q-deformed Araki-Woods factors

日合文雄 (Fumio Hiai)

東北大学情報科学研究科

(Graduate School of Information Sciences, Tohoku University)

1 Construction of the q-deformed functor

Let $\mathcal{H}_{\mathbf{R}}$ be a separable real Hilbert space and U_t a strongly continuous one-parameter group of orthogonal transformations on $\mathcal{H}_{\mathbf{R}}$. By linearity U_t extends to a one-parameter unitary group on the complexified Hilbert space $\mathcal{H}_{\mathbf{C}} := \mathcal{H}_{\mathbf{R}} + i\mathcal{H}_{\mathbf{R}}$. Write $U_t = A^{it}$ with the generator A (a positive non-singular operator on $\mathcal{H}_{\mathbf{C}}$) and define an inner product $\langle \cdot, \cdot \rangle_U$ on $\mathcal{H}_{\mathbf{C}}$ by

$$\langle x, y \rangle_U = \langle 2A(1+A)^{-1}x, y \rangle, \qquad x, y \in \mathcal{H}_{\mathbf{C}}.$$

Let \mathcal{H} be the complex Hilbert space obtained by completing $\mathcal{H}_{\mathbf{C}}$ with respect to $\langle \cdot, \cdot \rangle_U$. For -1 < q < 1 the q-Fock space $\mathcal{F}_q(\mathcal{H})$ was introduced in [BS1, BKS] as follows. Let $\mathcal{F}^{\text{finite}}(\mathcal{H})$ be the linear span of $f_1 \otimes \cdots \otimes f_n \in \mathcal{H}^{\otimes n}$ $(n = 0, 1, \dots)$ where $\mathcal{H}^{\otimes 0} = \mathbf{C}\Omega$ with vacuum Ω . The sesquilinear form $\langle \cdot, \cdot \rangle_q$ on $\mathcal{F}^{\text{finite}}(\mathcal{H})$ is given by

$$\langle f_1 \otimes \cdots \otimes f_n, g_1 \otimes \cdots \otimes g_m \rangle_q = \delta_{nm} \sum_{\pi \in S_n} q^{i(\pi)} \langle f_1, g_{\pi(1)} \rangle_U \cdots \langle f_n, g_{\pi(n)} \rangle_U,$$

where $i(\pi)$ denotes the number of inversions of the permutation $\pi \in S_n$. For -1 < q < 1, $\langle \cdot, \cdot \rangle_q$ is strictly positive and the q-Fock space $\mathcal{F}_q(\mathcal{H})$ is the completion of $\mathcal{F}^{\text{finite}}(\mathcal{H})$ with respect to $\langle \cdot, \cdot \rangle_q$. Given $h \in \mathcal{H}$ the q-creation operator $a_q^*(h)$ and the q-annihilation operator $a_q(h)$ on $\mathcal{F}_q(\mathcal{H})$ are defined by

$$a_q^*(h)\Omega = h$$
, $a_q^*(h)(f_1 \otimes \cdots \otimes f_n) = h \otimes f_1 \otimes \cdots \otimes f_n$,

and

$$a_q(h)\Omega=0$$
,

$$a_q(h)(f_1\otimes \cdots \otimes f_n)=\sum_{i=1}^n q^{i-1}\langle h,f_i\rangle_U f_1\otimes \cdots \otimes f_{i-1}\otimes f_{i+1}\otimes \cdots \otimes f_n.$$

The operators $a_q^*(h)$ and $a_q(h)$ are bounded operators on $\mathcal{F}_q(\mathcal{H})$ and they are adjoins of each other (see [BKS, Remark 1.2]).

Following [Sh1] we consider the von Neumann algebra $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$, called a q-deformed Araki-Woods algebra, generated on $\mathcal{F}_q(\mathcal{H})$ by

$$s_q(h) := a_q^*(h) + a_q(h), \qquad h \in \mathcal{H}_{\mathbf{R}}$$
.

The vacuum state $\varphi (= \varphi_{q,U}) := \langle \Omega, \cdot \Omega \rangle_q$ on $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ is called the q-quasi-free state.

Proposition 1.1 Ω is cyclic and separating for $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$.

One can canonically extend U_t on \mathcal{H} to a one-parameter unitary group (the so-called second quantization) $\mathcal{F}_q(U_t)$ on $\mathcal{F}_q(\mathcal{H})$ by

$$\mathcal{F}_q(U_t)\Omega=\Omega\,,$$

$$\mathcal{F}_{\sigma}(U_t)(f_1\otimes\cdots\otimes f_n)=(U_tf_1)\otimes\cdots\otimes(U_tf_n).$$

Notice $\mathcal{F}_q(U_t)a_q^*(h)\mathcal{F}_q(U_t)^* = a_q^*(U_th)$ for $h \in \mathcal{H}$ so that

$$\mathcal{F}_q(U_t)s_q(h)\mathcal{F}_q(U_t)^* = s_q(U_th), \qquad h \in \mathcal{H}_{\mathbf{R}}.$$

Thus, $\alpha_t := \operatorname{Ad} \mathcal{F}_q(U_t)$ defines a strongly continuous one-parameter automorphism group on $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$.

Proposition 1.2 The q-quasi-free state φ on $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ satisfies the KMS condition with respect to α_t at $\beta = 1$.

Let $(\mathcal{K}_{\mathbf{R}}, V_t)$ be another pair of a separable real Hilbert space and a one-parameter group V_t of orthogonal transformations on $\mathcal{K}_{\mathbf{R}}$. Let $T: \mathcal{H}_{\mathbf{R}} \to \mathcal{K}_{\mathbf{R}}$ be a contraction such that $TU_t = V_t T$ for all $t \in \mathbf{R}$. By linearity T extends to a contraction $T: \mathcal{H}_{\mathbf{C}} \to \mathcal{K}_{\mathbf{C}}$ and it satisfies $TU_t = V_t T$ on $\mathcal{H}_{\mathbf{C}}$. Let B be the generator of V_t so that $V_t = B^{it}$. Since

$$TA(1+A)^{-1} = B(1+B)^{-1}T$$
,

T can further extend to a contraction from $(\mathcal{H}, \langle \cdot, \cdot \rangle_U)$ to $(\mathcal{K}, \langle \cdot, \cdot \rangle_V)$. Then:

Proposition 1.3 There is a unique completely positive normal contraction $\Gamma_q(T)$: $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'' \to \Gamma_q(\mathcal{K}_{\mathbf{R}}, V_t)''$ such that

$$(\Gamma_q(T)x)\Omega = \mathcal{F}_q(T)(x\Omega), \qquad x \in \Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'',$$

where $\mathcal{F}_q(T): \mathcal{F}_q(\mathcal{H}) \to \mathcal{F}_q(\mathcal{K})$ is given by

$$\mathcal{F}_q(T)(f_1\otimes\cdots\otimes f_n)=(Tf_1)\otimes\cdots\otimes (Tf_n)$$
.

In this way, we have presented a q-analogue of Shlyakhtenko's free CAR functor; namely, a von Neumann algebra with a specified state, $(\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'', \varphi)$, is associated to each real Hilbert space with a one-parameter group of orthogonal transformations, $(\mathcal{H}_{\mathbf{R}}, U_t)$, and a unital completely positive state-preserving map $\Gamma_q(T) : \Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'' \to \Gamma_q(\mathcal{K}_{\mathbf{R}}, V_t)''$ to every contraction $T : (\mathcal{H}_{\mathbf{R}}, U_t) \to (\mathcal{K}_{\mathbf{R}}, V_t)$.

When q = 0, $\Gamma(\mathcal{H}_{\mathbf{R}}, U_t)'' \equiv \Gamma_0(\mathcal{H}_{\mathbf{R}}, U_t)''$ is a free Araki-Woods factor (of type III) in [Sh1]. On the other hand, when $U_t = \mathrm{id}$ a trivial action, $\Gamma_q(\mathcal{H}_{\mathbf{R}})'' \equiv \Gamma_q(\mathcal{H}_{\mathbf{R}}, \mathrm{id})$ is a q-deformation of the free group factor in [BKS]; in particular, $\Gamma_0(\mathcal{H}_{\mathbf{R}})'' \cong L(\mathbb{F}_{\dim \mathcal{H}_{\mathbf{R}}})$ a free group factor.

2 Factoriality and non-injectivity of $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$

The following were proven in [BS2, BKS], but it is still open whether $\Gamma_q(\mathcal{H}_{\mathbf{R}})''$ is a non-injective type II₁ factor whenever dim $\mathcal{H}_{\mathbf{R}} \geq 2$.

- (i) If -1 < q < 1 and dim $\mathcal{H}_{\mathbf{R}} > 16/(1-|q|)^2$, then $\Gamma_q(\mathcal{H}_{\mathbf{R}})''$ is not injective.
- (ii) If dim $\mathcal{H}_{\mathbf{R}} = \infty$, then $\Gamma_q(\mathcal{H}_{\mathbf{R}})$ is a factor (of type II₁) for all -1 < q < 1.

These results can be extended to $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ as follows.

Theorem 2.1 If there is $T \in [1, \infty)$ such that

$$\frac{\dim E_A([1,T])\mathcal{H}_{\mathbf{C}}}{T} > \frac{16}{(1-|q|)^2}$$

where E_A is the spectral measure of A, then $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ is not injective. In particular, $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ is not injective if A has a continuous spectrum.

Theorem 2.2 Assume that the almost periodic part of $(\mathcal{H}_{\mathbf{R}}, U_t)$ is infinite dimensional, that is, A has infinitely many mutually orthogonal eigenvectors. Then

$$\left(\Gamma_q(\mathcal{H}_{\mathbf{R}},U_t)''\right)'_{\varphi}\cap\Gamma_q(\mathcal{H}_{\mathbf{R}},U_t)''=\mathbf{C}\mathbf{1}$$
,

where $(\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'')_{\varphi}$ is the centralizer of $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ with respect to the vacuum state φ . In particular, $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ is a factor.

3 Type classification of $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$

As usual let S_{φ} be the closure of the operator given by

$$S_{\varphi}(x\Omega) = x^*\Omega, \qquad x \in \Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'',$$

and let Δ_{φ} , J_{φ} be the associated modular operator and the modular conjugation. Then the following are seen as in [Sh1]: For $h_1, \ldots, h_n \in \mathcal{H}_{\mathbf{R}}$,

$$S_{\varphi}(h_1 \otimes h_2 \otimes \cdots \otimes h_n) = h_n \otimes h_{n-1} \otimes \cdots \otimes h_1,$$

and for $h_1, \ldots, h_n \in \mathcal{H}_{\mathbf{R}} \cap \operatorname{dom} A^{-1}$,

$$\Delta_{\varphi}(h_1 \otimes \cdots \otimes h_n) = (A^{-1}h_1) \otimes \cdots \otimes (A^{-1}h_n).$$

Noting that $\mathcal{D} := \{h + ig : h, g \in \mathcal{H}_{\mathbf{R}} \cap \text{dom } A^{-1}\}$ is a core of A^{-1} (on \mathcal{H}) such that $U_t \mathcal{D} = \mathcal{D}$ for all $t \in \mathbf{R}$, we see that

$$\Delta_{\varphi}^{it} = \mathcal{F}_q(A^{-it}) = \mathcal{F}_q(U_{-t}), \qquad t \in \mathbf{R}.$$

By this and Theorem 2.2 we obtain the following type classification result:

Theorem 3.1 Assume that A has infinitely many mutually orthogonal eigenvectors. Let G be the closed multiplicative subgroup of \mathbf{R}_+ generated by the spectrum of A ($U_t = A^{it}$). Then $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ is a non-injective factor of type II_1 or type III_{λ} ($0 < \lambda \le 1$), and

$$\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'' \text{ is } \begin{cases} \text{type } II_1 & \text{if } G = \{1\}, \\ \text{type } III_{\lambda} & \text{if } G = \{\lambda^n : n \in \mathbf{Z}\} \text{ } (0 < \lambda < 1), \\ \text{type } III_1 & \text{if } G = \mathbf{R}_+. \end{cases}$$

This result for free Araki-Woods factors (in case of q=0) was shown in [Sh1, Sh2] generally when dim $\mathcal{H}_{\mathbf{R}} \geq 2$. Moreover, it was shown as a consequence of Barnett's theorem that free Araki-Woods factors are full whenever U_t is almost periodic (i.e. the eigenvectors of A span \mathcal{H}). The assumption of Theorems 2.2 and 3.1 is a bit too restrictive while the following opposite extreme case is easy to see:

Proposition 3.2 If U_t has no eigenvectors, then $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ is a type III₁ factor.

It is worthwhile to note that the type III_0 case does not appear in the above type classifications.

For example, let $(\mathcal{H}_{\mathbf{R}}, U_t) = \bigoplus_{k=1}^{\infty} (\mathbf{R}^2, V_t)$ where $V_t := \begin{bmatrix} \cos(t \log \lambda) & -\sin(t \log \lambda) \\ \sin(t \log \lambda) & \cos(t \log \lambda) \end{bmatrix}$, $0 < \lambda \le 1$, and write $(T_{q,\lambda}, \varphi_{q,\lambda}) := (\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'', \varphi)$ with two parameters $q \in (-1, 1)$ and $\lambda \in (0, 1]$. For $0 < \lambda < 1$, $T_{q,\lambda}$ is a type III_{λ} q-deformed Araki-Woods factor. In particular when q = 0, $(T_{0,\lambda}, \varphi_{0,\lambda})$ coincides with the type III_{λ} free Araki-Woods factor $(T_{\lambda}, \varphi_{\lambda})$ discussed in [Ra, Sh1]. For $\lambda = 1$, $T_{q,1}$ is the q-deformed type II₁ factor treated in [BKS].

The C^* -algebra $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)$, -1 < q < 1, generated by $\{s_q(h) : h \in \mathcal{H}_{\mathbf{R}}\}$ on $\mathcal{F}_q(\mathcal{H})$ is considered as the q-analogue of the CAR algebra. From this point of view, the above $T_{q,\lambda}$ (0 < λ < 1) may be considered as the q-analogue of Powers' III $_{\lambda}$ factor. In fact, we remark that, for q = -1, our construction of $T_{q,\lambda}$ provides Powers' III $_{\lambda}$ factor. To be more precise, for given $(\mathcal{H}_{\mathbf{R}}, U_t)$, let $\Gamma_-(\mathcal{H}_{\mathbf{R}}, U_t)''$ denote the von Neumann algebra generated by $s_-(h) := a_-^*(h) + a_-(h)$ ($h \in \mathcal{H}_{\mathbf{R}}$) on the Fermion Fock space $\mathcal{F}_-(\mathcal{H})$, where $a_-^*(h)$ and $a_-(h)$ are the Fermion (CAR) creation and annihilation operators. If $(\mathcal{H}_{\mathbf{R}}, U_t) = \bigoplus_{k=1}^{\infty} (\mathcal{H}_{\mathbf{R}}^{(k)}, U_t^{(k)})$ where $\mathcal{H}_{\mathbf{R}}^{(k)} = \mathbf{R}^2$, $U_t^{(k)} = \begin{bmatrix} \cos(t \log \lambda_k) & -\sin(t \log \lambda_k) \\ \sin(t \log \lambda_k) & \cos(t \log \lambda_k) \end{bmatrix}$ with $\lambda_k \leq 1$, then $\left(\Gamma_-(\mathcal{H}_{\mathbf{R}}, U_t)'', \varphi := \langle \Omega, \cdot \Omega \rangle_-\right)$ becomes an Araki-Woods factor

$$\bigotimes_{k=1}^{\infty} \left(M_2(\mathbf{C}), \operatorname{Tr} \left(\cdot \begin{bmatrix} \frac{\lambda_k}{\lambda_k + 1} & 0 \\ 0 & \frac{1}{\lambda_k + 1} \end{bmatrix} \right) \right).$$

Upon these considerations we called $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ a q-deformed Araki-Woods algebra.

4 Hypercontractivity of $\Gamma_q(T)$

When $T = e^{-t} \mathbf{1}_{\mathcal{H}_{\mathbf{R}}}$ (t > 0), we obtain a semigroup $\Gamma_q(e^{-t})$ (t > 0) of completely positive normal contractions on $\Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$. This is a non-tracial extension of q-Ornstein-Uhlenbeck semigroup discussed in [Bi, Bo]. In the tracial case (i.e. the case of U_t being trivial), the ultracontractivity for $\Gamma_q(e^{-t})$ was proven in [Bo] as follows:

$$\|\Gamma_q(e^{-t})x\| \le C_{|q|}^{3/2} \sqrt{\frac{1+e^{-2t}}{(1-e^{-2t})^3}} \|x\Omega\|, \qquad x \in \Gamma_q(\mathcal{H}_{\mathbf{R}})''$$

with $C_{|q|}$ given below. In the non-tracial type III case, we have the following hyper-contractivity property. This reduces to the above ultracontractivity when A=1 or $\gamma=0$.

Theorem 4.1 Assume that A is bounded (in particular, this is the case if dim $\mathcal{H}_{\mathbf{R}} < +\infty$), and let $\gamma := \frac{1}{2} \log ||A||$. If -1 < q < 1 and $t > \gamma$, then

$$\|\Gamma_q(e^{-t})x\| \leq C_{|q|}^{3/2} \sqrt{\frac{1 + e^{-(2t - \gamma)}}{(1 - e^{-2t})(1 - e^{-(2t - \gamma)})(1 - e^{-2(t - \gamma)})}} \|\Delta_{\varphi}^{\theta/2} x \Omega\|$$

for all $x \in \Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)''$ and $0 \le \theta \le 1$, where

$$C_{|q|} := \frac{1}{\prod_{m=1}^{\infty} (1 - |q|^m)}.$$

It might be expected that the hypercontractivity given in the above theorem is valid for the whole t>0. However, the next proposition says that it is impossible to remove the assumption $t>\gamma$, so Theorem 4.1 seems more or less best possible. Also, it says that the hypercontractivity in the sense that $\|\Gamma_q(e^{-t})x\| \leq C\|x\Omega\|_q$ holds for some t>0 and for all $x\in\Gamma_q(\mathcal{H}_{\mathbf{R}},U_t)''$ is impossible when A is unbounded; for example, this is the case when $U_tf=f(\cdot+t)$ on $\mathcal{H}_{\mathbf{R}}=L^2(\mathbf{R};\mathbf{R})$.

Proposition 4.2 Let -1 < q < 1, $0 \le \theta \le 1$ and t > 0. If there exists a constant c > 0 such that

$$\|\Gamma_q(e^{-t})x\| \le c\|\Delta_{\varphi}^{\theta/2}x\Omega\|, \qquad x \in \Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'',$$

then A is bounded and

$$||A|| \le \exp\left(\frac{2t}{\max\{\theta, 1 - \theta\}}\right).$$

It seems that it is convenient to consider the hypercontractivity of $\Gamma_q(T)$ in the setting of Kosaki's interpolated L^p -spaces. For a general von Neumann algebra \mathcal{M} and $1 \leq p \leq \infty$ let $L^p(\mathcal{M})$ be Haagerup's L^p -space. Given a faithful normal state φ on \mathcal{M} let h_{φ} denote the element of $L^1(\mathcal{M})$ ($\cong \mathcal{M}_*$) corresponding to φ . For each 1

and $0 \le \theta \le 1$, Kosaki's L^p -space $L^p(\mathcal{M}; \varphi)_{\theta}$ with respect to φ is introduced as the complex interpolation space

$$C_{1/p}(h_{\varphi}^{\theta}\mathcal{M}h_{\varphi}^{1-\theta},L^{1}(\mathcal{M}))$$

equipped with the complex interpolation norm $\|\cdot\|_{p,\theta} (= \|\cdot\|_{C_{1/p}})$.

Let $T: \mathcal{H}_{\mathbf{R}} \to \mathcal{K}_{\mathbf{R}}$ be a contraction with $TU_t = V_t T$, $t \in \mathbf{R}$. The adjoint operator $T^*: \mathcal{K}_{\mathbf{R}} \to \mathcal{H}_{\mathbf{R}}$ is also a contraction satisfying $T^*V_t = U_t T^*$, $t \in \mathbf{R}$. For each -1 < q < 1 let

$$\mathcal{M} := \Gamma_q(\mathcal{H}_{\mathbf{R}}, U_t)'' \quad \text{with} \quad \varphi = \langle \Omega, \cdot \Omega \rangle_q,$$

$$\mathcal{N} := \Gamma_q(\mathcal{K}_{\mathbf{R}}, V_t)'' \quad \text{with} \quad \psi = \langle \Omega, \cdot \Omega \rangle_q,$$

where the vacuums in $\mathcal{F}_q(\mathcal{H})$ and in $\mathcal{F}_q(\mathcal{K})$ are denoted by the same Ω . Then, by Proposition 1.3 the completely positive normal contractions

$$\Gamma_q(T): \mathcal{M} \to \mathcal{N} \quad \text{and} \quad \Gamma_q(T^*): \mathcal{N} \to \mathcal{M}$$

are determined by

$$(\Gamma_q(T)x)\Omega = \mathcal{F}_q(T)(x\Omega), \qquad x \in \mathcal{M},$$

$$(\Gamma_q(T^*)y)\Omega = \mathcal{F}_q(T^*)(y\Omega), \qquad y \in \mathcal{N}.$$

One can define the contraction $\omega \mapsto \omega \circ \Gamma_q(T^*)$ of \mathcal{M}_* into \mathcal{N}_* . Via $\mathcal{M}_* \cong L^1(\mathcal{M})$ and $\mathcal{N}_* \cong L^1(\mathcal{N})$ this induces the contraction $\tilde{\Gamma}_q(T)$ of $L^1(\mathcal{M})$ into $L^1(\mathcal{N})$ as follows:

$$\tilde{\Gamma}_{a}(T)h_{\omega} = h_{\omega \circ \Gamma_{a}(T^{*})}, \qquad \omega \in \mathcal{M}_{*}.$$

We see that for every $0 \le \theta \le 1$ and $x \in \mathcal{M}$,

$$\tilde{\Gamma}_q(T)(h_{\varphi}^{\theta}xh_{\varphi}^{1-\theta})=h_{\psi}^{\theta}(\Gamma_q(T)x)h_{\psi}^{1-\theta}$$
,

so that $\tilde{\Gamma}_q(T): L^1(\mathcal{M}) \to L^1(\mathcal{N})$ is the (unique) continuous extension of the linear mapping from $h_{\varphi}^{\theta} \mathcal{M} h_{\varphi}^{1-\theta} (\subset L^1(\mathcal{M}))$ into $h_{\psi}^{\theta} \mathcal{N} h_{\psi}^{1-\theta} (\subset L^1(\mathcal{N}))$ given by

$$h_{\varphi}^{\theta}xh_{\varphi}^{1-\theta}\mapsto h_{\psi}^{\theta}(\Gamma_{q}(T)x)h_{\psi}^{1-\theta}, \qquad x\in\mathcal{M}.$$

Moreover, the Riesz-Thorin theorem implies that for each $0 \le \theta \le 1$ and $1 \le p \le \infty$, $\tilde{\Gamma}_q(T)$ maps $L^p(\mathcal{M}; \varphi)_{\theta}$ into $L^p(\mathcal{N}; \psi)_{\theta}$ and

$$\|\tilde{\Gamma}_q(T)a\|_{p,\theta} \le \|a\|_{p,\theta}, \qquad a \in L^p(\mathcal{M};\varphi)_{\theta}.$$

The next theorem is shown by using Theorem 4.1.

Theorem 4.3 Assume that either A $(U_t = A^{it})$ or B $(V_t = B^{it})$ is bounded, and let $\rho := \min\{\|A\|, \|B\|\}$. Let $T : \mathcal{H}_{\mathbf{R}} \to \mathcal{K}_{\mathbf{R}}$ be a bounded operator such that $TU_t = V_t T$ for all $t \in \mathbf{R}$ and $\|T\| < \rho^{-1}$. Then $\tilde{\Gamma}_q(T)$ maps $L^1(\mathcal{M})$ into $\bigcap_{0 < \theta < 1} h_{\psi}^{\theta} \mathcal{N} h_{\psi}^{1-\theta}$ and

$$\|\tilde{\Gamma}_q(T)a\|_{\infty,\theta} \leq C_{|q|}^3 \frac{1 + \rho^{1/2} \|T\|}{(1 - \|T\|)(1 - \rho^{1/2} \|T\|)(1 - \rho \|T\|)} \, \|a\|_1$$

for all $a \in L^1(\mathcal{M}), \ 0 \le \theta \le 1$.

References

- [Bi] P. Biane, Free hypercontractivity, Comm. Math. Phys. 184 (1997), 457-474.
- [Bo] M. Bożejko, Ultracontractivity and strong Sobolev inequality for q-Ornstein-Uhlenbeck semigroup (-1 < q < 1), Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), 203–220.
- [BS1] M. Bożejko and R. Speicher, An example of a generalized Brownian motion, *Comm. Math. Phys.* 137 (1991), 519–531.
- [BS2] M. Bożejko and R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, *Math. Ann.* 300 (1994), 97–120.
- [BKS] M. Bożejko, B. Kümmerer and R. Speicher, q-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys. 185 (1997), 129–154.
- [Ra] F. Rădulescu, A type III_{λ} factor with core isomorphic to the von Neumann algebra of a free group, tensor B(H), in Recent Advances in Operator Algebras, Astérisque 232 (1995), 203-209.
- [Sh1] D. Shlyakhtenko, Free quasi-free states, Pacific J. Math. 177 (1997), 329-368.
- [Sh2] D. Shlyakhtenko, Some applications of freeness with amalgamation, J. Reine Angew. Math. 500 (1998), 191-212.