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1Introduction
Software reliability models (SRMs) are classified into time domain models and counting process models.
The time domain model is the stochastic model based on the sequence of inter-failure times. Jelinski
and Moranda model [4] and Schick and Wolverton model [13] are the most classical models belonging
to this class. On the other hand, the counting process models have gained popularity for describing
the stochastic behavior of the number of software failures observed in the testing phase. The most
well-known and tractable models are non-homogeneous Poisson process (NHPP) models. Goel and
Okumoto [3], Yamada, Ohba and Osaki [15], Musa and Okumoto [9] develop representative NHPP
models. These SRMs are based on the different debugging scenarios, and can catch qualitatively typical
(but not general) reliability growth phenomena observed in the testing phase of software products. It
should be noted, however, that the SRMs based on past observations may not be always useful in the
software testing process. Because one cannot catch the global trend of the software failure occurrence
phenomena in the initial testing phase. In other words, aunified modeling framework comprising some
typical reliability growth patterns should be developed for robust software reliability assessment.

Langberg and Singpurwalla [7] show that several SRMs can be comprehensively viewed by adopting
aBayesian point of view. Miller [8] extends the Langberg and Singpurwalla’s idea and considers an
exponential order statistics model. Raftery [12], Kuo and Yang [5] investigate the modeling framework
based on the generalized order statistics (GOS), and discuss several parameter estimation methods from
the standpoint of both Bayesian and non-Bayesian statistics. In the GOS modeling framework, the
SRMs can be characterized by only the fault detection time distribution.

This article proposes phase-type SRMs based on the GOS of software failure data. To unify some
existing SRMs, the phase-type distribution [10], which represents the software fault detection time
distribution, is used to represent the GOS of software failure data. Also, we provide aunified estimation
method for model parameters in the phase-type SRMs. The usual estimation method, such as the
maximum likelihood estimation (MLE) based on the Newton’s method, does not function well in many
cases, since the phase-type SRMs often have many model parameters. To overcome this problem, we
develop the EM (expectation-maximization) algorithms [1, 2, 11] to compute the maximum likelihood
estimates of model parameters.

2BASIC SRMS
Suppose that the number of software faults detected before time $t$ , $N(t)$ , obeys the following Poisson
distribution:

$\mathrm{P}\mathrm{r}\{N(t)=k\}=\frac{\{\Lambda(t)\}^{k}}{k!}\exp\{-\Lambda(t)\}$ , (1)

where $\Lambda(t)=\mathrm{E}[N(t)]$ is the mean value function and $\lambda(t)=\mathrm{d}\mathrm{A}(\mathrm{t})/\mathrm{d}\mathrm{t}$ is the intensity function of the
NHPP. If the mean value function is bounded, $i.e$.

$\lim_{tarrow\infty}\Lambda(t)<\infty$ , (2)

the corresponding counting process models are called NHPP-I or finite failure models. For instance, Goel
and Okumoto [3] assume that the expected number of faults detected per unit time is proportional to
the expected number of remaining faults, that is, $\mathrm{X}(\mathrm{t})=b\{a-\Lambda(t)\}$ , where $a(>0)$ and $b(>0)$ are the
expected initial number of faults and the fault detection rate per unit time, respectively. By solving this
differential equation with initial condition $\Lambda(0)=0$ , we have

$\Lambda(t)=a(1-\exp\{-\ \})$ . (3)
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On the other hand, if the mean value function is riot bounded, $i.e$ .

$\lim_{tarrow\infty}\Lambda(t)arrow\infty$ , (4)

the corresponding counting process models are called NHPP-II or infinite failure models. The logarithmic
Poisson execution time model by Musa and Okumoto model [9]:

$\Lambda(t)=\frac{1}{\theta}\log(\lambda_{0}\theta t+1)$ (5)

belongs to this class, where 0 $(>0)$ is the reduction rate of instantaneous software intensity and $\lambda_{0}(>0)$

is the initial intensity.
In this way, the SRMs based on the NHPP can be characterized by the mean value function $\Lambda(t)$ .

In other words, the existing SRMs are modeled by taking account of only the deterministic behavior
of the mean value function. However as shown later the deterministic modeling does not validate the
stochastic phenomenon behind the software debugging. In the following section, we introduce amodeling
framework based on the GOS and further develop more general and robust SRMs.

3Unification of SRMs

3.1 GOS Models
Langberg and Singpurwalla [7] propose amodeling framework to unify some SRMs. They make the
following assumptions:

Assumption $\mathrm{A}$ :Software failures caused by software faults occur at independently and identically
distributed (i.i.d.) random times.

Assumption $\mathrm{B}$ :The initial number of software faults is finite.

Let $\{N(t);t\geq 0\}$ and $\{X_{i};i=1,2, \ldots\}$ denote the number of faults detected before time $t(>0)$ and the
sequence of fault detection times, respectively. From Assumption $\mathrm{A}$ , $X_{i}$ , $i=1,2$ , $\ldots$ , are i.i.d. random
variables with (absolutely continuous) probability distribution function $F(t)$ and probability density
function $f(t)=dF(t)/dt$ . If the initial number of software faults is known as aconstant $N(>0)$ , the
probability mass function of the number of faults detected before time $t$ is given by

$\mathrm{P}\mathrm{T}\{\mathrm{N}(\mathrm{t})=n\}=(\begin{array}{l}Nn\end{array})$ $F(t)^{n}\overline{F}(t)^{N-n}$ , (6)

where $\overline{F}(\cdot)=1-F(\cdot)$ . For the GOS models, we suppose that the initial number of faults obeys the
Poisson distribution with parameter $\omega$ $(>0)$ . Then the number of faults detected before time $t$ follows

$\mathrm{P}\mathrm{r}\{N(t)=k\}=\frac{\{\omega F(t)\}^{k}}{k!}\exp\{-\omega F(t)\}$. (7)

Since Eq. (7) is equivalent to the probability mass function of NHPP having the mean value function,
$\omega F(t)$ , we can represent some existing SRMs by substituting atypical probability distribution into
$F(t)$ in Eq. (7). Ultimately, it can be shown that the GOS models explain stochastically the physical
debugging processes from the finite population and provide most existing SRMs.

3.2 Phase-Type SRMs
The problem in the GOS models is how to select asuitable fault detection time distribution $F(t)$ . For
instance, if the fault detection time is an exponentially distributed random variable, the resulting SRM
is reduced to Jelinski and Moranda model [4] or Goel and Okumoto model [3]. If the fault detection
time obeys the 2-Erlang distribution, the resulting model is the $\mathrm{S}$-shaped SRM [15]. For the sake of
simplification, we focus only on the counting process model, namely, the NHPP model in this paper. Of
course, the time domain model, as shown before, are special model with constant $N$ in the GOS models,
so that we can discuss the time domain model in the similar way to the NHPP model. Before describing
the unification of NHPP models, we consider two representative NHPP models: the $\mathrm{S}$-shaped SRM and
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the hyperexponential SRM. The main difference between them is that the $\mathrm{S}$-shaped model consists of the
convolution of two exponential distributions, but the hyperexponential SRM does of the superposition
of multiple exponential distributions. Although their structures are quite different from each other, it
can be seen that both of them are specific Markov processes. In other words, their structures present
the respective debugging scenarios. Thus it is straightforward to see that the SRMs are unified under
the assumption that the fault detection process is governed by ageneral Markov process.

Consider aMarkov process with state space $\{1, 2, \cdots, m+1\}$ , where each state is called aphase. The
phase indicates aspecific activity in the software testing, for example, inspection, review, debugging,
etc. Without any loss of generality, the phases $\{$ 1, 2, $\cdots$ , $m\}$ correspond to the transient states on the
Markov process and the phase $\{m+1\}$ does to adetection of asoftware fault, $i.e.$ , it is an absorbing
state. The initial probability vector for the Markov process is given by $(\alpha, 0)$ , where $\alpha$ is the 1 $\cross m$

probability vector. Until detection of afault (absorption), the phase changes according to the Markov
process with infinitesimal generator $Q^{*}$ , where

$Q^{*}=(\begin{array}{lllll}-t_{11} t_{12} \cdots t_{1m} \xi_{1}t_{21} -t_{22} \cdots t_{2m} \xi_{2}\vdots \vdots \ddots \vdots \vdots t_{m1} t_{m2} \cdots -t_{mm} \xi_{m}0 0 \cdots 0 0\end{array})$ . (8)

.

$t_{21}$ $-t_{22}$ $\ldots$ $t_{2m}$

.$\cdot$. .$\cdot$. . . .$\cdot$
..

$t_{m1}$ $t_{m2}$ $\ldots$ $-t_{mm}$

$\xi_{1}$

$\xi_{2}$

$.\cdot$

.

$\xi_{m}$

0 0 $\ldots$ 0 0

In Eq. (8), $t\dot{.}\mathrm{j}$ is the transition rate from the phase $i$ to $j$ , $\xi$:is the transition rate into the absorbing
state representing the detection of asoftware fault. Furthermore, the diagonal elements, $t_{::}$ , are given
by

$t. \cdot\dot{.}=-\sum_{j\neq}.\cdot t.\cdot j$

$-\xi:$ , for all $i$ . (9)

From the elementary argument on Markov processes, the fault detection time distribution characterizing
the SRMs is given by

$F(t)$ $=$ $1-\alpha\exp(Qt)e^{t}$ , (10)
$\alpha$ $=$ $(\alpha_{1}, \cdots, \alpha_{m})^{1}$ , (11)

$Q$ $=$ $(\begin{array}{llll}-t_{11} t_{12} t_{1m}t_{21} -t_{22} t_{2m}\vdots \vdots \ddots \vdots t_{m1} t_{m2} -t_{mm}\end{array})$ , (12)

where $e^{t}$ is acolumn vector of Is. The probability distribution given by Eq (10) is called the phase-
type distribution with parameter $(\alpha, Q)[10]$ . The phase-type distribution represents every probability
distribution belonging to the exponential family, such as exponential distribution, $k$-Erlang distribution,
hyperexponential distribution, $\mathrm{C}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{a}\mathrm{n}-\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}$ distribution and so on. More generally, the phase-type
distribution characterizes every $\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{s}/\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{l}$ system with exponentially distributed failure time and
approximates arbitrary probability distribution with arbitrary accuracy if the number of phases is large.
Substituting the phase-type distribution into $F(t)$ in the GOS models yields phase-type SRMs. These
are obviously the widest class of SRMs which can be treated mathematically.

4Parameter Estimation
Let $\Lambda(t;\theta)$ be the mean value function of an NHPP where $\theta$ is aset of parameters. If the fault detection
time data, $x$ $=$ $(x_{1}, \ldots, x_{*},)$ , is available, the model parameters are determined so as to maximize the
logarithmic likelihood function of the NHPP:

$\log L_{\mathrm{N}\mathrm{H}\mathrm{P}\mathrm{P}}(\theta)=.\cdot\sum_{=1}^{r\iota}\log\lambda(X:;\theta)-\Lambda(x_{n};\theta)$ , (13)

where $\lambda(\cdot)$ is the intensity function of the NHPP:

$\lambda(t;\theta)=\frac{d}{dt}\Lambda(t;\theta)$ . (14)
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Since Eq. (13) is anonlinear function of 0in many cases, we have to solve numerically the following
simultaneous equations:

$\frac{\partial}{\partial\theta}\log L_{\mathrm{N}\mathrm{H}\mathrm{P}\mathrm{P}}(\theta)=0$. (15)

This is the first-0rder condition of optimality for the MLE. The Newton’s method may be used to
obtain the solution of the above logarithmic likelihood equations. However, it does not function well in
terms of computation cost and convergence property. The main reason is that the logarithmic likelihood
function often becomes amulti-modal function. This implies that the estimates based on the Newton’s
method may not converge to the desired values due to the dependence of the initial value. For this
problem, some authors $(e.g. [6])$ propose the improved methods, but none of them realizes the effective
computation for the maximum likelihood estimates with suitable effort. In this section, we develop
iteration algorithms to estimate the model parameters based on the EM (expectation-maximization)
principle $[2, 14]$ . Although the EM algorithm tends to converge more slowly than the Newton’s method
does, the associated likelihood becomes surely higher as the estimates are updated in the EM algorithm.
This property is fairly effective even if the logarithmic likelihood function is amulti-modal function.
Thus, the proposed algorithms provide robust methods and plausible solutions in many types of SRMs.

4.1 EM Algorithms for NHPP-I Models
Let $X_{1}$ , $X_{2}$ , $\ldots$ , $X_{N}$ and $X_{[1]}<X_{[2]}<\cdots<X_{[N]}$ be fault detection times and their order statistics,
respectively, where $N$ is the initial number of faults and the Poisson distributed random variable with
parameter $\omega$ $(>0)$ . If one can observe all the fault detection times $x=(x_{1}, \ldots, x_{n})$ , which is the
complete data, the likelihood function is given by

$\mathrm{L}(\mathrm{u}, \theta)=\mathrm{P}\mathrm{r}\{N=n\}n!\prod_{i=1}^{n}f(x_{i};\theta)$ . (16)

From Assumption $\mathrm{B}$ , we have

$L( \omega, \theta)=\omega^{n}\exp\{-\omega\}\prod_{i=1}^{n}f(x_{i;}\theta)$ (17)

and hence

$\log L(\omega, \theta)=n\log\omega-\omega+\sum_{i=1}^{n}\log f(x_{i};\theta)$ . (18)

In this situation, the standard argument on the MLE gives the following estimators:

$\hat{\omega}=n$ (19)

and
$\hat{\theta}=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}\theta\{\sum_{i=1}^{n}\log f(x_{i};\theta)\}$ . (20)

The EM algorithm is an iterative method for an estimation problem with incomplete data. Let $X$

and $\mathrm{Y}=u(X)$ be the unobserved random variable with probability density $f(\cdot;\theta)$ and the observed
random variable, respectively. Given the observed experiment, $y$ , we estimate the parameter set $\theta$ . The
$(n+1)$-st step in the EM algorithm consists of finding $\theta_{n+1}$ which maximizes the expected logarithmic
likelihood function for the complete data, provided that the incomplete data is observed. That is,

$\hat{\theta}_{n+1}=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}\theta$

$\{\mathrm{E}[\log f(X;\theta)|u(X)=y;\hat{\theta}_{n}]\}$ , (21)

where $\hat{\theta}_{n}$ is the estimated parameter set at the $n$-th step in the EM algorithm and $\mathrm{E}[\cdot ; \theta]$ denotes an
expected value provided that the probability density $f$ has the parameter set $\theta$ .

Let us now return our argument to the estimation problem for the NHPPs. Given the fault detection
time data at time $t(\geq 0)$ , $y=(21)\ldots$ , Xk), $k<N$ , it is seen that $y$ is the incomplete data instead of
the complete data $x=$ $(x_{1}, \ldots, x_{n})$ . Then the EM algorithm is developed as follows. At the $(n+1)$-st
step, the estimates of the model parameters are calculated as

$\hat{\omega}_{n+1}=\mathrm{E}[N|X=y;\hat{\omega}_{n},\hat{\theta}_{n}]$ (22)
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$\hat{\theta}_{n+1}=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}\theta\{\mathrm{E}[\dot{.}\sum_{=1}^{N}\log f(X:;\theta)|X=y;\hat{\omega}_{n},\hat{\theta}_{n}]\}$ . (23)

Notice that $X=y$ denotes an event; $\{X_{[1]}=x_{1},X_{[2]}=x_{2}, \ldots,X_{[k]}=x_{k}\}$.

4.2 EM Algorithms for Phase-Type SRMs
Next, we consider the EM algorithms in the phase-type SRMs. The phase-type SRMs are strictly con-
sistent with the GOS models if the fault detection process is modeled by aMarkov process. In general,
the estimation procedure for phase-type distribution is more complex than those for exponential distri-
bution, 2-Erlang distribution and so on, since the phase-type distribution usually has many parameters.
The EM algorithms for the phase-type distribution are considered by some authors. Asmussen et al. [1]
obtain the EM algorithm in the case of no censored observations. Olsson [11] also derives the EM al-
gorithms in both cases of right-censored and interval-censored observations. Applying these results, we
can develop the EM algorithms for the phase-type SRMs.

Suppose that the probability distribution of software fault detection time $F(t)$ is the phase-type
distribution with parameters $\alpha$ and $Q$ in Eqs. (10)-(12). Let $X_{1}$ , $X_{2}$ , $\ldots$ , $X_{N}$ and $X_{[1]}<X_{[2]}<\cdots<$

$X[N]$ denote the software fault detection times and their order statistics, respectively, where $N$ is the
initial number of software faults (Poisson distributed random variable with parameter $\omega$ $(>0)$ ). The
$i$-th software fault detection time, $X_{:}$ , consists of two random variable sequences: an embedded Markov
chain on the phases

$I_{0}^{[\cdot]}.$ , $I_{1}^{[\cdot]}.$ , $\ldots$ , $I_{M-1}^{[\dot{|}]}$ ; $(I_{M}^{[\dot{\cdot}]}=0)$

and its sojourn time
$S_{0}^{[\dot{\cdot}]}$ , $s^{[}\mathrm{i}^{1}$ , $\ldots$ , $S_{M-1}^{[\dot{1}]}$ ; $(S_{M}^{[\dot{\cdot}]}=\infty)$ ,

where $M$ is the number of transitions until detection of asoftware fault. The fault detection time $X\dot{.}$

can be represented as the sum of sojourn times, $i.e.$ ,

$X. \cdot=\sum_{j=0}^{M-1}S_{j}^{[\cdot]}.$ . (24)

It is assumed that one observes acomplete data set for fault detection times $x$ $=$ $(x_{1}, \ldots, x_{n})$ , where

$x_{\nu}=(i_{0}^{[\nu]}, \ldots,i_{m[\nu]-1}^{[\nu]}, s_{0}^{[\nu]}, \ldots, s_{m[\nu]-1}^{[\nu]})$, for $\nu=1$ , $\ldots,n$.

Define

$B_{:}$ $=$ $\sum_{\nu=1}^{n}1_{\{I_{0}^{[\nu]}=:\}}$ , for $i=1$ , $\ldots,m$ , (23)

$Z\dot{.}$ $=$ $\sum_{\nu=1}^{n}\prod_{p=0}^{M-1}1_{\{I_{0}=:\}}[\nu]S_{p}^{[\dot{\cdot}]}$ , for $i=1$ , $\ldots$ , $m$ (26)

and

$N_{\mathrm{j}}.\cdot$ $=$ $\sum_{\nu=1}^{n}\sum_{\mathrm{p}=0}^{M-1}1_{\{I_{\mathrm{p}}^{[\nu]}=:,I_{\mathrm{p}+1}^{|\nu|}=\mathrm{j}\}}$, (27)

for $i\neq j$ , $i=1$ , $\ldots$ , $m$ , $j=0$, $\ldots$ , $m$ .

In Eqs. (25)-(27), Bi, $Z\dot{.}$ and $N_{j}\dot{.}$ are the number of processes starting from the phase $i$ , the total sojourn
time in the phase $i$ and the total number of transitions ffom the phase $i$ to the phase $j(j=0$ represents
an absorption of process), respectively, and $1\{A\}$ denotes the indicator function for an event $A$ :

$1_{\{A\}}=\{$
1, event $A$ occurs,

(23)0, otherwise
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The likelihood function of the complete data set is then given by

$L( \alpha, Q)=\omega^{n}\exp\{-\omega\}\prod_{i=1}^{m}\alpha_{i}^{B_{i}}\prod_{i=1}^{m}\exp\{t_{ii}Z_{i}\}\prod_{j}^{m}\prod_{ji=1--,\neq i0}^{m},t_{ij}^{N_{ij}}$
. (29)

From Eq. (29), the maximum likelihood estimates can be calculated as follows. For all $i$ , $j=1$ , $\ldots$ , $m$ ,
we have

$\hat{\omega}=n$ , $\hat{\alpha}_{i}=\frac{B_{i}}{n}$ , $\hat{t}_{ij}=\frac{N_{ij}}{Z_{i}}$ , $\hat{\xi}_{i}=\frac{N_{i0}}{Z_{i}}$ (30)

and

$\hat{t}_{ii}=-(\hat{t}_{i}+\sum_{j=1,j\neq i}^{m}t_{ij}\wedge)$ . (31)

Let $y=$ $(x_{1}, \ldots, x_{k})$ , $k<N$ be the software fault detection time data observed before time $t$ , which is
incomplete data in both senses of the censored data and the macro data. The censored data means that
the software fault detection time data is censored at time $x_{k}$ , and the macro data means that trajectory
of the phase in the fault detection process cannot be observed. From Eqs. (22) and (23), we can obtain
an iteration scheme at the $(n+1)$-st step in the phase-type SRMs for $i$ , $j=1$ , $\ldots$ , $m$ ,

$\hat{\omega}^{(n+1)}$
$=$ $\mathrm{E}[N|X=y;\hat{\omega}^{(n)},\hat{\alpha}^{(n)},\hat{Q}^{(n)}]$ , (32)

$\hat{\alpha}_{i}^{(n+1)}$
$=$ $\frac{\mathrm{E}[B_{i}|X=y,\hat{\omega}^{(n)},\hat{\alpha}^{(n)},\hat{Q}^{(n)}]}{\mathrm{E}[N|X=y\cdot\hat{\omega}^{(n)},\hat{\alpha}^{(n)},\hat{Q}^{(n)}]},\cdot$ , (33)

$\hat{t}_{ij}^{(n+1)}$ $=$ $\frac{\mathrm{E}[N_{ij}|X=y,\hat{\omega}^{(n)},\hat{\alpha}^{(n)},\hat{Q}^{(n)}]}{\mathrm{E}[Z_{i}|X=y,\hat{\omega}^{(n)},\hat{\alpha}^{(n)},\hat{Q}^{(n)}]}.\cdot$, (34)

$\hat{\xi}_{i}^{(n+1)}$ $=$ $\frac{\mathrm{E}[N_{i0}|X=y\hat{\omega}^{(n)},\hat{\alpha}^{(n)},\hat{Q}^{(n)}]}{\mathrm{E}[Z_{i}|X=y,\hat{\omega}^{(n)},\hat{\alpha}^{(n)},\hat{Q}^{(n)}]}$

. (35)

and

$\hat{t}_{ii}^{(n+1)}=-(\hat{\xi}_{i}^{(n+1)}+\sum_{j=1,j\neq i}^{m}\hat{t}_{ij}^{(n+1)})$ . (36)

From the EM algorithm for NHPP-I models and the independence of $X_{i}$ , it is straightforward to see that

$\mathrm{E}[N|X=y;\omega, \alpha, Q]$ $=$ $k+\omega\alpha h(x_{k}|Q)$ , (37)

$\mathrm{E}[B_{i}|X=y;\omega, \alpha, Q]$ $=$ $\sum_{\nu=1}^{k}\mathrm{E}[B_{i}^{[\nu]}|X=x_{\nu}; \alpha, Q]$

$+\omega\alpha h(x_{k}|Q)\mathrm{E}[B_{i}|X>x_{k}; \alpha, Q]$ , (38)

$\mathrm{E}[Z_{i}|X=y;\omega, \alpha, Q]$ $=$ $\sum_{\nu=1}^{k}\mathrm{E}[Z_{ij}^{[\nu]}|X=x_{\nu};\alpha, Q]$

$+\omega\alpha h(x_{k}|Q)\mathrm{E}[Z_{ij}|X>x_{k}; \alpha, Q]$ (39)

and

$\mathrm{E}[N_{ij}|X=y;\omega, \alpha, Q]$ $=$ $\sum_{\nu=1}^{k}\mathrm{E}[N_{ij}^{[\nu]}|X=x_{\nu}; \alpha, Q]$

$+\omega\alpha h(x_{k}|Q)\mathrm{E}[N_{ij}|X>x_{k}; \alpha, Q]$ , (40)

where
$h(x|Q)=\exp\{Qx\}e^{t}$ . (31)
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The expected values in Eqs. (38)-(40) appear in the EM algorithms for the phase-type distribution using
the right-censored data. Olsson [11] introduces the computational method using the homogeneous linear
differential equations. We will use this method for our problem in this paper.

The estimation method in the phase-type SRMs is now described by Eqs. (32)-(41). From these
results, we will carry out the EM algorithms in the phase-type SRMs when the fault detection time data
is given.

5Conclusions
This paper has proposed the phase-type SRMs as the most general software reliability model. By
modeling the fault detection process as aMarkov process, we have shown that the phase-type SRMs
were proved to be acomprehensive class of some existing SRMs. In addition, we have developed the EM
algorithms for the maximum likelihood estimation in the phase-type SRMs. The algorithms proposed
here are simple iteration algorithms but are effective in terms of computation effort.
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