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Optimization of threshold memberships
over fuzzy decision process
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1 Introduction

Since Bellman and Zadeh has proposed three — deterministic, stochastic and fuzzy — systems on
multistage decision processes in fuzzy environment [4, §4,5], an intensive study on fuzzy decision
making under uncertainty has been developed both in theory and in its wide applications
(1, 5, 15] and others). In Markov decision processes [6, 17], it has been tacitly known that
there exists an optimal policy which is Markov for the additive criterion, where Markov policy
takes decision on the basis of only today’s state. Recently, from a stochastic control theory,
Iwamoto has developed Bellman and Zadeh’s fuzzy decision-making on the stochastic system
for a non-additive (minimum) criterion. He has shown that an optimal policy does not exist in
Markov class for minimum criterion but does exist in general class, where general policy depends
on state-sequence up until taday [7, 8, 9, 10, 11, 12, 13, 14, 18]. His tool is identical twins —
both dynamic programming [2] and invariant imbedding [3, 16] - for non-additive criterion in
stochastic system [8, 9].

In this paper, we consider a “threshold probability” decision-making in fuzzy environment.
On the multi-stage stochastic control process, we evaluate the threshold probability that the
minimum criterion exceeds a lower membership-degree. The minimum criterion denotes a
total membership function of the multistage fuzzy decison process with stage-wise membership
functions and a goal membership function. It is the membership function of intersection of
the underlying fuzzy sets [4, p.144, §4,5]. Under the controlled Markov chain we optimize the
threshold probability not in general class but in Markov class. We show that this choice will be
successful; there exists an optimal policy in Markov class. We also derive the recursive relation
for the threshold probability. We use the notations and terminology in [4, 8, 9].

2 Decision Process with Threshold Probability

Let us consider an N-stage (N > 2) stochastic decision process {(Xn, U,)}Y on a finite state
space X and decision space U, which is governed by a Markov transition law p = {p(:}-,)} :

p(ylz,u) >0, > p(ylz,u)=1.
yeX

Thus p(y|z, ) is a conditional probability that the next state X, will be y when the current
state X,, is £ and current decision U, is u :

PXp1=y| Xn=2z,Un=u)= p(y|z, u).

This transition is expressed as X,+1 ~ p(- |z, u).
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We begin to introduce a large class of policies, which depend not only on today’s state
but also on state-to-date. Let X" := X x X x --- x X be direct product of n state spaces
X. A mapping o, : X™*! - U is called n-th general decision function, whose sequence o =
{00,01,...,0n_1} constitutes a general policy. The set of all general policies I1, is called general
class. When each general decision function o, depends only on the last (= current) state, the
general policy reduces to a Markov policy = = {mo, 71, ..., mn_1}. Let Markov class IT denote
the set of all Markov policies. Thus we have an inclusion relation : Il ¢ II,.

Further, given an n-th membership function p, : XxU — [0,1] (0 <n < N— 1) and a goal
membership function ug : X — [0, 1], the random variables p, = pn(Xn, Un), pe = pe(Xy)
denote the resulting grade of membership [4].

Now we consider the problem of maximizing a threshold probability that total membership
is greater than or equal to a given lower grade o € [0, 1] :

‘Maximize P;(poApi A Apun_1 A g > a)
Po(zo) subject to (i), Xny1 ~ p(- |Zn, u,)
(i), up €U
where P7 is the (discrete) probability measure on history space
Hy := XxXUxXxUx---xUxX (2N +1)-factors

induced through an initial state zo, the Markov transition law p and a Markov policy (e II).

We dare to maximize the threshold probability over Markov class I[I. We do not optimize
it over general class I1,. This choice will be turned to generate a valid recursive equation. Any
Markov policy 7(€ II) determines the threshold probability in Po(zo), which is a “partial”
multiple sum :

Pr(mo A A~ Ay Aug > a) = ZZ"'ZPOPI"'I’N~1 (1)

(z1,22,.., N )E(*)

0<n<N-1

(pn = p($n+1|xmun) )

where the domain (*) is the set of all (z1,x,,...,z5) € XV satisfying
Ho(Zo, o) A iy (T1,ur) A=+ A vy (Tn_1, un—1) A pe(zy) > a. (2)
Here the sequence of decisions {ug, uy, ..., un-1} in (1),(2) is uniquely determined through
Markov policy 7 = {m, .. > TN-1}
up = mo(To), uy = m(x1), ..., un_q1 = TN-1(ZN-1). (3)

As for controlling threshold probability on the Markov chain {(X,, U,)} with reward func-
tions {{r,}¢' !, rn} and a lower level value ¢, Markov class II is not enough for additive criteria

Maximize Py (ro+ 71+ - +ry_1+78 > c)

subject to (i),, (i), 0<n<N-1

but general class I, is enough [8, 18]. However, in this paper, we dare to maximize the threshold
probability for minimum criteria over Markov class.

Thus our problem Py(x) is to find the mazimum value function vy = v, (zo) and an optimal
policy m*(€ II) which attains the maximum :

Qo (o)

vo(%o) = Poo (Mo A=+ Apin—y A pig > a)

zo € X (4)
= I}rlleaﬁcP;)(uo/\-w/\uN_]/\uGza).
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3 Recursive formula

We consider the subproblem starting at state z,(€ X) on n-th stage and terminating on the
final N-th stage (0 <n < N-1):

Pn(zn) Max Pl (paA- - ApN-1 /A pg 2 a) st (i)m, (ii)m n<MIN-1

where 7 = {7,,...,Tn-1} is taken over Markov class from n-th stage on II(n) .
Let v,(z,) be the maximum value, where

1 IN 2 Q

AN
=P S>alXy=zn) = zn € X. 5
UN(l”N) (MG =z | N N) { 0 otherwise N ( )

Lemma 3.1 We have for any0 < n < N-1, z, € X and 7 = {7y, .. ., Tn-1} € II(n)

Z P:':ﬂ(“""'l A---ANpeg 2 c)p($n+llxm un)
$n+1€x

P (pnN---Apg2c) = if pn(Tn,ua) 2> @
0 otherwise
where U, = Tp(Tpn), ® = {Mny1,...,TN-1} and P;’;, := P in (5) for n = {mn-1}.

FEquivalently, in terms of multiple sum, we get

4

I Y pate- v |p(Znti|Ta, un)

Zn+1€X | (2n+2,--,ZN)E(X)

ZZE Pn+1Pn42° " "PN = ﬂ if pn(Tn,un) > a

(Zn+1,Tn42,.-, TN )E(*)

{ 0 otherwise

where Pm = P(Tm|Tm_1,Um_1), Um = Tm(Tm), (*) denotes the partial multiple sum over
(Tnt1,---,ZN) € X X --- x X satisfying pn(Tn,ua) A -+ A pg(zy) 2 a, and (x) denotes
($n+2a .- 7$N) satzsfymg /J'n+l(xn+la un+1) ARERRA ”’G(xN) 2 ao.

Thus we have the backward recursive relation :

Theorem 3.1 (Recursive Equation)

1 ] >
un(z) = ¥ ”G(z,) = zeX
0 otherwise
_Max | S Va1 @)plz,u) o Ju; pa(z,u) 2 a
va(z) = {urnEM2eyex (6)

0 otherwise
zeX, 0<n<N-1

Now let us take any pair (n,z). If it satisfies pu.(z,u) > a, then let 7, (z) denote a u* € U
which attains the maximum in (6). Otherwise, let n};(z) denote any u € U. Then we have
an optimal n-th decision function 7, : X — U. Thus we construct an optimal policy n* =
{m3,...,mn_1} in Markov class II.
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Let us consider maximizing the threshold probability with lower membership-degree a@ = 0.7

on Bellman and Zadeh’s model [4, pp.B154] :

Max  PZ (10(Uo) A i1 (Un) A pe(X2) > 0.7)

0

S.t. (l)n Xn+1 ~ p( ° ,zna Un) n= 0 1

i)y un €U

where the numerical data is theirs :

po(az) =0.7 po(az) =1.0;
pi(ai) = 1.0 p(az) = 0.6 ;

pc(s1) =0.3 pg(se) = 1.0

P($n+1 Ixn, al)

pg(83) =0.8

P(-Tn+1|$m az)

To\Tnt1 | 1 S2 83

S1 S2 S3

81 0.8 0.1 0.1
S 0.0 0.1 0.9
S3 0.8 0.1 0.1

0.1 0.9 0.0
0.8 0.1 0.1
0.1 00 09

'The backward recursion (6) yields optimal solution in Markov class IT — a pair of a sequence

of optimal value fuctions
vo = vo(To), v1 = vi(z1),

and an optimal policy

Vg = v2(ZT2)

7 = {m5(20), 71 (1)}

The optimal solution is tabulated as

vo(Zo) 5 (Z0)

Tn || va(T2) | v1(z1) 7} (z1)
81 0 0.2 ay
S9 1 1.0 a;
S3 1 0.2 a;

0.92 (15
0.28 a,,a,
0.28 a;

Table 1: Optimal Solution

Furthermore, we have another two methods. One is stochastic decision tree-table meth-
ods(Figure 1). The other is total enumalation of all Markov policy and related threshold

probability vector(Table 2).

So we have three approaches. Through these three approaches, we have obtained optimal
solution ; optimal value (0.92, 0.28, 0.28) and optimal policy 7*.



wo(s1) = Ma-xpﬂ ' (po(Uo) A pa(Un) A pe(X2) 2 0.7)

Figure 1 : Two-stage stochastic decision tree-table from state s,
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history mini | path | thre- | sub- | total-
To po/Uo  Po  T1 fa/ui  P1 T2 pig | mum | prob. | prob. | prob. | probd.
0.8 s 03] 03 | 0.64 0
10,% s 10| 07 | 0.08 | 008 | 0.16
S1.-7 a s3 08| 07 | 0.08 | 0.08
96 0. s, 03[ 03 | 0.08 0
% s 10| 06 | 072 | o0 0
0.8 s3 08| 0.6 0.0 0
0.0 s, 03[ 03 0.0 0
1.q,% s, 10| 07 | 001 | 001 | 0a
0.4 .-" @ s3 08| 07 | 0.09 | 0.09 0.28
/ $2°~06 0.8 sy 03| 03 0.08 0
ar *% s, 1.0| 06 | 0.01 0 0
E ~ s; 08| 06 | 0.01 0
N 0.1 0.8 s 03| 0.3 0.08 0
07" 1_0,% s 10| 07 | 0.01 | 001 | 0.02
/M LS s3 08| 07 | 0.01 | 001
, $3°~06 0.1 s; 03[ 03 | 0.01 0
@z~ 00 s 10| 06 | 00 0 0
' ~ s; 08| 0.6 0.09 0
s, 03[ 03 | 0.08 0
s 1.0| 1.0 | 0.01 | 0.01 | 0.02
s3 08| 08 | 0.01 | 0.01
s 03[ 03 | 0.01 0
s 10| 06 | 0.09 0 0
s3 08| 06 0.0 0
s, 03[ 03 0.0 0
s 10| 1.0 | 009 | 009 | 0.9
s3 08| 08 | 0.81 | 081 0.92
s, 03[ 03 [ 0.72 0
s 10| 06 | 0.09 0 0
s3 08| 06 | 0.09 0
s, 03[ 03 0.0 0
s; 1.0 1.0 0.0 | 0.0 0
s3 08| 08 0.0 | 0.0
s, 03[ 03 0.0 0
s 1.0| 0.6 0.0 | 00 0
s3 08| 06 0.0 0




J(xo;m) = P (po A pa A pg > 0.7)

J(s1;7m)
le 2 : all threshold-probability vectors J(m) = | J(s2;m) |, where m = {mo, m;} is Ma
J(s3;7)

m a a) a) ai az az az az
\ a) ay as ag aj ay a9 a
o ai as ay a2 ay as ai as
[ ay 0.28 0.26 0.18 0.16 0.12 0.1 0.02 0.0

a1 0.28 ( 0.1 ) ( 0.18 ) 0.0 0.28 0.1 0.18 0.0 )
\a1) 0.28 0.26 0.18 0.16 0.12 0.1 0.02 0.0
( aj 0.28 0.26 0.18 0.16 0.12 0.1 0.02 0.0
a1 (0.28 ( 0.1 ( 0.18 ( 0.0 0.28 ) 0.1 0.18 0.0
as ) 0.2 0.02 0.2 0.02 0.18 0.0 0.18 0.0
a1 \ 0.28 0.26 0.18 0.16 0.12 0.1 0.02 0.0
as 0.28 0.26 0.18 ( 0.16 0.12 0.1 0.02 0.0
a; / 0.28 0.26 0.18 0.16 / 0.12 0.1 0.02 0.0
( ar \ 0.28 0.26 0.18 0.16 0.12 0.1 0.02 0.0
as 0.28 ( 0.26 ( 0.18 ) ( 0.16 0.12 ( 0.1 0.02 0.0
as } 0.2 0.02 0.2 0.02 / 0.18 0.0 0.18 0.0
( as 0.92 0.92 0.02 0.02 0.9 0.9 0.0 0.0
a 0.28 ) 0.1 ) ( 0.18 ) ( 0.0 ( 0.28 0.1 0.18 0.0
\ a1 0.28 0.26 0.18 0.16 0.12 0.1 0.02 0.0
/ as 0.92 0.92 0.02 \ 0.02 0.9 0.9 0.0 0.0
a; (o.zs ( 0.1 (o.w) ( 0.0 ) 0.28 0.1 0.18 0.0
as 0.2 0.26 0.2 0.02 0.18 0.0 0.18 0.0
[ az 0.92 0.92 0.02 0.02 0.9 0.9 0.0 0.0
as 0.28 ( 0.26 ( 0.18 ( 0.16 0.12 ) 0.1 0.02 0.0
\ a1 0.28 0.26 0.18 0.16 0.12 0.1 0.02 0.0
[ ay 0.92 0.92 0.02 0.02 0.9 0.9 0.0 0.0
as 0.28 0.26 0.18 0.16 0.12 0.1 0.02 0.0
\ a2 0.2 0.26 0.2 0.02 0.18 0.0 0.18 0.0
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