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g-deformed Araki-Woods factors

H&3XH (Fumio Hiai)
RALKFAERA LR
(Graduate School of Information Sciences, Tohoku University)

1 Construction of the ¢g-deformed functor

Let Hgr be a separable real Hilbert space and U; a strongly continuous one-parameter
group of orthogonal transformations on Hg. By linearity U; extends to a one-parameter
unitary group on the complexified Hilbert space Hc := Hgr + iHr. Write U, = A%
with the generator A (a positive non-singular operator on H¢) and define an inner
product (-, )y on H¢ by

(z,9)v = (2A(1+ A)7'z,y), =,y € He.

Let H be the complex Hilbert space obtained by completing H¢ with respect to (-, -)y.

For —1 < ¢ < 1 the ¢g-Fock space F4(H) was introduced in [BS1, BKS] as follows.
Let Ffinite(1{) be the linear span of fi®---® f, € H®" (n =0, 1,...) where H®® = CQ
with vacuum . The sesquilinear form (-, -), on Ffiti*(H) is given by

(fl Q@ Qfpn, 1 ® ®gm>q = Opm Z qi(w)(flagw(l))U ce (fmg-ir(n))U )
TESn

where i(m) denotes the number of inversions of the permutation 7 € S,,. For —1 < ¢ <
1, (-,-)q is strictly positive and the g-Fock space F,(H) is the completion of JFfinite({)
with respect to (-, -)q. Given h € H the g-creation operator a;(h) and the g-annihilation
operator a,(h) on F,(H) are defined by

ai(h)=h,
ag(W)(i® - ®fa) =h®f1® - ® fa,

and
aq(h)2 =0,

a,(W)(i® ®f) = ¢ hfA® ®fi1® fir1®® fa.
i=1

The operators aj(h) and a,(h) are bounded operators on J,(H) and they are adjoins
of each other (see [BKS, Remark 1.2]).

Following [Shl] we consider the von Neumann algebra I'y(Hgr,U;)", called a g-
deformed Araki-Woods algebra, generated on F,(H) by

sq(h) == ag(h) + aq(h), h € Hg.
The vacuum state ¢ (= @, v) := (R, Q)q on Iy(Hg, U:)" is called the g-quasi-free state.
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Proposition 1.1 Q is cyclic and separating for T'y(Hg, U)".

One can canonically extend U; on H to a one-parameter unitary group (the so-called
second quantization) F,(U;) on F,(H) by

fq(Ut)Q = Q,

FoU)(fr® @ fn) = (Ueh1) @ -+ ® (Uefn) .-
Notice F4(Us)a;(h)Fq(Us)* = aj(Ush) for h € H so that

fQ(Ut)sq(h)fq(Ut)* = Sq(Uth) ) h € Hg.

Thus, o; = AdF,(U;) defines a strongly continuous one-parameter automorphism
group on I',(Hgr, U;)".

Proposition 1.2 The g-quasi-free state ¢ on I'y(Hg,U;)" satisfies the KMS condition
with respect to a; at B = 1.

Let (Kr, V;) be another pair of a separable real Hilbert space and a one-parameter
group V; of orthogonal transformations on Kr. Let T : Hr — Kgr be a contraction such
that TU; = V;T for all t € R. By linearity T extends to a contraction T : He — K¢
and it satisfies TU, = V,T on Hc. Let B be the generator of V; so that V, = B*, Smce

TA(1+A)™!'=B(1+B)’'T,
T can further extend to a contraction from (’H, (-, ) to (K, (-, )v). Then:

Proposition 1.3 There is a unique completely positive normal contraction I‘ (T) :
Ty(Hr,U;)" — Ty(Kr, Vi)” such that

(Tg(T)z)2 = Fo(T) (22) , z € Ty(Hr, Ut)",
where Fo(T) : Fo(H) — Fo(K) is given by |
FoT) (/1@ ® fo) =(TH)®--- @ (Tfa).

In this way, we have presented a g-analogue of Shlyakhtenko’s free CAR. functor;
namely, a von Neumann algebra with a specified state, (I';(Hr, Ut)", ¢), is associated
to each real Hilbert space with a one-parameter group of orthogonal transformations,
(Hr,U:), and a unital completely positive state-preserving map [y(T) : I'y,(Hr, Ut)”

I'y(Kr, ;)" to every contraction T': (Hgr, U;) — (Kgr, V).

When g = 0, I['(Hg, U:)” = To(Hr,U:)" is a free Araki-Woods factor (of type III)
in [Sh1]. On the other hand, when U; = id a trivial action, I';(Hr)" = I'y(Hr,id) is a
g-deformation of the free group factor in [BKS]; in particular, I‘O(HR)” o L(]Fd,mun)
a free group factor. :
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2 Factoriality and non-injectivity of I',(Hg, U;)"

The following were proven in [BS2, BKS], but it is still open whether ['y(HRr)" is a
non-injective type II; factor whenever dim Hg > 2.

(i) If -1 < ¢ < 1 and dimHgr > 16/(1 — |g|)?, then I',(Hr)" is not injective.
(ii) If dim Hgr = oo, then I'y(HR) is a factor (of type II;) for all —1 < ¢ < 1.
These results can be extended to ['y(Hgr, U:)” as follows.
Theorem 2.1 If there is T € [1,00) such that

dim Ep(LT)He 16
T (1—1ql)?

where E4 is the spectral measure of A, then T'g(Hr,U;)" is not injective. In particular,
Tq(Hr,U:)" is not injective if A has a continuous spectrum. '

Theorem 2.2 Assume that the almost periodic part of (Hgr,U;) is infinite dimen-
sional, that is, A has infinitely many mutually orthogonal eigenvectors. Then

(To(Hr, Ur)"),, NTo(Hr, V)" = C1,

where (I"q('HR, U:)" )¢ is the centralizer of Ty(Hr, U;)" with respect to the vacuum state
¢. In particular, T'y(Hgr,U;)" is a factor.

3 Type classification of I' (Hg, U;)"
As usual let S, be the closure of the operator given by
Sy(z) =2*Q,  z €T (Hr,U)",

and let A, J, be the associated modular operator and the modular conjugation. Then
the following are seen as in [Shl]: For hy,...,h, € Hg,

Se(hi®h;®---®hy) =hy®hy 1®---Qhy,
and for hy,...,h, € Hg Ndom A~},
Bp(hi® - ®hn) = (A7) ®--- ® (A7 hy).

Noting that D := {h +ig : h,g € Hg Ndom A1} is a core of A~! (on M) such that
U/D =D for all t € R, we see that

DY =F(A™) =F(U), teR.

By this and Theorem 2.2 we obtain the following type classification result:
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Theorem 3.1 Assume that A has infinitely many mutually orthogonal eigenvectors.
Let G be the closed multiplicative subgroup of R, generated by the spectrum of A (U; =
A®). Then T'y(Hr,U:)" is a non-injective factor of type II, or type III, (0 < X < 1),
and ~ o C

- type I, if G = {1},

Pg(Hr,Up)" is$ type III,  if G={\":ne€Z} (0< A< 1)

type III, if G =R,.

This result for free Araki-Woods factors (in case of ¢ = 0) was shown in [Shl, Sh2]
generally when dim Hg > 2. Moreover, it was shown as a consequence of Barnett’s
theorem that free Araki-Woods factors are full whenever U, is almost periodic’ (i.e.
the eigenvectors of A span H). The assumption of Theorems 2.2 and 3.1 is a bit too
restrictive while the following opposite extreme case is easy to see: o

Proposition 3.2 If U; has no eigenvectors, then T'y(Hr, U)" is a type IIL, factor.

It is worthwhile to note that the type III, case does not appear in the above type

classifications. os(tlog A (e loz

For example, let (Mg, U;) = @52, (R?, Vi) where V; := [:?;é tkk())g )\; cz:(lgo(;g/\) )]
0 < A < 1, and write (Tyz, @q) == ([q(Hr, V)", ¢) with two parameters g € (—1,1)
and X € (0,1]. For 0 < A < 1, T, , is a type III, g-deformed Araki-Woods factor. In
particular when g = 0, (T », o,») coincides with the type III, free Araki-Woods factor
(T, ) discussed in [Ra, Shl]. For A =1, T;; is the g-deformed type 111 factor treated
in [BKS].

The C*-algebra I'y(Hr,U;), —1 < g < 1, generated by {s,(h) : h € ’HR} on Fy(H)
is considered as the g-analogue of the CAR algebra. From this point of view, the above
Tyx (0 < A < 1) may be considered as the g-analogue of Powers’ Il factor. In fact,
we remark that, for ¢ = —1, our construction of T} provides Powers’ III, factor. To
be more precise, for given (Hg, U;), let I'_(Hr, U;)"” denote the von Neumann algebra
generated by s_(h) := a*(h) + a_(h) (h € Hr) on the Fermion Fock space F_(H),
where a* (h) and a_(h) are the Fermion (CAR) creation and annihilation operators. If
(Hr, Us) = B2, (HY), UP) where HY) = R?, UY = [::?Eﬁggi‘:g cz:(lgcl)(;g)i")C)]
with Ax < 1, then (I_(Hg, U:)", ¢ := (2, - Q)-) becomes an Araki-Woods factor

§luern( [ 1))

Upon these considerations we called I'((Hr, U:)" a g-deformed Araki-Woods algebra.
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4 Hypercontractivity of I'j(T)

When T = etly, (t > 0), we obtain a semigroup [y(e™®) (¢ > 0) of completely
positive normal contractions on I'y(Hgr,U;)". This is a non-tracial extension of g-
Ornstein-Uhlenbeck semigroup discussed in [Bi, Bo]. In the tracial case (i.e. the case
of U, being trivial), the ultracontractivity for I';(e™*) was proven in [Bo] as follows:

1
IT (e el < C32, [ 1

lal \/ (1= —2:)3 2|, = €Ty(Hr)"

with Cl given below. In the non-tracial type III case, we have the following hyper-
contractivity property. This reduces to the above ultracontractivity when A = 1 or

v=0.

Theorem 4.1 Assume that A is bounded (in particular, this is the case if dim Hgr <
+00), and let v := Jlog||All. If -1 <q <1 andt >, then

—t o312  14e @ 0/2
ITa(e™)2ll < Gg \/(1 e 2)(1 = e-G)(1 — e-26-7) lag2=zql

for all z € T4(Hr,U:)” and 0 < 0 < 1, where

1
me1(1—lgI™) "

It might be expected that the hypercontractivity given in the above theorem is
valid for the whole ¢t > 0. However, the next proposition says that it is impossible to
remove the assumption ¢ > 7, so Theorem 4.1 seems more or less best possible. Also, it
says that the hypercontractivity in the sense that |C¢(e™*)z|| < C||zQ||, holds for some
t > 0 and for all z € I'y(Hgr, U;)" is impossible when A is unbounded; for example, this
is the case when U;f = f(- +t) on Hg = L*(R;R).

Cig =

Proposition 4.2 Let -1 <¢<1,0<0<1landt > 0. If there e:msts a constant
c > 0 such that

ITa(e™)z|l < cllA?2Qll, =z € To(Hr,Ut)",

then A is bounded and

2t |
< .
Al < exp(max{o, 1- o})

It seems that it is convenient to consider the hypercontractivity of I',(T) in the
setting of Kosaki’s interpolated LP-spaces. For a general von Neumann algebra M and
1 < p < o© let LP(M) be Haagerup’s LP-space. Given a faithful normal state ¢ on M
let h, denote the element of L!(M) (2 M,) corresponding to ¢. For each 1 < p < 00
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and 0 < 0 < 1, Kosaki’s LP-space LP(M; ), with respect to ¢ is introduced as the
complex interpolation space

Cu/p(hMRL ™, LHM))

‘equipped with the complex interpolation norm || - |56 (= || - ll¢;,)-

Let T': Hr — Kgr be a contraction with TU, = VT, t € R. The adjoint operator
T* : Kr — Hg is also a contraction satisfying T*V; = U,T*, t € R. For each
—1<g<1let

M = T (Hgr,U:)" with ‘P‘—‘(Q,'Q)q,
N = Ty(Kr,Vi)" with ¢ =(Q,-Q),,

where the vacuums in F,(H) and in F¢(K) are denoted by the same 2. Then, by
Proposition 1.3 the completely positive normal contractions

Ly(T): M >N and Ty(T*): N - M
are determined by

C(T)2)Q = F(T)(=Q), €M,
[T = F(T)EQ), yeN.

One can define the contraction w — w o Ty(T*) of M, into N,. Via M, = L}(M) and
N, = L'(N) this induces the contraction I'j(T") of L'(M) into L'(N) as follows:

Ty(T)hy = huoryr+), W € M,
We see that for every 0 < 0 <1 and x € M,
(T (Rzhi?) = K(Cy(T))hi,
so that Ty(T) : LY(M) — L*(N) is the (unique) continuous extension of the linear
mapping from h% MhL (C L*(M)) into h{Nhy® (C L*(N)) given by
Rozhi® o B (Ty(TD2)h°,  zeM.

Moreover, the Riesz-Thorin theorem implies that for each 0 < 6 <1 and 1 < p < o0,
['y(T) maps LP(M; ¢)e into LP(N;9)e and

ITo(Tallps < llallpe,  a € LP(M;p)s.
The next theorem is shown by using Theorem 4.1.

Theorem 4.3 Assume that either A (U, = A®) or B (V; = B%) is bounded, and let
p = min{||Al|,||B||}. Let T : Hr — Kr be a bounded operator such that TU; = V;T
for alit € R and ||T|| < p~*. Then Ly(T) maps L*'(M) into Nocpe; PGNP, and

1+ 02T lall,
=17 = 2T - Pl T

IFe(Tallos < Gy

forallae L*(M), 0<§< 1.
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