
NON-TRIVIAL LIMIT LAWS IN TOPOLOGICAL GROUPS: HOW
SIMPLE CAN THEY BE?

S. MORRIS, P. NICHOLAS, AND D. SHAKHMATOV

ABSTRACT. Alimit law is amap $f$ : $(D, \leq)arrow \mathrm{F}(\mathrm{X})$ ffom a directed set $(D, \leq)$ to a
free group $F(X)$ over some set $X$ . Atopological group $G$ satisfies limit law $f$ (we also
say that $f$ holds in $G$) provided that for every group homomorphism $\pi$ : $\mathrm{F}(\mathrm{X})arrow G$

from $F(X)$ to $G$ and each open set $U$ containing the identity elelemt $ec$ of $G$ there
exists some $d\in D$ such that $\pi(f(c))\in U$ for all $c\geq d$. For agroup $G$ alimit law
$f$ : $(D, \leq)arrow F(X)$ is called $G$-algebraic provided that there exists $d\in D$ such that
$\pi(f(c))=e_{G}$ whenever $c\geq d$ and $\pi:F(X)arrow G$ is agroup homomorphism. Alimit law
that is not $G$-algebraic is called essentially $G$-topological Main result: If aaHausdorff
group $G$ satisfies some essentially $G$-topological limit law $f$ : $(D, \leq)arrow F(X)$ such that
$(D, \leq)$ is either alinearly ordered set or acountable partially ordered set, then $G$ also
satisfies some essentially $G$-topological limit law $f’$ : $(\mathrm{N}, \leq)arrow F(X)$ having the usual
set of integers $(\mathrm{N}, \leq)$ as its domain. It follows that if $G$ is one of the three classical
locally compact groups, $\mathbb{Z}$ (integers), $\mathbb{R}$ (reals) or $\mathrm{T}$ (unit circle), then every limit law
with alinearly ordered domain that holds in $G$ is G-algebraic.

As usual, the symbol $F(X)$ denotes the free group over aset $X$ . If $G$ is agroup,
then $e_{G}$ denotes the identity element of $G$ . The identity element of $F(X)$ will be simply
denoted by $e$ .

Apartially ordered set (or shortly, posei) is apair $(D, \leq)$ consisting of aset $D$ together
with aralation $\leq \mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ is:

(i) refleive, i.e. $d\leq d$ for each $d\in D$ , and
(ii) transitive, i.e. $d_{0}\leq d_{1}$ and $d_{1}\leq d_{2}$ implies $d_{0}\leq d_{2}$ .
Apartially ordered set $(D, \leq)$ is directed provided that for every pair $d_{0},d_{1}\in D$ of

elements of $D$ there exists $d\in D$ such that $d_{0}\leq d$ and $d_{1}\leq d$ .
Limit laws were introduced in [4] and recently studied extensively in $[1, 3]$ . Alimit law

is amap $f$ : $(D, \leq)arrow F(X)$ from adirected set $(D, \leq)$ to afree group $F(X)$ over some
set $X$ . We say that alimit law $f$ : $(D, \leq)arrow F(X)$ holds in atopological group $G$ , or
that $G$ satisfies laut $f$ , provided that for every group homomorphism $\pi$ : $F(X)arrow G$ from
$F(X)$ to $G$ the directed set $\{\pi(f(d)) : d\in D\}$ converges to the identity element $e_{G}$ of $G$ ;
that is, for every open set $U$ containing $e_{G}$ there exists $d\in D$ such that $\pi(f(c))\in U$ for
all $c\geq d$ .

Let $G$ be agroup. Alimit law $f$ : $(D, \leq)arrow F(X)$ will be called $G$-algebraic provided
that there exists some $d\in D$ such that $\pi(f(c))=e_{G}$ whenever $c\geq d$ and $\pi$ : $F(X)arrow G$

is agroup homomorphism. If $G$ is atopological group, then a $G$-algebraic limit law
automatically holds in $G$ for an obvious algebraic reason, thereby justifying its name.

Main results of this paper were obtained in March-April of 1997 when the third author was visiting
Mathematical Analysis Research Group of University of Wollongong. He would like to thank cordially
the first two authors and University of Wollongong for their generous hospitality and financial support.

This is an extended abstract of the talk presented by the third author at the Workshop on General
and Geometric Topology and its Application held on October 17-19, 2001 at the Research Institute for
Mathematical Sciences (RIMS) of Kyoto University (Kyoto, Japan).
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Note that the topology of the group $G$ plays absolutely no role in “deciding” whether a
$G$-algebraic law holds in $G$ or not; everything is determined by the algebraic structure
of $G$ . Therefore, from atopological point of view, $G$-algebraic laws are trivial and not
particularly interesting. Alimit law that is not $G$-algebraic will be called essentially
$G$ -topological. Contrary to $G$-algebraic laws, the topology of the group $G$ plays acrucual
role in (really!) deciding whether an essentially $G$-topological law holds in $G$ or not; this
both explains the choice of our terminology and indicates that essentially G-topological
laws are of special interest from the topological point of view.

It appears to be natural to adopt the (luck of) complexity of apartially ordered set
$(D, \leq)$ as ameasure of “simplicity” of alimit law $f$ : $(D, \leq)arrow F(X)$ . The main purpose
of this article is to demonstrate that the three classical locally compact groups, the group
$\mathbb{Z}$ of integer numbers, the group $\mathbb{R}$ of real numbers and the unit circle group $\mathrm{T}$ , do not
satisfy any “simple” essentially $G$-topological law (see Corollary 14).

Lemma 1. Let $f$ : $(D, \leq)arrow F(X)$ be a limit law that holds in a Hausdorff topological
group G. If $(D, \leq)$ has a biggest element (in particular, if the poset ( $D,$ $\leq$ ) finite), then
$f$ is G-algebraic.

Proof Let $a$ be abiggest element of $(D, \leq)$ . First suppose that there exists agroup
homomorphism $\pi$ : $F(X)arrow G$ such that $\pi(f(a))\neq e_{G}$ . Then $U=G\backslash \{\pi(f(a))\}$ is an
open neighbourhood of $e_{G}$ by Hausdorffness of $G$ . Since $f$ holds in $G$ , there exists $c\in D$

with $\pi(f(d))\in U$ for all $d\geq c$ . Since $a$ is the biggest element of $(D, \leq)$ , it follows that
$\mathrm{n}(\mathrm{f}(\mathrm{a}))\in U=G\backslash \{\pi(f(a))\}$ , acontradiction. Therefore $\pi(f(a))=e_{G}$ for every group
homomorphism $\pi$ : $F(X)arrow G$ . Since $a$ is the biggest element of $(D, \leq)$ , we also have
that $\pi(f(d))=e_{G}$ whenever $d\in D$ , $d\geq a$ and $\pi$ : $F(X)arrow G$ is agroup homomorphism.
This means that $f$ is G-algebraic. $\square$

Asubset $C$ of adirected set $(D, \leq)$ is called cofinal in $(D, \leq)$ if for every $d\in D$ there
exists $c\in C$ with $d\leq c$ .

Let $f$ and $g$ be limit laws. We will write $f\Leftarrow g$ provided that $f$ holds in every
topological group in which $g$ holds.

Lemma 2. If $f$ : $(D, \leq)arrow F(X)$ is a limit larn and $C$ is a cofinal subset of $(D, \leq)$ , then
the restriction $f|c:Carrow F(X)$ of $f$ to $C$ is a limit law and $f|c\Leftarrow f$ .

Proof Being acofinal subset of adirected set $(D, \leq)$ , the partially ordered set $(C, \leq)$

is also directed, and so $f|c$ is alimit law. Let $G$ be atopological group in which $f$

holds. We are going to prove that $f|c$ also holds in $G$ . Indeed, let $\pi$ : $F(X)arrow G$ be
ahomomorphism from $F(X)$ to $G$ . Let $U$ be an open subset of $G$ which contains the
identity element $ec$ . Since $f$ holds in $G$ , there exists some $d\in D$ such that $\pi(f(c))\in U$

for all $c\geq d$ . Since $C$ is cofinal in $(D, \leq)$ , one can find $c0\in C$ with $c0\geq d$ .
$\mathrm{C}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{l}\mathrm{y}\square$

.
$\pi(f(c))\in U$ for all $c\geq c_{0}$ .

Asequential larn is alimit law $f$ : $(\mathrm{N}, \leq)arrow F(X)$ with the set $(\mathrm{N}, \leq)$ of natural
numbers as its directed set. Acountable larv is alimit law $f$ : $(D, \leq)arrow F(X)$ whose

domain $(D, \leq)$ is acountable directed set.
In view of Lemma 1, the cardinality of the domain of an essentially $G$ topological law

must be infinite, and thus countable laws are potentially the simplest possible essentially
$G$-topological laws. This explains why our first theorem considers such laws.

Theorem 3. Let $G$ be a Hausdorff group. If $G$ satisfies some essentially G-topological
countable law, then it also satisfies some essentially $G$ -topological sequential law

19



Proof. Let $G$ be aHausdorff group and let $f$ : $(D, \leq)arrow F(X)$ be an essentially G-
topological countable limit law that holds in $G$ . Let $D=\{d_{n} : n\in \mathrm{N}\}$ be an enumeration
of $D$ . According to Lemma 1the poset $(D, \leq)$ does not have the biggest element. Using
this fact, directedness of $(D, \leq)$ and the fact that $f$ is essentially $G$-topological we can
easily choose, by induction on $n$ , an element $c_{n}\in D$ and agroup homomorphism $\pi_{n}$ :
$F(X)arrow G$ such that $d_{n}\leq c_{n}$ , $c_{n-1}<c_{n}$ and $\pi_{n}(f(c_{n}))\neq ec$ . By our construction,
$C=\{c_{n} : n\in N\}$ is cofinal in $(D, \leq)$ and therefore $f|c\Leftarrow f$ by Lemma 2. Since $f$

holds in $G$ , so does $f|c$ . By our construction, $(C, \leq)$ is order isomorphic to $(\mathrm{N}, \leq)$ and
$\pi_{n}(f(c))\neq ec$ for all $c\in C$ . Thus $f|c$ is an essentially $G$-topological sequential law. Cl

Recall that acardinal $\tau$ is called singular provided that there exists acardinal $\kappa$ $<\tau$

and atransfinite sequence $\{\tau_{\beta} : \beta<\kappa\}$ of cardinals such that $\sup\{\tau_{\beta} : \beta<\kappa\}=\tau$ and
$\mathcal{T}\beta<\tau$ for each $\beta<\kappa$ . Acardinal is regular if it is not singular.

If $X$ is aset, $G$ is agroup and $\varphi$ : $Xarrow G$ is amap, then $\hat{\varphi}:F(X)arrow G$ will denote
the (unique) extension of $\varphi$ over $F(X)$ that is agroup homomorphism. If $y\in \mathrm{F}(\mathrm{X})$

and $y\neq e$ , then $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}y$ denotes the smallest subset $\mathrm{Y}$ of $X$ such that $y$ belongs to the
subgroup of $F(X)$ generated by Y. Note that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}$ is always finite.

Our next lemma establishes an algebraic fact about free groups that is perhaps of some
independent interest.

Lemma 4. If $X$ is a set and $Z$ is a subset of $F(X)$ of uncountable regular cardinality,
then there eist $\mathrm{Y}\subseteq Z$ , $y^{*}\in \mathrm{Y}$ and a map $\varphi:Xarrow X$ such $that|\mathrm{Y}|=|Z|$ and $\hat{\varphi}(y)=y^{*}$

for all $y\in \mathrm{Y}$ .

Proof. Without loss of generality we will assume that $z\neq e$ for each $z\in Z$ . Note that
$\{\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z :z\in Z\}$ is afamily of non-empty finite subsets of $X$ , so by the $\Delta$-system Lemma
(see, for example, [2, Ch. $\mathrm{I}\mathrm{I}$ , Theorem 1.6]) there exists afinite (possibly empty) set
$T\subseteq X$ and $Z’\subseteq Z$ such that $|Z’|=|Z|$ and $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z’=T$ whenever $z$ , $z’\in Z’$

and $z\neq z’$ . For each $n\in \mathrm{N}\backslash \{0\}$ define $Z_{n}’=\{z\in Z’ : |\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z|=n\}$ and note that
$Z’=\cup\{Z_{n}’ : n\in \mathrm{N}\backslash \{0\}\}$ . Since $|Z’|=|Z|$ is an uncountable regular cardinal, it follows
that $|Z_{n}’|=|Z’|$ for some $n\in \mathrm{N}\backslash \{0\}$ . Pick arbitrarily $z^{*}\in Z_{n}’$ . For each $z\in Z_{n}’\backslash \{z^{*}\}$

choose abijection $h_{z}$ : $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z$ $arrow \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z^{*}$ such that $h_{z}(t)=t$ for all $t\in T$ , and let
$\overline{h_{z}}$ : $F(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z)arrow F(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z^{*})$ be the natural homomorphic extension of $h_{z}$ over $F(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z)$ .
Since the set $F(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z^{*})$ is at most countable, and $|Z_{n}’\backslash \{z^{*}\}|=|Z_{n}’|=|Z’|=|Z|$ is an
uncountable regular cardinal, there exist $g\in F(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}z^{*})$ and $\mathrm{Y}\subseteq Z_{n}’$ such that $|\mathrm{Y}|=|Z_{n}’|$

and $\overline{h_{y}}(y)=g$ for all $y\in \mathrm{Y}$ . Pick $y^{*}\in \mathrm{Y}$ arbitrarily. For each $y\in \mathrm{Y}$ define the map
$f_{y}$ : $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}yarrow \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}y^{*}$ by $f_{y}=h_{y^{*}}^{-1}\circ h_{y}$ and note that the restriction of $f_{y}$ to $T$ is the
idenity map of $T$ . This allows us to define the map $\varphi$ : $Xarrow X$ by $\varphi(x)=f_{y}(x)$ if
$x\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}y$ for some $y\in \mathrm{Y}$ and $\varphi(x)=x$ if $x\in X\backslash \cup\{\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}y : y\in \mathrm{Y}\}$ . Finally, by our
construction

$\hat{\varphi}(y)=\overline{f_{y}}(y)=\overline{h_{y^{*}}}^{-1}(\overline{h_{y}}(y))=\overline{h_{y}\cdot}(g)-1=y^{*}$

for each $y\in \mathrm{Y}$ . $\square$

Another potential candidate for a“simple” limit law is the law with alinearly ordered
domain. Recall that aposet $(D, \leq)$ is linearly ordered provided that for every pair $d$ , $d’$

of elements of $D$ either $d\leq d’$ or $d’\leq d$ holds. Alinearly ordered law is alimit law
$f$ : $(D, \leq)arrow F(X)$ whose domain $(D, \leq)$ is alinearly ordered set. Sequential laws are
particular types of linearly ordered laws
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Theorem 5. If a Hausdorff topological group G satisfies some essentially G-topological
linearly ordered law, then G also satisfies some essentially $G$ -topological sequential law.

Proof. The proof of this theorem will be split into asequence of claims.
Let $G$ be aHausdorff topological group and $f$ : $(D, \leq)arrow F(X)$ be an essentially

$G$-topological linearly ordered law which holds in $G$ . Let $\tau$ be the smallest cardinality
of acofinal subset of $(D, \leq)$ . Choose acofinal subset $E=\{d_{\alpha} : \alpha<\tau\}$ of $(D, \leq)$ of
cardinality $\tau$ .

Claim 6. If C $\subseteq D$ and $|C|<\mathcal{T}_{\rangle}$ then there exists d $\in D$ such that c $<d$ for all c $\in C$ .

Proof. Since $\tau$ is aminimal cardinality of acofinal subset of $(D, \leq)$ , the set $C$ cannot be
cofinal in $(D, \leq)$ . Therefore there exists some $d\in D$ such that for all $c\in C$ the inequality
$d\leq c$ does not hold. It is precisely here where we use the fact that $(D, \leq)$ is a

$\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{l}\mathrm{y}\square$

ordered set to conclude that $c<d$ for all $c\in C$ .

By transfinite recursion we will choose points $\{c_{\alpha} : \alpha<\tau\}\subseteq D$ and afamily { $\pi_{\alpha}$ :
$\alpha<\tau\}$ of group homomorphisms from $F(X)$ to $G$ in such way that, for every $\alpha<\tau$ ,
one has $d_{\alpha}<c_{\alpha}$ , $\pi_{\alpha}(f(c_{\alpha}))\neq e_{G}$ and $c_{\beta}<c_{\alpha}$ for $\beta<\alpha$ . Assume that $\alpha<\tau$ and that
points $\{c_{\beta} : \beta<\alpha\}\subseteq D$ and group homomorphisms $\{\pi_{\beta} : \beta<\alpha\}$ from $F(X)$ to $G$ have
already been chosen. From Claim 6it follows that there exists $d\in D$ such that $c\beta<d$

for all $\beta<\alpha$ . Since $(D, \leq)$ is directed, $d_{\alpha}\leq d’$ and $d\leq d’$ for some $d’\in D$ . Now use
the fact that $f$ is essentially $G$-topological to pick $c_{\alpha}\in D$ and agroup homomorphism
$\pi_{\alpha}$ : $\mathrm{F}(\mathrm{X})arrow G$ such that $d’\leq c_{\alpha}$ and $\pi_{\alpha}(f(c_{\alpha}))\neq e_{G}$ . Clearly $c_{\alpha}$ has all necessary
properties.

Claim 7. $\beta<\alpha<\tau$ implies $c\beta<c_{\alpha}$ .

Proof. This was guaranteed as part of our inductive construction. $\square$

Claim 8. $C=\{c_{\alpha} : \alpha<\tau\}$ is a cofinal subset of $(D, \leq)$ .

Proof. $E=\{d_{\alpha} : \alpha<\tau\}$ is cofinal in $(D, \leq)$ and $d_{\alpha}\leq c_{\alpha}$ for all $\alpha<\tau$ implies that $C$ is
also cofinal in $(D, \leq)$ . $\square$

Claim 9. If $\Gamma$ is a cofinal subset of $\tau$ , then $\{c_{\gamma}$:$\gamma\in\Gamma\}$ is cofinal in (D,$\leq)$ .

Proof. Suppose that $\Gamma$ is cofinal in $\tau$ . Let $d\in D$ . From Claim 8it follows that $d\leq C\beta$

for some $\beta<\tau$ . Cofinality of $\Gamma$ in $\tau$ yields $\gamma\in\Gamma$ such that $\beta<\gamma$ . Now $d\leq \mathrm{C}\beta\leq c_{\gamma}$ by
Claim 7. $\square$

Claim 10. $\tau$ is infinite.
Proof. If $\tau$ is finite, then $(D, \leq)$ must have abiggest element $a$ , and then $f$ will be
$G$-algebraic by Lemma 1. $\square$

Claim 11. $\tau$ is a regular cardinal.

Proof. Assume the contrary, i.e. that $\tau$ is singular. Then there exists acardinal $\kappa$ $<\tau$

and atransfinite sequence $\{\tau_{\beta} : \beta<\kappa\}$ of cardinals such that $\sup\{\mathcal{T}\beta : \beta<\kappa\}=\tau$

and $\tau_{\beta}<\tau$ for each $\beta<\kappa$ . For each $\beta<\kappa$ applying $\tau_{\beta}<\tau$ and Claim 6to the set
$C_{\beta}=\{d_{\alpha} : \alpha<\tau_{\beta}\}$ one can find $b_{\beta}\in D$ such that $d_{\alpha}<b_{\beta}$ for $\alpha<\mathcal{T}\beta$ . We now claim
that the set $\{b_{\beta} : \beta<\kappa\}$ is cofinal in $(D, \leq)$ , thereby contradicting minimality of $\tau$ .
Indeed, let $d\in D$ . Since $E$ is cofinal in $(D, \leq)$ , one has $d\leq d_{\alpha}$ for some $\alpha<\tau$ . Since
$\sup\{\tau_{\beta} : \beta<\kappa\}=\tau$ , there exists $\beta<\kappa$ with $\alpha<\tau_{\beta}$ . It remains only to note that
$d\leq d_{\alpha}<b_{\beta}$ . $\square$
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Claim 12. $\tau$ is countable.

Proof. Assume the contrary. Then $\tau$ is an uncountable regular cardinal by Claims 10 and
11. We can now apply Lemma 4to the set $Z=\{f(*) : \alpha<\tau\}$ to find asubset $\Gamma\subseteq\tau$ ,
an ordinal $\gamma’\in\Gamma$ and amap $\varphi:Xarrow X$ such that $|\Gamma|=\tau$ and $\hat{\varphi}(f(c_{\gamma}))=f(c_{\gamma}*)$ . Recall
now that the group homomorphism $\pi_{\gamma^{\mathrm{s}}}$ : $\mathrm{F}(\mathrm{X})arrow G$ satisfies $g=\pi_{\gamma}\cdot(f(c_{\gamma’}))\neq e_{G}$ .
Since $G$ is Hausdorff, $U=G\backslash \{g\}$ is an open neighbourhood of $e_{G}$ in $G$ . Define agroup
homomorphism $\pi$ : $\mathrm{F}(\mathrm{X})arrow G$ via $\pi=\pi_{\gamma^{\mathrm{s}}}0\hat{\varphi}$ . Then $\pi(f(c_{\gamma}))=\pi_{\gamma}*(\hat{\varphi}(f(c_{\gamma})))=$

$\pi_{\gamma}*(f(c_{\gamma}*))=g$ for $\gamma$
$\in\Gamma$ , and therefore

(1) $\pi(f(c_{\gamma}))\not\in U$ for each $\gamma$
$\in\Gamma$ .

Since $|\Gamma|=\tau$ , $\Gamma$ is cofinal in $\tau$ , and so the set $\{c_{\gamma} : \gamma\in\Gamma\}$ is cofinal in $(D, \leq)$ by Claim
9. Cofinality of $\{c_{\gamma} : \gamma\in\Gamma\}$ in $(D, \leq)$ and (1) imply that $f$ does not hold in $G$ , a
contradiction. 0

By Claim 8 $C=\{c_{\alpha} : \alpha<\tau=\omega\}$ is acofinal subset of $(D, \leq)$ , and so the restriction
$h=f|c$ of $f$ to $C$ is alimit law such that $h\Leftarrow f$ (see Lemma 2). Since $f$ holds in
$G$ , so does $h$ . From the choice of homomorphisms $\pi_{\alpha}$ it follows that $h$ is essentially G-
topological. Claim 7implies that $(C, \leq)$ is order isomorphic to $(\mathrm{N}, \leq)$ , i.e. that $h$ is a
sequential law. $\square$

From Theorems 3and 5we immediately get the following

Corollary 13. For a Hausdorff group $G$ the following conditions are equivalent:
(i) $G$ satisfies some essentially $G$-topological linearly ordered law,
(ii) $G$ satisfies some essentially $G$-topological countable law,
(ii) $G$ satisfies some essentially $G$ -topological sequential law.

If $G$ is either the group $\mathbb{Z}$ of integer numbers, the group $\mathrm{R}$ of real numbers or the unit
circle group $\mathrm{T}$ , then each sequential law that holds in $G$ is $G$-algebraic[1]. From this
result and Corollary 13 we obtain

Corollary 14. Let G be one of the groups $\mathbb{Z}$ , $\mathbb{R}$ or T. Then all countable or linearly
ordered laws that hold in G are G-algebraic.

If alocally compact Abelian group $G$ satisfies some essentially $G$-topological sequential
law, then $G$ is totally disconnected [1]. From this and Corollary 13 we get our last

Corollary 15. If a locally compact Abelian group $G$ satisfies either some essentially G-
topological linearly ordered law or some essentially $G$-topological countable law, then $G$ is
totally disconnected.
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