then the following hold.

(i) If f is quotient, then Y has a k-network having property o-(P).

(i) If. f is subsequence-covering (resp. sequence-covering; 1-sequence covering), then
Y has a csx-network (resp. cs-network; sn-network) having property o-(P).

(Indégd, for (i), let f(B) have property o-(P) for some base B in X. Let KcU
with K compact and U open in Y. Since f |f~*(U) is quotient, U is determined by a
point-countable cover U = {f(B) : B € B, f(B) c U}. Thus, K C UF C U for some
finite 7 C U by [GMT: Proposition 2.1]. This shows that f(B) is a k-network. (ii) is
routine). o ' : i

Every o-image of a metric space is a o-space, but need not be an N-space in view of
Remark 2(v). But, we have the following by the previous lemma and Corollary 1.

Corollary 2. (1) Every quotient o-image of a metric space is an N-space.
(2) Every quotient o-locally finite image of a locally separable, metric space is an
R-space. ' ' - '

Remark 4. (i) Every (1-sequence-covering) quotient o-locally finite image of a metric
space need not be an R-space (by the open finite-to-one image of a metric space in
Example 3.2 in [T1]). This shows that the local separability of the domain is essential in
Corollary 2(2).- ' o

(ii) Every quotient, finite-to-one, weak o-image of a locally compact, metric space
need not be an R-space, and need not satisfy each of (e) ~ (f) in Corollary 1, even if the
range is a paracompact g-space (by the example in [LT; Remark 14(2)]). Hence, we can
not replace “ g-locally finite ” by “ weak o ” in Corollary 1 and Corollary 2(2).

The nice characterization for quotient s-images of metric spaces was obtained by
[GMT], in 1984. Since then, lots of characterizations for certain images of metric spaces
have been obtained by many topologists by using the analogous methods to the proof of
[GMT; Theorem 6.1]. To unify these characterizations, we have General Theorem below.
This theorem (resp. its latter part) could be shown by modifying the proof of [Li; Lemma
2.1] (resp. [L2; Theorem]). But, we shall omit the proof here.

General Theorem: For a space X, the following are equivalent. Also, it is possible
to replace “ subsequence-covering ” by “ pseudo-sequence-covering ” in (b).

(a) X has a csx-network (resp. cs-network; sn-network) having property o-(P).

(b) X is the subsequence-covering (resp. sequence-covering; 1-sequence-covering) o-
(P)-image of a metric space.

The following is due to [Li]. Also, an analogous result for a o-(locally countable)-
property could be valid.

Corollary 3. A space X is an R-space iff X is the sequence-covering o-image of
a metric space. Also, it is possible to replace “ sequence-covering ” by ¢ subsequence-
covering " or “ pseudo-sequence-covering ” (cf. [L1]).

In the following, (a) < (b) is due to [L2] (resp. [LLuJ; [L3]).

Corollary 4. For a space X, the following are equivalent. Also, it is possible to
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replace “ subsequence-covering ” by “ pseudo-sequence-covering ” in (b) and (c).

(a) X has a point-countable cs*-network (resp. cs-network; sn-network).

(b) X is the subsequence-covering (resp. sequence-covering; 1-sequence-covering),
s-image of a metric space.

(c) X is the subsequence-covering (resp. sequence-covering; 1-sequence-covering),
(point-countable)-image of a metric space. ' ‘

In the following, (1) is (well) known, and some parts of (2) are shown in [TX].

13

Corollary 5. For a space X, the following hold. Also, it is possible to replace
subsequence-covering ” by ¢ pseudo-sequence-covering ” in (1) and (2), and to replace ¢
locally countable ” by “ star-countable ” in (2). | ' ‘

(1) X has a countable cs*-network (resp. cs-network; sn-network) iff X is the
subsequence-covering (resp. sequence-covering; 1-sequence-covering) image of a sepa-
rable metric space.

(2) X has a locally countable cs*-network (resp. cs-network; sn-network) iff X is the
subsequence-covering (resp. sequence-covering; 1-sequence-covering), (locally-countable)-
image of a locally separable metric space.

Remark 5. Related to (1), let us recall a result that, for a space X, X has a countable
cs*-network <> X has a countable cs-network < X is an No-space. Concerning (2), when
X is sequential, then X has a locally countable cs*-network < X has a locally countable
cs-network <« X is the topological sum of No-spaces. Also, we can replace “ locally
countable ” by “ star-countable.” (cf. [T5]). :

Corollary 6. (1) A space X is a sequential space with a point-countable cs*-network
iff X is the quotient s-image of a metric space ([T4] or [L2]). '

(2) A space X is a sequential space with a point-countable cs-network iff X is the
sequence-covering, quotient s-image of a metric space ([LLu]).

(3) A space X has a point-countable weak base iff X is the 1l-sequence-covering,
quotient s-image of a metric space ([L2]).

Corollary 7. For a space X, the following are equivalent. It is possible to replace
“ ocally countable ” by “ star-countable ” in (a) or (b). Moreover, if we replace “ csk-
network ” by “ cs-network (resp. sn-network) ” in (a), then the same equivalence holds
by adding the prefix “ sequence-covering (resp. 1-sequence-covering) ” before “ quotient
" in (b) ~ (e).

(a) X is a sequential space with a locally countable csx-network.

(b) X is the quotient (locally-countable)-image of a locally separable metric space.

(c) X is the quotient o-image of a locally separable metric space.

(d) X is the quotient o-locally finite image of a locally separable metric space.

(e) X is the image of a locally separable metric space under a quotient map f such
that f~1(8) is separable for every separable (or Lindelof) subset S of Y. ~

Corollary 8. (1) A space X is a k-and-R-space iff X is the (sequence-covering)
quotient o-image of a metric space.

(2) A space X is g-metrizable iff X is the quotient, 1-sequence-covering, o-image of
a metric space.
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