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1. INTRODUCTION

We consider the semilinear elliptic equation

$\Delta u+f(x, u)=0$ , x $\in\Omega$ , (1)

where $\Omega$ is an exterior domain of $\mathrm{R}^{N}$ with $N\geq 3$ , that is, $G_{a}=\{x\in \mathrm{R}^{N}:|x|>a\}\subset\Omega$

for some $a>0$ . Throughout this paper, we aaesume that $f(x, u)$ is nonnegative and locally
H\"older continuous with exponent $\alpha\in(0,1)$ in $\overline{M}\cross\overline{J}$ for every bounded domain $M\subset\Omega$

and for every bounded interval $J\subset \mathrm{R}$.
It is very famous that de Broglie’s wave function

$\psi(x, t)=\exp(-\frac{iEt}{\hslash})v(x)$

is a solution of the Schrodinger equation for afree particle of mass $m$ , momentum $p$ and
kinetic energy $E$ :

$i \hslash\frac{\partial}{\partial t}\psi=-\frac{\hslash^{2}}{2m}\Delta\psi$ ,

where $\hslash=h/2\pi$ ( $h$ is Planck’ $\mathrm{s}$ constant) and

$v(x)=A \exp(\frac{i(p\cdot x)}{\hslash})$ .

This equation is generalized into the Schr\"odinger equation with the potential $V$ and the
nonlinearity

$i \hslash\frac{\partial}{\partial \mathrm{t}}\psi=-\frac{\hslash^{2}}{2m}\Delta\psi+V(x)\psi-g(x, |\psi|)\psi$.
If it has standing waves solutions of the form

$\psi(x, t)=\exp(-\frac{iEt}{\hslash})u(x)$ ,

then the function $u(x)$ must satisfy the elliptic equation

$\Delta u+\frac{2m}{\hslash^{2}}(E-V(x))u+g(x, |u|)u=0$,

which is of the form (1). In quantum mechanics, such are called stationary Schrodinger
equations

数理解析研究所講究録 1254巻 2002年 132-141

132



The aim of this paper is to give suffiffifficient conditions under which equation (1) has $\mathrm{a}$

positive solution in an exterior domain of $\mathbb{R}^{N}$ .
For a bounded domain $M\subset\Omega$ , let $C^{2+\alpha}(\overline{M})$ denote the usual H\"older space. For

simplicity, $C_{1\mathrm{o}\mathrm{c}}^{2+\alpha}(\Omega)$ is defifined as the set of all functions $u:\Omegaarrow \mathbb{R}$ such that $u\in C_{1\mathrm{o}\mathrm{c}}^{2+\alpha}(\overline{M})$

for every bounded domain $M\subset\Omega$ . A function $u\in C_{1\mathrm{o}\mathrm{c}}^{2+\alpha}(\Omega)$ is called a solution of (1) in $\Omega$

if it satisfies equation (1) at every point $x\in\Omega$ . Similarly, a function $u\in C_{1\mathrm{o}\mathrm{c}}^{2+\alpha}(\Omega)$ is called
asupersolution (resp., subsolution) of (1) in $\Omega$ if it satisfies the inequality $\Delta u+f(x, u)\leq 0$

(resp., $\geq 0$ ) at every point $x\in\Omega$ .
Atypical example of (1) is the Emden-Fowler equation

$\Delta u+p(x)u^{\gamma}=0$ , $x\in\Omega$ ,

where $p(x)$ is nonnegative and locally H\"older continuous in $\Omega$ and $\gamma$ is a positive num-
$\mathrm{b}\mathrm{e}\mathrm{r}$ . From this fact, equation (1) is often discussed under asublinear or asuperlinear

hypothesis. For instance, equation (1) is said to be sublinear (resp., superlinear) if there

exists a $\gamma$ with $0<\gamma<1$ (resp., $\gamma>1$ ) such that $f(x, u)/u^{\gamma}$ is nonincreasing (resp.,

nondecreasing) in $u$ for each fifixed $r=|x|>0$ .
Many studies have been made on the existence of a positive solution of (1) in the linear

case, the sublinear case and the superlinear case (see [2, 4, 5, 6, 7]). In this paper, we
intend to examine another case in addition to these cases. For example, consider the case
that

$f(x, u)=p(x)(u+ \frac{u}{4(1\mathrm{o}\mathrm{g}u)^{2}})$ (2)

for all sufficiently small $u$ . Then equation (1) is neither sublinear nor superlinear (of

course, equation (1) is not linear). In fact, differentiating $f(x, u)/u^{\gamma}$ , we have

$\frac{d}{du}(\frac{f(x,u)}{u^{\gamma}})=\frac{p(x)}{u^{\gamma}}\{(1-\beta)+\frac{1-\beta-2/1\mathrm{o}\mathrm{g}u}{4(1\mathrm{o}\mathrm{g}u)^{2}}\}$ .

Hence, if $0<\gamma<1$ (resp., $\gamma>1$ ), then $f(x, u)/u^{\gamma}$ is increasing (resp., decreasing) for

$u>0$ sufficiently small. In the case (2), for any $k>1$ , there exists a positive interval $I$

such that
$p(x)u<f(x, u)<kp(x)u$

for all $x\in\Omega$ and $u\in I$ . Hence, from this point of view, we may say that equation (1) is

almost linear in such cases as (2).
For sublinear Schr\"odinger equations, Swanson [7, Theorem 2.4] gave the following

sufficient condition for the existence of apositive solution under the assumption that

$0\leq f(x, u)\leq u\varphi(|x|, u)$ (3)

for all $x\in\Omega$ and $u>0$ , where $\varphi(r, u)$ is locally H\"older continuous with exponent
$\alpha\in(0,1)$ and nonincreasing in $u$ for each fifixed $r>0$ .

Theorem A. Under the assumption (3), equation (1) has a positive solution in an
exterior domain if

$\int^{\infty}r\varphi(r, c)dr<\infty$ (4)

for some $c>0$ .
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Consider the case that $f(x, u)=u/4|x|^{\beta}$ with $\beta\geq 2$ . Then assumption (3) is satisfied
with $\varphi(r, u)=1/4r^{\beta}$ . Since

$\int^{\infty}r\varphi(r, c)dr=\int^{\infty}\frac{1}{4r^{\beta-1}}dr$ ,

for any $c>0$ , condition (4) is satisfified if $\beta>2$ , but it does not hold if $\beta$ $=2$. Hence,
Theorem A is inapplicable to the caaee $\beta=2$ . However, the equation

$\Delta u+\frac{u}{4|x|^{2}}=0$

has a positive solution, because its radial solutions are represented as the form of

$u(x)=\{\begin{array}{l}(K_{1}+K_{2}\mathrm{l}\mathrm{o}\mathrm{g}|x|)|x|^{-1/2}\mathrm{i}\mathrm{f}N=3K_{3}|x|^{z}+K_{4}|x|^{2-N-z}\mathrm{i}\mathrm{f}N\geq 4\end{array}$

where $K_{\dot{*}}$ $(i=1,2,3, 4)$ are arbitrary constants and $z$ is the root of $z^{2}+(N-2)z+1/4=0$ .
Assumption (3) is not compatible with the superlinear case and the almost linear case.

Hence, instead of (3), we assume that

$0 \leq f(x, u)\leq\frac{h(u)}{|x|^{2}}$ (5)

for all $x\in\Omega$ and $u\geq 0$ , where $h(u)$ is locally Lipschitz continuous and positive for $u>0$ ,
and $h(0)=0$. We $\mathrm{a}\mathrm{k}\mathrm{o}$ prepare the following notation to present a theorem which can be
applied to these cases. Write

$L_{1}(u)=1$ , $L_{n+1}(u)=L_{n}(u)l_{n}(u)$ , $n=1,2$ , $\cdots$ ,

where
$l_{1}(u)=2|\log u|$ , $l_{n+1}(u)=\log\{l_{n}(u)\}$ ,

and set

$S_{n}(u)= \sum_{k=1}^{||}\frac{1}{\{L_{k}(u)\}^{2}}$ .

Define $e_{0}=1$ and $e_{n}=\exp(e_{n-1})$ . Then we have

$l_{n+1}(u)=\log\{l_{n}(u)\}>0$ for $0<u<1/\sqrt{e_{n}}$,

and therefore, the function sequences $\{L_{n}(u)\}$ , $\{l_{n}(u)\}$ and $\{S_{1*}(u)\}$ are well-defined for
$u>0$ suffiffifficiently small. To take some concrete forms of $S_{n}(u)$ , for $u>0$ sufficiently
small,

$S_{1}(u)=1$ , $S_{2}(u)=1+ \frac{1}{4(\log u)^{2}}$ , $S_{3}(u)=1+ \frac{1}{4(\log u)^{2}}+\frac{\mathrm{l}}{4(\log u)^{2}(1\mathrm{o}\mathrm{g}(2|\log u|))^{2}}$ ,

and so on.
Our main result is stated in the following
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Theorem 1. Assume (5) and suppose that there exists a positive integer $n$ such that

$\frac{h(u)}{u}\leq\frac{(N-2)^{2}}{4}S_{n}(u)$ (6)

for all $u>0$ sufficiently small. Then equation (1) has a positive solution $u(x)$ in an
exterior domain with $\lim|x|arrow\infty u(x)=0$ .

2. ASUPERSOLUTION AND A SUBSOLUTION

We will prove the main result by use of the s0-called “supersolution-subsolution”
method. The lemma below yields from a result of Noussair and Swanson [5, Theorem

3.3].

Lemma 2. If there exists a positive supersolution $\overline{u}$ of (1) and a positive subsolution $\underline{u}$

of (1) in $G_{b}$ such that $\underline{u}(x)\leq\overline{u}(x)$ for all $x\in G_{b}\cup C_{b}$ , where $b\geq a$ and $C_{b}=\{x\in \mathrm{R}^{N}$ :
$|x|=b\}$ , then equation (1) has at least one solution $u$ satisfying $u(x)=\overline{u}(x)$ on $C_{b}$ and
$\mathrm{u}(\mathrm{x})\leq u(x)\leq\overline{u}(x)$ through $G_{b}$ .

To apply Lemma 2, we have to find a suitable positive supersolution of (1) and $\mathrm{a}$

positive subsolution of (1) which is not greater than the supersolution. For this purpose,
we consider the nonlinear differential equation

$\frac{d^{2}}{dr^{2}}w+\frac{N-1}{r}\frac{d}{dr}w+\frac{1}{r^{2}}g(w)=0$ , $r>a$ , (7)

where $g(w)$ satisfies asuitable smoothness condition for the uniqueness of solutions of
the initial value problem and the signum condition

$wg(w)>0$ if $w\neq 0$ . (8)

Then we have the following nonoscillation theorem for equation (7).

Lemma 3. Assume (8). If there exists a positive integer $n$ such that

$\frac{g(w)}{w}\leq\frac{(N-2)^{2}}{4}S_{n}(|w|)$ (9)

for $w>0$ or $w<0$ , $|w|$ sufficiently small, then all nontrivial solutions of (7) are
nonoscillatory.

Proof. Using phase plane analysis of a Li\’enard system, Sugie et al. [10, Lemma 3.2]
proved that under the assumption (8), all nontrivial solutions of the equation

$\frac{d^{2}}{dr^{2}}w+\frac{2}{r}\frac{d}{dr}w+\frac{1}{r^{2}}g(w)=0$ (10)

are nonoscillatory if

$\frac{g(w)}{w}\leq\frac{1}{4}S_{n}(|w|)$ (11)
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for w $>0$ or w $<0$ , |w| suffiffifficiently small. Hence, the lemma is true for N $=3$ .
Suppose that N $\geq 4$ . Let

$\tau=(N-2)r^{N-2}$ and $v(\tau)=w(r)$ .
Then equation (7) becomes

$\frac{d^{2}}{d\tau^{2}}v+\frac{2}{\tau}\frac{d}{d\tau}v+\frac{1}{\tau^{2}}g^{*}(v)=0$ ,

where $g^{*}(v)=g(v)/(N-2)^{2}$ . This equation haae the $\mathrm{f}\mathrm{o}\mathrm{m}$ of (10). It follows from (9)
that

$\frac{g^{*}(w)}{w}=\frac{g(w)}{(N-2)^{2}w}\leq\frac{1}{4}S_{n}(|w|)$

for $w>0$ or $w<0$ , $|w|$ suffiffifficiently small, that is, (11) is satisfified with $g(w)=g^{*}(w)$ .
Hence, by Lemma 3.2 in [10] again, we see that all nontrivial solutions of (7) are nonoscil-
latory in the case $N\geq 4$ . El

By virtue of Lemma 3, we can choose a solution of (7) which is eventually positive.
In the next section, we will show that the positive solution is asupersolution of (1). To
get a positive subsolution of (1), we need to estimate the asymptotic behavior of positive
solutions of (7) as follows.

Lemma 4. Assume (8) and (9). Then there e$\dot{m}$t a positive number b $\geq a$ and a positive
solution $w(r)$ of (7) such that $\lim_{rarrow\infty}w(r)=0$

$b^{N-2}w(b)\leq r^{N-2}w(r)$ for r $\geq b$ .

Proof. Rom Lemma 3 we see that equation (7) has a positive solution. Let $w(r)$ be the
positive solution. Then there exists a b $\geq a$ such that

$w(r)>0$ for r $\geq b$ .

The change of variables $r=e^{s}$ and $w(r)=\xi(s)$ transforms equation (7) into the Lienard
system

$\frac{d}{ds}\xi=\eta-(N-2)\xi$ ,

$\frac{d}{ds}\eta=-g(\xi)$ .
(12)

Let $(\xi(s), \eta(s))$ be the solution of (12) corresponding to $w(r)$ . Then we have

$\xi(s)>0$ for $s\geq\log b$ . (13)

By (8) we obtain

$\frac{d}{ds}\eta(s)<0$ for $s\geq\log b$ . (14)
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It is well known that the zero solution of (12) is globally asymptotically stable (for
example, see [1, 3, 8] $)$ . Hence, we conclude that the solution $(\xi(s), \eta(s))$ tends to the
origin as $sarrow\infty$ . This means that $w(r)$ approaches the zero as $rarrow\infty$ .

We will show that $\eta(s)\geq 0$ for $s\geq\log b$ . Suppose that $\eta(s_{0})<0$ for some $s_{0}\geq\log b$ .
Then, by (12)-(14) we have

$\frac{d}{ds}\xi(s)<\frac{d}{ds}\xi(s)+(N-2)\xi(s)=\eta(s)\leq\eta(s_{0})$

for $s\geq s_{0}$ . Integrate this inequality from $s_{0}$ to $s$ to obtain

$\xi(s)<\xi(s_{0})+\eta(s_{0})(s-s_{0})arrow-\infty$ as $sarrow\infty$ .

This is acontradiction to (13).
Since $\eta(s)\geq 0$ for $s\geq\log 6$ , we see that

$\frac{d}{ds}\xi(s)\geq-(N-2)\xi(s)$ for $s\geq\log b$ .

Hence, integrating the both sides, we have

$b^{N-2}\xi(\log b)\leq e^{(N-2)s}\xi(s)$ for $s\geq\log b$ ,

namely, $b^{N-2}w(b)\leq r^{N-2}w(r)$ for $r\geq b$ . Thus, the lemma is proved. $\square$

We are now ready to prove the main theorem.

3. PROOF OF THE MAIN THEOREM

Consider the nonlinear differential equation

$\frac{d^{2}}{dr^{2}}w+\frac{N-1}{r}\frac{d}{dr}w+\frac{1}{r^{2}}h^{*}(w)--0$, $r\geq a$ , (15)

where $a$ is the number given in (1) and

$h^{*}(w)=\{$

$h(w)$ for $w\geq 0$ ,

$-h(-w)$ for $w<0$ .

Then, from assumption (5) we see that $h^{*}(w)$ satisfies the signum condition (8), and
therefore, equation (15) is in the type of (7). Also, by condition (6) we have

$\frac{h^{*}(w)}{w}\leq\frac{1}{4}S_{n}(|w|)$

for $w>0$ and $w<0$ , $|w|$ sufficiently small. Hence, from Lemma 3we conclude that all
nontrivial solutions of (15) are nonoscillatory. For this reason, we can choose asolution
$w(r)$ which is positive for all $r\geq b$ with some $b\geq a$ (we may regard $b$ as the positive
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number in Lemma 4). As in the proof of Lemma 4, we can show that $w(r)$ approaches
the zero as $r$ tends to $\infty$ . Note that $w(r)$ is also a positive solution of the equation

$\frac{d^{2}}{dr^{2}}w+\frac{N-1}{r}\frac{d}{dr}w+\frac{1}{r^{2}}h(w)=0$.

Let $\overline{u}$ be the function defifined in $G_{b}$ by $\overline{u}(x)=w(r)$ , $r=|x|\geq b$ . Then, by assumption
(5) we obtain

$\Delta\overline{u}(x)+f(x,\overline{u}(x))=\frac{d^{2}}{dr^{2}}w(r)+.\frac{N-1}{r}\frac{d}{dr}w(r)+f(x, w(r))$

$\leq\frac{d^{2}}{dr^{2}}w(r)+\frac{N-1}{r}\frac{d}{dr}w(r)+\frac{1}{|x|^{2}}h(w(r))$

$= \frac{d^{2}}{dr^{2}}w(r)+\frac{N-1}{r}\frac{d}{dr}w(r)+\frac{1}{r^{2}}h(w(r))=0$

Hence, $\overline{u}$ is a supersolution of (1) in $G_{b}$ . We next denote $\underline{u}(x)=b^{N-2}w(b)/|x|^{N-2}$ for
$|x|\geq b$ . Then, since $f(x, u)$ is nonnegative, we get

$\Delta\underline{u}(x)+f(x,\underline{u}(x))\geq\frac{d^{2}}{dr^{2}}(\frac{b^{N-2}w(b)}{r^{N-2}})+\frac{N-1}{r}\frac{d}{dr}(\frac{b^{N-2}w(b)}{r^{N-2}})$

$= \frac{(N-2)(N-1)b^{N-2}w(b)}{r^{N}}-\frac{N-1}{r}\frac{(N-2)b^{N-2}w(b)}{r^{N-1}}=0$ .

This means that $\underline{u}(x)$ is a subsolution of (1) in $G_{b}$ .
$\mathrm{R}\mathrm{o}\mathrm{m}$ Lemma 4 we see that

$\underline{u}(x)=\frac{b^{N-2}w(b)}{|x|^{N-2}}=\frac{b^{N-2}w(b)}{r^{N-2}}\leq w(r)=\overline{u}(x)$

for $|x|\geq b$ . Hence, by means of Lemma 2, we conclude that there exists a positive
solution $u(x)$ of (1) $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\theta \mathrm{i}\mathrm{n}\mathrm{g}$ $\underline{u}(x)=u(x)=\overline{u}(x)$ on $C_{b}$ and $\underline{u}(x)\leq u(x)\leq\overline{u}(x)$ through
$G_{b}$ . Since $w(r)$ tends to the zero as $rarrow\infty$ , the positive solution $u(x)\mathrm{a}\mathrm{k}\mathrm{o}$ tends to the
zero as $|x|arrow\infty$ . This completes the proof. $\square$

4. DISCUSSION

To illustrate the main theorem, we will give some examples which are the almost linear
case. One cannot apply previous $\mathrm{r}\overline{\mathrm{e}}$sults on the existence of a posilive solution to those
examples. For brevity, we defifine the function $\phi(u;\lambda)$ by $\phi(0;\lambda)=0$ for any $\lambda\geq 0$ and

$\phi(u;\lambda)=\{\begin{array}{l}u+\frac{\lambda u}{(\mathrm{l}\mathrm{o}\mathrm{g}|u|)^{2}}\mathrm{f}\mathrm{o}\mathrm{r}0<u\leq\frac{1}{e}(3\lambda+1)u-\frac{2\lambda}{e}\mathrm{f}\mathrm{o}\mathrm{r}u>\frac{1}{e}\end{array}$

Then it is easy to check that $\phi(u;\lambda)$ is continuous for $u\geq 0$ and is continuously differen-
tiable for $u>0$ .
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We first consider the elliptic equation

$\Delta u+p(x)\phi(u;1/4)=0$ (16)

in an exterior domain $\Omega$ of $\mathbb{R}^{N}$ with $N\geq 3$ . Let

$f(x, u)=p(x)\phi(u;1/4)$ and $h(u)= \frac{(N-2)^{2}}{4}\phi(u;1/4)$ .

Then condition (5) holds and condition (6) is satisfied with $n=2$ . Hence, as adirect
consequence of Theorem 1, we have the following result.

Example 5. If
$0 \leq p(x)\leq\frac{(N-2)^{2}}{4|x|^{2}}$

for $x\in\Omega$ , then equation (16) has adecaying positive solution.

Let us take another example to show how sharp Theorem 1 is. For this purpose, we
restrict $p(x)/|x|^{2}$ to any constant.

Example 6. Consider the equation with two parameters

$\Delta u+\frac{\mu}{|x|^{2}}\phi(u;\lambda)=0$
(17)

instead of (16). Then, from Theorem 1we have the following conclusions:

(i) if $0\leq\mu<(N-2)^{2}/4$ , then equation (17) has adecaying positive solution for all
$\lambda\geq 0$ ;

(ii) if $\mu=(N-2)^{2}/4$ , then equation (17) has a decaying positive solution for $0\leq\lambda\leq$

$1/4$ .

Proof. Let $f(x, u)=\mu\phi(u;\lambda)/|x|^{2}$ and $h(u)=\mu\phi(u;\lambda)$ . Since $\lambda$ and $\mu$ are nonnegative,

condition (5) is satisfied. Hence, it is enough to check that condition (6) holds for $u>0$

sufficiently small. If $\lambda=0$ , then $h(u)/u=\mu\leq(N-2)^{2}/4$ for all $u>0$ , that is, condition
(6) is satisfied with $n=1$ . We assume that Ais positive,

(i) We can choose an $\epsilon_{0}>0$ so small that $\mu(1+\epsilon_{0})<(N-2)^{2}/4$. For any $\lambda>0$ , we
see that

$\frac{h(u)}{u}=\mu(1+\frac{\lambda}{(\log u)^{2}})<\mu(1+\epsilon_{0})<\frac{(N-2)^{2}}{4}$

for $0<u<\exp(-\sqrt{\lambda}/\epsilon_{0})$ . Hence, condition (6) is satisfified with $n=1$ .
(ii) In this case, we have

$\frac{h(u)}{u}=\mu(1+\frac{\lambda}{(\log u)^{2}})\leq\frac{(N-2)^{2}}{4}(1+\frac{\mathrm{l}}{4(1\mathrm{o}\mathrm{g}u)^{2}})$

for $u$ sufficiently small, namely, condition (6) with $n=2$ . $\mathrm{C}1$

139



Recently, by use of phase plane analysis of aLi\’enard system, Sugie et al. [9, Lemma
4.4] gave an oscillation theorem for equation (10) under the assumption (8) as follows.
Theorem B. Assume (8) and suppose that there exists a $\lambda$ with $\lambda>1/4$ satisfying

$\frac{g(w)}{w}\geq\frac{1}{4}+\frac{\lambda}{(2\log|w|)^{2}}$ (18)

for $|w|$ sufficiently small. Then all nontrivial solutions of (10) are oscillatory.

To compare with the conclusion (ii) of Example 6, we consider the equation

$\Delta u+\frac{(N-2)^{2}}{4|x|^{2}}\phi^{*}(u;\lambda)=0$ , (19)

where

$\phi^{*}(u;\lambda)=\{\begin{array}{l}\phi(u,.\lambda)-\phi(-u\cdot,\lambda)\end{array}$ $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{f}\mathrm{o}\mathrm{r}u<0u\geq 0.$

’

It is clear that $\phi^{*}(u;\lambda)$ is odd, and therefore, it satisfifies the signum condition (8). As
shown in Sections 2 and 3, the change of variables

$v(\tau)=w(r)=u(x)$ , $r=|x|$ and $\tau=(N-2)r^{N-2}$

reduces equation (19) to

$\frac{d^{2}}{d\tau^{2}}v+\frac{2}{\tau}\frac{d}{d\tau}v+\frac{1}{4\tau^{2}}\phi^{*}(v;\lambda)=0$.

This is of the form (10). Since

$\frac{\phi^{*}(v\cdot\lambda)}{4v},=\frac{1}{4}+\frac{\lambda}{(2\log|v|)^{2}}$

for $|v|$ suffiffifficiently small, from Theorem $\mathrm{B}$ it turns out that if $\lambda>1/4,\cdot$ then equation
(19) fails to have positive radial solutions. Hence, together with the second conclusion in
Example 6, we see that equation (19) has a positive radial solution if and only if $\lambda\leq 1/4$ .
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