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The characterization for nice images of metric spaces is one of the most importantproblems in General Topology. Various kinds of characterizations have been obtained bymeans of certain k-networks. For a survey in this field, see $[\mathrm{T}5]_{1}$ for example.In this paper, we shall introduce ageneral type of covering-maps, a-(P) maps associ-ated with certain covering properties (P), in terms of $\mathrm{c}\mathrm{r}$-maps defined by [LI]. Then, weunify lots of characterizations and obtain new ones by means of these maps.All spaces are regular and $T_{1}$ , and all maps are continuous and onto.

Let $P$ be a cover of a space $X$ . Let (P) be a certain covering-property of $P$ . Let trssay that $P$ has property a-(P) if $P$ can be expressed as $\cup\{P_{\dot{l}} : i\in N\}$ , where each $P_{i}$ isa cover of $X$ having the propery (P) such that $P_{\dot{l}}\subset P_{\dot{l}+1}$ , and $P_{\dot{l}}$ is closed under finiteintersections. (Sometimes, we may assume that $X\in P_{i}$). When $P$ $=P_{\dot{l}}=P_{\dot{l}+1}$ for all
$i\in N$ , we shall say that $P$ has property (P) (instead of a-(P)).

In this Paper, we shall restrict (P) to the covering-property which is $(^{*})$ :Locally finite;Countablej Locally countable; Star-countable; or Point-countable.
Let us say that amap $f$ : $Xarrow Y$ is a $\sigma-(\mathrm{P})$-map(resp. (P)-map)if, for some base

$B=\{B_{\alpha} : \alpha\}$ in $X$ , the family $f(B)=\{f(B_{\alpha}):\alpha\}$ has property cr-(P) (resp. (P)).
Remark 1. In the above definition, we assume that the family $f(B)$ $=\{f(B_{\alpha}) : \alpha\}$

is to be interpreted in the strict ”indexed ”sense, hence, the sets $f(B_{\alpha})$ are not requied
to be different. Thus, by the restriction $(^{*})$ , the base $B=\{B_{\alpha} : \alpha\}$ must be at least

$1_{---11\cap\cdot..\tau}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}- \mathrm{c}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{b}1\mathrm{e}$, $\mathrm{a}\mathrm{n}\mathrm{d}.f\backslash \vee$ be ans-map— ($\mathrm{i}.\mathrm{e}.$ , every $f^{-1}(y)$ is separable). When $f(B)$ is a-
locally finite, then $X$ is ametrizable space withthe- $\mathrm{a}-\grave{1}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}\mathrm{f}\mathrm{i}\mathrm{f}\overline{\mathrm{i}}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{b}\mathrm{a}\acute{\mathrm{s}}\mathrm{e}B;$

$Y$ is
$-’$ -

$\mathrm{a}\mathrm{a}- \mathrm{s}\mathrm{p}-J^{--}$ ce
with the a-locally finite network $f(B))$ ;and $f^{-1}(L)$ is Lindelof for every Lindelof subset
$L\mathrm{o}.\mathrm{f}$ $.Y..\mathrm{W}$hen $f(B)\mathrm{i}\mathrm{s}$ loca$*–$ –

$11\mathrm{y}$ $\mathrm{c}$ountable or star-countable, then $X$ is alocally–separable,
metrizable space with the locally countable base $B$ .

For map $f$ : $Xarrow Y$ , the following hold in view of the above.
(a) If $f$ is a a-(locally fifinite)-map, then $X$ is metrizable.
(b) If $f\mathrm{a}$ (locally countable)-map or $\mathrm{a}$ (star-countable)-map, then $X$ is locally sepa-

rable, metrizable.
(c) (i) $f$ is $\mathrm{a}$ (countable)-map iff $X$ is separable metric,
(ii) $f$ is a(locally-fifinite)-map iff $X$ and $Y$ are discrete.
We do not consider a trivial case of (locally finite)-maps.

S. $\mathrm{L}\mathrm{i}\mathrm{n}[\mathrm{L}1]$ introduced the concept of $\mathrm{a}$-maps; that is, amap is aa-map if it is a
a-(locally fifinite)-map. Related to a-maps, let us review certain maps which are useful in
the theory of networks. K. Nagami [N] introduced aa-map $f$ : $Xarrow Y$ in the following
sense: For every a-locally finite open cover $\mathcal{G}$ of $X$ , $f(\mathcal{G})$ has arefinement $\mathcal{F}$ such that
$\mathcal{F}$ is aa-locally finite closed cover of Y. Let us call such amap $f$ aweak a map here,
but we need not the closedness of the cover $\mathcal{F}$ . Related to $\mathrm{c}\mathrm{r}$-maps of [N], E. Michael [E1]
(or [E2]) defined aa-locally finite map $f$ : $Xarrow Y$ as follows: Every a-locally finite (not
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necessarily open) cover of $X$ has arefinement $P$ such that $f(P)$ is a $\sigma$-locally finite cover
of $Y$ .

The following implication holds: a-maps $arrow\sigma$-locally finite maps $arrow \mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}$ a-maps,
but each converse need not hold; see Remark 2below.

For acover $P$ of a space $X$ , we recall the following definitions. These are generaliza-
tions of bases. For asurvey around $k$-networks, see [T5], for example.

$P$ is a $k$-network if, for any compact set $K$ and for any open set $U$ such that $K\subset U$ ,
$K\subset\cup \mathcal{F}\subset U$ for some finite $\mathcal{F}$ $\subset P$ . (When $K$ is asingle point, such acover $P$ is called
anetwork (or net) $)$ . As is well-known, aspace $X$ is called an $\aleph$-space(resp. $\aleph_{0^{-}}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}$) if
$X$ has aa-locally finite A-network (resp. countable $/\mathrm{c}$-network).

$P$ is a $cs$-network(resp. $cs*$-network)if, for each $x\in X.$’each $\mathrm{n}\mathrm{b}\mathrm{d}V$ of $x$ , and each
convergent sequence $L$ with the limit point $x$ , there exists $P\in P$ such that $x\in P\subset V$ ,

and $P$ contains $L$ eventually (resp. frequently).
$P$ $=\cup\{P_{x} : x\in X\}$ with each $P_{x}$ closed under finite intersections is a weak base

if (a) each $P\in P_{x}$ contains $\mathrm{x};(\mathrm{b})$ for each $x\in X$ , and each nbd $G$ of $x$ , there exists
$\mathrm{P}(\mathrm{x})\in P_{x}$ such that $P(x)\subset G$ ;and (c) $G\subset X$ is open in $X$ if, for each $x\in G$ , there
exists $P(x)\in P_{x}$ such that $P(x)\subset G$ . Aspace $X$ is called $g$-metrizable[S2] if $X$ has a
a-locally finite weak base.

$P=\cup\{P_{x} : x\in X\}$ satisfying the above (a) and (b) is an $sn$-network[L2] if, for each
$x\in X$ , any $P\in P_{x}$ is asequential neighborhood of $x$ (i.e., any sequence converging to $x$

is eventually contained in $P$).

Remark 2. (i) Amap $f$ : $Xarrow Y$ is aweak $\mathrm{c}\mathrm{r}$-map if the following (a) or (b) holds.
(a) $f$ is aclosed map such that $X$ is aa-space.
(b) $f$ is an open map such that $Y$ is subparacompact.
(In fact, for case (a), every open cover $\mathcal{G}$ of $X$ has arefinement $P$ which is aa-locally

finite closed network for $X$ . But, $f(P)$ is a $\mathrm{c}\mathrm{r}$ -closure preserving closed network for $Y$ .
Thus, $f(P)$ has arefinement which is aa-discrete closed network $\mathcal{F}$ in view of the proof

of [$\mathrm{S}\mathrm{N}\mathrm{a}$;Theorem]. Then, ?is aa-locally finite refinement of $f(\mathcal{G}))$ .
(ii) Let $f$ : $Xarrow Y$ be amap. If (a) or (b) below holds, then $f$ is a-locally finite ([M1]

or [M2] $)$ . Conversely, if $f$ : $Xarrow Y$ is $\mathrm{a}$-locally finite, then for any closed, and $\omega_{1^{-}}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}$

subset $L$ of $Y$ (i.e., every uncountable subset of $L$ has an accumulation point), $f^{-1}(L)$ is

$\omega_{1}$ compact
(a) $f$ is aclosed map with every $f^{-1}(y)$ Lindel\"of, and $X$ or $Y$ is subparacompact.

(b) $f(P)$ is a-locally finite for some network $P$ in X. (Thus, $X$ and $Y$ must be

a-spaces).
(iii) Let $f$ : $Xarrow Y$ be amap such that $X$ is aa-space. Then (a) $rightarrow(\mathrm{b})arrow(\mathrm{c})$ holds.

When $f$ is closed, (a), (b), and (c) are equivalent, and (a) and (c) are equivalent under $X$

being subparacompact. (In fact, these Hold by means of (ii) and [E2; Proposition 2.2]).

(a) $f$ is aa-locally finite map.
(b) $f(P)$ is a-locally finite for some ne twork $P$ in $X$ .
(c) Every $f^{-1}(y)$ is Lindel\"of.
The above shows that every a-locally finite image of aa-space is aa-space. But,

every weak a-image (actually, open $s$-image)of ametric space need not be aa-space (by

the Michael-Line).
For closed maps, we have the following, In (a) or (b), $f$ can not been weaken to be a
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weak $\sigma$-map in view of (i).
(iv) For a closed map $f$ : $Xarrow Y$ with $X$ metric, the following are equivalent.
(a) $f$ is aa-map.
(b) $f$ is $\mathrm{a}$ (7-10cally finite map.
(c) $f$ is an s-map.
(d) $X$ has a point-countable $k$-network consisting of closed subsets.
(e) $X$ is an R-space.
(Indeed, $(\mathrm{a})arrow(\mathrm{b})arrow(\mathrm{c})$ is already shown. For (c) $rightarrow(\mathrm{d})$ , see [T2], For $(\mathrm{c})arrow(\mathrm{a})$ ,since $f$ is aclosed s-map with $Y$ paracompact, every $\mathrm{a}$-locaUy finite base for $X$ has arefinement $B$ such that $B$ is abase for $X$ and $f(B)$ is $\mathrm{a}$-locally finite in Y. $(\mathrm{c})arrow(\mathrm{e})$

holds by [Ga; Theorem 1] $)$ .
Concerning characterizations for $\mathrm{a}$-spaces by means of maps, the following holds. (a)

$rightarrow(\mathrm{b});(\mathrm{a})rightarrow(\mathrm{d})rightarrow(\mathrm{e})$ ; and $(\mathrm{a})rightarrow(\mathrm{c})$ is respectively due to [L1]; [N]; and [E1] or [E2].(v) For a space $X$ , the following are equivalent. In (b), (c), and (e), the map can bechosen to be one-t0-0ne. In (d) and (e), the condition of the weak $\sigma$-map is essential; see(iii).
(a) $X$ is a a-space.
(b) $X$ is the image of ametric space under acr-map.
(c) $X$ is the image of a metric space under a $\mathrm{c}\mathrm{r}$-locally finite map.
(d) $X$ is the image of a metric space under aone-t0-0ne, weak cr-map.
(e) $X$ is the image of ametric space under aweak $\mathrm{c}\mathrm{r}$-map $f$ such that $f^{-1}(x)$ is

compact for every $x\in X$ .
Proposition: For a map $f$ : $Xarrow Y$ , (1), (2), and (3) below hold.
(1) The following are equivalent.
(a) $f$ is $\mathrm{a}$ (point-countable)-map.
(b) $X$ has apoint-countable base, and $f$ is an s-map.
(c) $X$ has a point-countable base, and $f(B)$ is point-countable for any point-countable

base $B$ in $X$ .
(2) Let $X$ be locally separable, metric. Then the following are equivalent.
(a) $f$ is a(locally countable)-map (resp. (star-countable)-map).
(b) Each point $y\in Y$ has a $\mathrm{n}\mathrm{b}\mathrm{d}V_{y}$ with $f^{-1}(V_{y})$ (resp. each point $x\in X$ has anbd

$W_{x}$ with $f^{-1}(f(W_{x})))$ separable in $X$ .
(c) $f(B)$ is locally countable (resp. star-countable) for any locally countable (resp.

star-countable) base $B$ in $X$ .
(d) $f(B)$ is locally countable (resp. star-countable) for any star-countable base $B$ in

$X$ .
(3) Let $X$ be locally separable, metric. Then the implications (a) $arrow(\mathrm{b})arrow(\mathrm{c})$ ;and

$(\mathrm{d})arrow(\mathrm{e})arrow(\mathrm{b})$ and (c) hold. When $f$ is quotient, $(\mathrm{a})\sim(\mathrm{f})$ are equivalent.
(a) $f$ is a(locally countable)-map.
(b) $f^{-1}(L)$ is Lindel\"of for every Lindel\"of subset $L$ of Y.
(c) $f$ is a(star-countable)-map.
(d) $f$ is as-map.
(e) $f$ is a $\mathrm{a}$-locally finite map.
(f) $f^{-1}(L)$ is separable for every separable subset $L$ of Y.
(Indeed, (1) holds in view of Remark 1(i). (2) would be routinely shown (cf. [$\mathrm{T}\mathrm{X}$ ;
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Proposition 1.1], but note that any star-countable base for $X$ is locally countable. We

show (3) holds, but the implication $(\mathrm{a})arrow(\mathrm{b})arrow(\mathrm{c})$ is routine, and $(\mathrm{d})arrow(\mathrm{e})$ is already
shown, (e) $arrow(\mathrm{b})$ holds by Remark $2(\mathrm{i}\mathrm{i})$ . For $(\mathrm{e})arrow(\mathrm{c})$ , let $f$ be a $\sigma$-locally finite map,

and let $B$ be aa-locally finite base for $X$ consisting of hereditarily Lindel\"of subsets. Then,
$B$ has arefinement $\mathcal{F}$ such that $f(\mathcal{F})$ is a-locally finite. For each $B\in B$ , $f(B)$ meets

only countably many $f(F_{n})\in f(\mathcal{F})$ with $F_{n}\in \mathcal{F}$ , for $f(B)$ is Lindel\"of. While, each
Lindel\"of subset $F_{n}$ meets only countably many elements of $B$ . Hence, each $f(B)$ meets

only countably many elements of $f(B)$ . Then, $f(B)$ is a star-countable cover of $Y$ . Thus,

$f$ is $\mathrm{a}$ (star-countable)-map. For the latter part, let (c) hold. Since $f$ is quotient, $Y$ is

determined by astar-countable cover $C$ $=f(B)$ for some base $B$ in $X$ . Thus, as in the

proof of [T3; Theorem 1], $Y$ is the topological sum of subspaces, where each subspace is

acountable union of elements of C. Thus, the cover $\mathrm{C}$ is locally countable and a-locally

finite in $Y$ . Thus (c) implies (a), (d), and (f). (f) $arrow(\mathrm{c})$ would be routine).

Remark 3. In view of (a) ” (d) in (2), (locally countable)-maps (resp. (star-

countable)-maps) coincide with locally countable maps (resp. star-countable maps) dis-

cussed in [TX].
We note that it is impossible to replace “any star-countable base ”by “any locally

countable base ”in (d) for the parenthetic part.

Corollary 1. For aquotient map $f$ : $Xarrow Y$ such that $X$ is alocally separable,

metric space, the following are equivalent.
(a) $f$ is a(locally countable)-map.
(b) $f$ is a(star-countable)-map.
(c) $f$ is acr-map.
(d) $f$ is aa-locally finite map.
(e) $f^{-1}(L)$ is Lindel\"of for every Lindel\"of subset $L$ of $Y$ .
(f) $f^{-1}(S)$ is separable for every separable subset $S$ of $Y$ .

For amap $f$ : $Xarrow Y$ , let us recall the following definitions around compact-covering

maps.
$f$ is sequence-covering [SI], if each convergent sequence in $Y$ is the image of some

convergent sequence in $X$ .
$f$ is sequence-covering of [GMT], if each convergent sequence $L$ in $Y$ is the image

of some compact subset of $X$ . In this paper, let us call such asequence-covering map

of [GMT] pseudO-sequence-covering as in [ILuT]. (When “convergent sequence $L$ ” is

replaced by “compact set $L$ ”, as is well-known, such a map $f$ is called compact-covering).

$f$ is subsequence-covering [LLuD], if for each $y\in Y$ , and each sequence $L$ in $Y$ con-

verging to $y$ , there exists a convergent sequence $K$ in $X$ such that $f(K)$ is a subsequence

of $L$ .
$f$ is l-sequence-covering [L3], if for each $y\in Y$ , there exists $x\in f^{-1}(y)$ such that for

each sequence $K$ converging to $y$ , there exists asequence $L$ converging to $x$ such that

$f(L)=K$. For l-sequence-covering maps, see [LY], for example.

Let $f$ : $Xarrow Y$ be amap such that $X$ is sequential. If $f$ is pseudo-sequence-covering,
then $f$ is subsequence-covering. Also, $f$ is quotient iff $f$ is subsequence-covering such

that $Y$ is sequential ([T4])
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Lemma: Let $f$ : $Xarrow Y$ be a a-(P)-map. Then the following hold.
(i) If $f$ is quotient, then $Y$ has a $k$-network having property $\sigma-(\mathrm{P})$ .
(ii) If $f$ is subsequence-covering (resp. sequence-covering; 1-sequence covering), then

$Y$ has a $cs*$-network (resp. cs-network; sn-network) having property a-(P).
(Indeed, for (i), let $\mathrm{f}(\mathrm{B})$ have property a-(P) for some base $B$ in $X$ . Let $K\subset U$

with $K$ compact and $U$ open in $Y$ . Since $f|f^{-1}(U)$ is quotient, $U$ is determined by a
point-countable cover $\mathcal{U}=\{f(B) : B\in B, f(B)\subset U\}$ . Thus, $K\subset\cup \mathcal{F}\subset U$ for some
finite $\mathcal{F}$ $\subset \mathcal{U}$ by [GMT: Proposition 2.1]. This shows that $f(B)$ is a $k$-network. (ii) is
routine).

Every a-image of ametric space is a $\mathrm{t}\mathrm{f}$-space, but need not be an $\aleph$-space in view of
Remark $2(\mathrm{v})$ . But, we have the following by the previous lemma and Corollary 1.

Corollary 2. (1) Every quotient $\mathrm{a}$-image of ametric space is an N-space.
(2) Every quotient a-locally finite image of alocally separable, metric space is an

N-space.

Remark 4. (i) Every (l-sequence-covering) quotient a-locally finite image of ametric
space need not be an $\aleph$-space(by the open finite-t0-0ne image of ametric space in
Example 3.2 in [T1] $)$ . This shows that the local separability of the domain is essential in
Corollary $2(2)$ .

(ii) Every quotient, finite-t0-0ne, weak a-image of alocally compact, metric space
need not be an $\aleph$-space, and need not satisfy each of $(\mathrm{e})\sim(\mathrm{f})$ in Corollary 1, even if the
range is aparacompact a-space (by the example in $[\mathrm{L}\mathrm{T}$;Remark 14(2)]). Hence, we can
not replace “a-locally finite ”by “weak $\mathrm{a}$

” in Corollary 1and Corollary $2(2)$ .
The nice characterization for quotient $s$-images of metric spaces was obtained by

[GMT], in 1984. Since then, lots of characterizations for certain images of metric spaces
have been obtained by many topologists by using the analogous methods to the proof of
[GMT; Theorem 6.1]. To unify these characterizations, we have General Theorem below.
This theorem (resp. its latter part) could be shown by modifying the proof of [Li; Lemma
2.1] (resp. [L2; Theorem]). But, we shall omit the proof here.

General Theorem: For aspace $X$ , the following are equivalent. Also, it is possible
to replace “subsequence-covering ”by “pseud0-sequence-covering ”in (b).

(a) $X$ has a $cs*$-network(resp. $cs$-network; $sn$-network)having property a-(P).
(b) $X$ is the subsequence-covering (resp. sequence-covering; l-sequence-covering) a-

$(\mathrm{P})$-image of ametric space.

The following is due to [Li]. Also, an analogous result for a $\sigma$-(locally countable)-
property could be valid.

Corollary 3. Aspace $X$ is an $\aleph$-space iff $X$ is the sequence-covering a-image of
ametric space. Also, it is possible to replace “sequence-covering ”by “subsequence-
covering ”or “pseud0-sequence-covering ”(cf. $[\mathrm{L}1]$ ).

In the following, (a) $rightarrow(\mathrm{b})$ is due to [L2] (resp. [LLu]; [L3]).

Corollary 4. For aspace $X$ , the following are equivalent. Also, it is possible to
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replace “subsequence-covering ”by “pseud0-sequence-covering ”in (b) and (c).
(a) $X$ has apoint-countable $cs*$-network(resp. $cs$-network;sn-network).
(b) $X$ is the subsequence-covering (resp. sequence-covering; l-sequence-covering),

$s$-image of ametric space.
(c) $X$ is the subsequence-covering (resp. sequence-covering; l-sequence-covering),

(point-countable)-image of ametric space.

In the following, (1) is (well) known, and some parts of (2) are shown in [TX].

Corollary 5. For aspace $X$ , the following hold. Also, it is possible to replace “

subsequence-covering ”by “pseud0-sequence-covering ”in (1) and (2), and to replace “

locally countable ”by “star-countable ”in (2).
(1) $X$ has acountable $cs*$-network(resp. $cs$-network; $sn$-network)iff $X$ is the

subsequence-covering (resp. sequence-covering; l-sequence-covering) image of asepa-
rable metric space.

(2) $X$ has alocally countable $cs*$-network(resp. $cs$-network; $sn$-network)iff $X$ is the
subsequence-covering (resp. sequence-covering; l-sequence-covering, (locally-countable)-
image of alocally separable metric space.

Remark 5. Related to (1), let us recall aresult that, for aspace $X$ , $X$ has acountable
$cs*- \mathrm{n}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}rightarrow X$ has acountable $cs- \mathrm{n}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}rightarrow X$ is an $\aleph_{0}$-space. Concerning (2), when
$X$ is sequential, then $X$ has alocally countable $cs*- \mathrm{n}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}rightarrow X$ has alocally countable
$cs- \mathrm{n}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}rightarrow X$ is the topological sum of $\aleph_{0}$ -spaces. Also, we can replace “locally

countable ”by “star-countable ”(cf. [T5]).

Corollary 6. (1) Aspace $X$ is asequential space with apoint-countable $cs*$-network
iff $X$ is the quotient $s$-image of ametric space ([T4] or [L2]).

(2) Aspace $X$ is asequential space with apoint-countable $cs$-network iff $X$ is the
sequence-covering, quotient $s$-image of ametric space ([LLu]).

(3) Aspace $X$ has apoint-countable weak base iff $X$ is the l-sequence-covering,
quotient $s$-image of ametric space ([L2]).

Corollary 7. For aspace $X$ , the following are equivalent. It is possible to replace

“locally countable ”by “star-countable ”in (a) or (b). Moreover, if we replace “ $cs*-$

network ”by “
$cs$-network(resp. $sn$-network)”in (a), then the same equivalenc$\mathrm{e}$ holds

by adding the prefix “sequence-covering (resp. l-sequence-covering) ”before “quotient
,, in $(\mathrm{b})\sim(\mathrm{e})$ .

(a) $X$ is asequential space with alocally countable $cs*$-network.
(b) $X$ is the quotient (locally-countable)-image of alocally separable metric space.
(c) $X$ is the quotient a-image of alocally separable metric space.
(d) $X$ is the quotient a-locally finite image of alocally separable metric space.
(e) $X$ is the image of alocally separable metric space under aquotient map $f$ such

that $f^{-1}(S)$ is separable for every separable (or Lindel\"of) subset $S$ of $Y$ .

Corollary 8. (1) Aspace $X$ is a $k- \mathrm{a}\mathrm{n}\mathrm{d}-\aleph$-space iff $X$ is the (sequence-covering)
quotient $\mathrm{s}$-image of ametric space.

(2) Aspace $X$ is $g$-metrizable iff $X$ is the quotient, l-sequence-covering, s-image of
ametric space.
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