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1. Introduction

Our aim in this paper is to seek anecessary and sufficient condition in order
that an analytic Li\’enard-type system has alocal center. The equilibrium point
is called alocal center of the system if all the orbits in every neighborhood
of it are closed. To decide the number of the non-trivial closed orbits of a
Li\’enard-type system is important, and to see if an equilibrium point of the
system is acenter is adifficult problem . It has continued until today to draw
attention of many mathematicians. For this purpose we assume the case where
the corresponding linear system has apair of pure imaginary eigenvalues (since
otherwise the equilibrium point cannot be acenter). Thus, we consider an
analytic Li\’enard-type system of the following form:

$\{$

$\dot{x}=y$

(L)
$\dot{y}=f_{n}(x)y^{p}-(x +g_{q}(x))$ ,

where the dot $($

.
$)$ denotes differentiation, $f_{n}(x)$ and $g_{q}(x)$ are real analytic

functions of the form (C) below.

$f_{n}(x)= \sum_{k=n}a_{k}x^{k}$ md $g_{q}(x)$
$= \sum_{k=q}b_{k}x^{k}$

, (C)

where $n$ $+p\geq 2^{*}$ and $q\geq 2$ .
Then the system (L) has an equilbrium point at the origin and the coeffi-

cient matrix of the linear system approximating the system at the origin has
apair of purely imaginary eigenvalues. In this case the equilbrium point is
either acenter or afocus.

In the old paper of T. Saito[Sa] he gave anecessary and sufficient condition
on the case $g_{q}(x)\equiv 0$ . Recently, the author have treated on the special case
$n$ $=p=1$ and $q=2$ in [Ha], Our results are an improvement of these papers
and are stated as follows.

Theorem A. Suppose that $g_{q}$ is an odd function. The system (L) with the
form (C) has alocal center at the origin if and only if one of the following
conditions is satisfied:

(1) $p$ is an even number;
(2) $p$ is an odd number and $f_{n}$ is an odd function.

$*\mathrm{F}\mathrm{o}\mathrm{r}$ the case $n+p\leq 1$ see \S 3 Appendi$\mathrm{x}$
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Theorem B. Suppose that $f_{n}$ is an odd function and $n+p\leq q$ . The system

(L) with the form (C) has alocal center at the origin if and only if $g_{q}$ is an odd
function.

We shall apply our results to an analytic Li\’enard-type system of the form

$\{$

$\dot{x}=y$

$\dot{y}=f_{n}(x)y^{2n-1}-\sin x$ .

with $/\mathrm{n}(0)=0$ and $n\geq 1$ . Using Theorem Afor this system, it follows that
the equilibrium point $(0, 0)$ is alocal center if and only if $f_{n}$ is an odd function.

2. Proof of Theorems

Now let us prove Theorem A. We suppose that $g_{q}$ is an odd function. Let
$(x(t), y(t))$ be asolution of the system (L). Then, if $p$ is an odd number and $f_{n}$

is an odd functions, $(-x(-t), y(-t))$ is also asolution of the system (L) with
the form (C). Thus the orbits defined by the system (L) have mirror symmetry
with respect to the $y$-axis. Hence the system (L) cannot have afocus at the
origin. Similarly, if $p$ is an even number, since $(x(-t), -y(-t))$ is also asolution
of the system (L), the system cannot have afocus at the origin.

Conversely, we suppose that the origin is alocal center. To prove the the0-
rems we use the following fundemental tool which is well-k own as Poincar\’e-

Lyapunov’ lemma(see [Ha], [P] or [Sch]).

Proposition. If the system (L) has alocal center at the origin, then it has a
nonconstant real analytic first integral $M(x, y)=const$ , in aneighborhood of
the origin. It can be written by apower series of the form

$M(x, y)=c(x^{2}+y^{2})+M_{3}(x, y)+M_{4}(x, y)+\cdots$ , (1)

where $c$ is some real constant and $M_{m}(x, y)$ is ahomogeneous polynomial in $x$

and $y$ of degree $m\geq 3$ .
Introducing the polar coordinates $x=r\cos\theta$ and $y=r\sin\theta$ , the equality

(1) is written as

$M(r\cos\theta, r\sin\theta)=r^{2}\overline{M}_{2}(\theta)+r^{3}\overline{M}_{3}(\theta)+\cdots$ ,

where $r^{m}\overline{M}_{m}(\theta)=M_{m}(r\cos\theta, r\sin\theta)$ for $m\geq 2$ and $\overline{M}_{2}(\theta)=c$ .
Now let $(x(t), y(t))$ be aperiodic solution of the system (L) with the form

(C) and write $x(t)=r(t)\cos\theta(t)$ and $y(t)=r(t)\sin\theta(t)$ . Then we have

$\dot{r}=\sum_{k=n}a_{k}r^{k+1}\cos^{k}\theta\sin^{2}\theta-\sum_{k=q}b_{k}r^{k}\cos^{k}\theta\sin\theta$
(2)

and
$\dot{\theta}=-1+\sum_{k=n}a_{k}r^{k}\cos^{k+1}\theta\sin\theta-\sum_{k=q}b_{k}r^{k-1}\cos^{k+1}\theta$

. (3)
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Differentiating with respect to $t$ the relation

$M(r(t) \cos\theta(t), r(t)\sin\theta(t))=\sum_{m=2}^{\infty}r(t)^{m}\overline{M}_{m}(\theta(t))\equiv const$ ,

we obtain

$\sum_{m=2}mr^{m-1}\dot{r}\overline{M}_{m}(\theta)+\sum_{m=3}r^{m}\overline{M}_{m}$

.
$(\theta)\dot{\theta}=0$ , (4)

where the prime (’) denotes differentiation with respect to $\theta$. It folows from
(2), (3) and (4) that

$\sum_{m=3}r^{m}\overline{M}_{m}’(\theta)$ (5)

$= \sum_{m=3}r^{m}\overline{M}_{m}’(\theta)\{$$\sum_{k=n}a_{k}r^{k+p-1}\cos^{k+1}\theta\sin^{p}\theta-\sum_{k=q}b_{k}r^{k-1}\cos^{k+1}\theta]$

$+ \sum_{m=2}mr^{m-1}\overline{M}_{m}(\theta)\{$ $\sum_{k=n}a_{k}r^{k+p}\cos^{k}\theta\sin^{p+1}\theta-\sum_{k=q}b_{k}r^{k}\cos^{k}\theta\sin\theta]$ .

We give the proof by dividing all possible cases to the cases (I) $n+p+s=q$,
$s\geq 0$ and (II) $n+p=q+t$, $t>0$ . Moreover, we need to divide these cases
to the eight cases as is shown in the table below, where the sign $\mathrm{e}(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}. 0)$

denotes an even(resp. odd) number.

Case(I)$\underline{\cdot.n+p+s=q,s\geq 0}$

First, we get the following lemma by comparing the terms of the same degree
in r on both sides of the equalty (5).

Lemma 1. Ifm $\leq n+p$, then $\overline{M}_{m}’(\theta)=0$ .
We shall consider $\underline{\mathrm{t}\mathrm{h}\mathrm{e}}$case $(\mathrm{I})-(\mathrm{i})$ .

Lemma 2. Suppopse that $n+\underline{p}<m\leq n+p+s=q$ . Then $a:=0$ for even
numbers i $\in$ [n, n-f s–1] and Mm (9) is apolynomial of $\sin\theta$ only.

The proof is given by the same discussion as in [Sa]. So we omit it.

Lemma 3. Suppopse that $m>q$ . Then $a:=0$ for even numbers $i\geq n+s$

and $\overline{M}_{m}(\theta)$ is apolynomial of $\sin\theta$ only.
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Proof. From (5) we remark that the equality

$s+r-1$
$\overline{M}_{qfr}^{l}(\theta)=\sum(k +2)\overline{M}_{k+2}(\theta)a_{n+s+r-k-1}\cos^{n+s+r-k-1}\theta$

$\sin^{p+1}\theta$

$k=0$

$- \sum(k+2)\overline{M}_{k+2}(\theta)b_{q+r-k-1}\cos^{q+r-k-1}\theta\sin\theta r-1$

$k=0$

$+ \sum\overline{M}_{k+3}^{l}(\theta)a_{n+s+r-k-2}\cos^{n+s+r-k-1}\theta\sin^{p}\theta s+r-2$

$k=0$

- $\sum_{k=0}^{r-2}\overline{M}_{k+3}’(\theta)b_{q+r-k-2}\cos^{q+r-k-1}\theta$. (6)

holds for $1\leq r$ . When $r=1$ , we have

$\overline{M}_{q+1}’(\theta)=\sum_{k=0}^{s}(k+2)\overline{M}_{k+2}(\theta)a_{n+s-k}\cos^{n+s-k}\theta\sin^{p+1}\theta-2\overline{M}_{2}(\theta)b_{q}\cos^{q}\theta\sin\theta$

$+ \sum_{k=0}^{s-1}\overline{M}_{k+3}’(\theta)a_{n+s-k-1}\cos^{n+s-k}\theta\sin^{p}\theta$.

By Lemma 1and 2, since

$\overline{M}_{q+1}(2\pi)-\overline{M}_{q+1}(0)=2\overline{M}_{2}(\theta)a_{n+s}\int_{0}^{2\pi}\cos^{n+s}\theta\sin^{p+1}\theta d\theta=0$,

we get $a_{n+s}=0$ . Hence we see that $\overline{M}_{q+1}(\theta)$ is apolynomial of $\sin\theta$ only.
Moreover, from (6) we have

$\overline{M}_{q+2}’(\theta)=\sum_{k=0}^{s+1}(k+2)\overline{M}_{k+2}(\theta)a_{n+s-k+1}\cos^{n+s-k+1}\theta\sin^{p+1}\theta$

- $\sum_{k=0}^{1}(k+2)\overline{M}_{k+2}(\theta)b_{q-k+1}\cos^{q-k+1}\theta\sin\theta$

$+ \sum_{k=0}^{s}\overline{M}_{k+3}’(\theta)a_{n+s-k}\cos^{n+s-k+1}\theta\sin^{p}\theta$

$-\overline{M}_{3}^{l}(\theta)b_{q}\cos^{q+1}\theta$ .

By $a_{n+s}=0$ and the assumption that $g_{q}$ is an odd function, we obtain that
$M_{q+2}(\theta)$ is also apolynomial of $\sin\theta$ only.

From now on, we suppose that for all $\mathit{1}\geq 1$

$a_{n+s}=a_{n+s+2}=\cdots=a_{n+s+2(l-1)}=0$
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and $\overline{M}_{m}(\theta)$ have been determined up to $m=q-+2l$ as polynomials of $\sin\theta$ only
Then, from (6), the equality determining $M_{q+2l+1}(\theta)$ is given by

$\overline{M}_{q+2l+1}^{l}(\theta)=\sum_{k=0}^{s+2l}(k+2)\overline{M}_{k+2}(\theta)a_{n+s+2l-k\cos^{n+s+2l-k}\theta\sin^{p+1}\theta}$

- $\sum_{k=0}^{2l}(k+2)\overline{M}_{k+2}(\theta)b_{q+2l-k}\cos^{q+2l-k}\theta\sin\theta$

$+ \sum_{k=0}^{s+2l-1}\overline{M}_{k+3}’(\theta)a_{n+s+2l-k}\cos^{n+s+2l-k}\theta\sin^{p}\theta$

- $\sum_{k=0}^{2l-1}\overline{M}_{k+3}’(\theta)b_{q+2l-k-1}\cos^{q+2l-k}\theta$

$=2 \overline{M}_{2}(\theta)a_{n+s+2l}\cos^{n+s+2l}\theta\sin^{p+1}\theta+\sum(\cdots)$ . (7)

From $\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}2$ , the assumption of induction and that $g_{q}$ is an odd function, allthe terms on the right-hand side of the equality (7), expect the first one, havethe form (polynomial of $\sin\theta$) $\cross$ (odd power of $\cos\theta$). Thus, since

$\overline{M}_{q+2l+1}(2\pi)-\overline{M}_{q+2l+1}(0)=2\overline{M}_{2}(\theta)a_{n+s+2l}\int_{0}^{2\pi}\cos^{n+s+2l}\theta\sin^{p+1}$fldfl $=0$ ,

we get $a_{n+s+2l}=0$ . Hence we see that $\overline{M}_{q+2l+1}(\theta)$ is apolynomial of sin#only.
Moreover we consider $\overline{M}_{q+2(l+1)}(\theta)$ . By (6), $\overline{M}_{q+2(l+1)}(\theta)$ is determinedfrom the equality

$\overline{M}_{q+2(l+1)}’(\theta)=\sum(k+2)\overline{M}_{k+2}(\theta)a_{n+s+2l-k+1}\cos^{n+s+2l-k+1}\theta\sin^{p+1}\theta s+2l+1$

$k=0$

$- \sum(k+2)\overline{M}_{k+2}(\theta)b_{q+2l-k+1}\cos^{q+2l-k+1}\theta\sin\theta 2l+1$

$k=0$

$+ \sum\overline{M}_{k+3}’(\theta)a_{n+s+2l-k+1}\cos^{n+s+2l-k+1}\theta\sin^{p}\theta s+2l$

$k=0$

- $\sum_{k=0}^{2l}\overline{M}_{k+3}^{l}(\theta)b_{q+2l-k\cos^{q+2l-k}\theta}$

$=2 \overline{M}_{2}(\theta)a_{n+s+2l+1}\cos^{n+s+2l+1}\theta\sin^{p+1}\theta+\sum(\cdots)$ . (8)

From the above fact(i.e. $a_{n+s+2l}=0$), the assumption of induction and that
$\mathcal{G}q$ is an odd function, aU the tems on the right-hand side of the equalty (8)
have the form (polynomial of $\sin\theta$ ) $\cross$ (odd power of $\cos\theta$). Thus we conclude
that $\overline{M}_{q+2(l+1)}(\theta)$ is apolynomial of $\sin\theta$ only.
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Other seven cases are also proved by asimilar method to the above one.

Case(II)$\underline{\cdot.n+p=q+t,t>0}$

First, we get the following lemma by comparing the terms of the same degree

in $r$ on both sides of the equality (5).

Lemma 4. If $m\leq q$ , then $\overline{M}_{m}’(\theta)=0$ .

We shall consider $\underline{\mathrm{t}\mathrm{h}\mathrm{e}}$case $(\mathrm{I}\mathrm{I})-(\mathrm{i})$ . We get the following

Lemma 5. Suppopse that $q<m\leq q+t=n+p$ . Then $\overline{M}_{m}(\theta)$ is apolynomial
of $\cos\theta$ only.

Proof. From (5) we have

$\overline{M}_{q+1}^{l}(\theta)=-2\overline{M}_{2}(\theta)b_{q}\cos^{q}\theta\sin\theta$.

Thus $\overline{M}_{q+1}(\theta)$ is apolynomial of $\cos\theta$ only.

From now on, we suppose that $M_{m}(\theta)$ have been determined up to $q+r-$
$\underline{1}(2\leq r\leq t)$ as polynomials of $\cos\theta$ only. Then the equality determining

$M_{q+r}(\theta)$ is given by

$\overline{M}_{q+r}’(\theta)=-\sum_{k=0}^{r-1}(k+2)\overline{M}_{k+2}(\theta)b_{q+r-k-1}\cos^{q+r-k-1}\theta\sin\theta$

$- \sum_{k=0}^{r-2}\overline{M}_{k+3}’(\theta)b_{q+r-k-2}\cos^{q+r-k-1}\theta$ . (9)

Thus, we see from the assumption of induction and Lemma 4that $\overline{M}_{q+r}(\theta)$ is
apolynomial of $\cos\theta$ only. $\square$

Lemma 6. Suppopse that $m>q+t=n+p$ . Then $a_{i}=0$ for even numbers
$i\geq n$ and $\overline{M}_{m}(\theta)$ is apolynomial of $\cos\theta$ only.

Proof. From (5) we remark that the equality

$\overline{M}_{q+t+r}^{l}(\theta)=\sum(k+2)\overline{M}_{k+2}(\theta)a_{n+r-k-1}\cos^{n+r-k-1}\theta\sin^{p+1}\theta r-1$

$k=0$

$- \sum(k+2)\overline{M}_{k+2}(\theta)b_{q+t+r-k-1}\cos^{q+t+r-k-1}\theta\sin\theta r+t-1$

$k=0$

$+ \sum\overline{M}_{k+3}’(\theta)a_{n+r-k-2}\cos^{n+r-k-1}\theta\sin^{p}\theta r-2$

$k=0$

$- \sum\overline{M}_{k+3}’(\theta)b_{q+t+r-k-2}\cos^{q+t+r-k-1}\theta r+t-2$ (10)
$k=0$
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holds for $1\leq r$ . When r $=1$ , we have

$\overline{M}_{q+t+1}’(\theta)=2\overline{M}_{2}(\theta)a_{n}\cos^{n}\theta\sin^{p+1}\theta$

- $\sum_{k=0}^{t}(k+2)\overline{M}_{k+2}(\theta)b_{q+t-k}\cos^{q+t-k}\theta\sin\theta$

- $\sum_{k=0}^{\ell-1}\overline{M}_{k+3}’(\theta)b_{q+t-k-1}\cos^{q+t-k}\theta$.

By Lemma 4and 5, since

$\overline{M}_{q+t+1}(2\pi)-\overline{M}_{q+\ell+1}(0)=2\overline{M}_{2}(\theta)a_{n}\int_{0}^{2\pi}\cos^{n}\theta\sin^{p+\mathrm{l}}$fldfl $=0$ ,

we get $a_{n}=0$ . Hence we see that $\overline{M}_{q+\pm}t1(\theta)$ is apolynomial of $\cos\theta$ only. As
the result, we obtain from (10) that $M_{q+\ell+2}(\theta)$ is also apolynomial of $\cos\theta$

only.
From now on, we suppose that for aU $l\geq 1$

$a_{n}=a_{n+2}=\cdots=a_{n+2(l-1)}=0$ (11)

and $M_{m}(\theta)$ have been determined up to m $=q$ f tf 21 as polynomials of $\cos\theta$

only. Then, from (10), the equalty determining $\overline{M}_{q+\ell+2l+1}(\theta)$ is given by

$\overline{M}_{q+t+2l+1}’(\theta)=\sum_{k=0}^{2l}(k+2)\overline{M}_{k+2}(\theta)a_{n+2l-k}\cos^{n+2l-k}\theta\sin^{p+1}\theta$

- $\sum_{k=0}^{t+2l}(k+2)\overline{M}_{k+2}(\theta)b_{q+\ell+2l-k}\cos^{q+\ell+2l-k}\theta\sin\theta$

$+ \sum_{k=0}^{2l-1}\overline{M}_{k+3}’(\theta)a_{n+2l-k-1}\cos^{n+2l-k}\theta\sin^{p}\theta$

- $\sum_{k=0}^{t+2l-1}\overline{M}_{k+3}’(\theta)b_{q+\ell+2l-k-1}\cos^{q+t+2l-k}\theta$

$=2 \overline{M}_{2}(\theta)a_{n+2l}\cos^{n+2l}\theta\sin^{p+1}\theta+\sum(\cdots)$ . (12)

From the assumption of induction and that $g_{q}$ is an odd function, all the terms
on the right-hand side of the equality (12), except the first one, have the form
(polynomial of $\sin\theta$) $\cross$ (odd power of $\cos\theta$). Thus, since

$\overline{M}_{q+\ell+2l+1}(2\pi)-\overline{M}_{q+t+2l+1}(0)=2\overline{M}_{2}(\theta)a_{n+2l}\int_{0}^{2\pi}\cos^{n+2l}\theta\sin^{p+1}$ fldfl $=0$ ,

$\mathrm{w}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{t}\wedge-1_{-}$
$a_{n+2l}=0$ . Hence we see that $\overline{M}_{q+t+2l+1}(\theta)$ is apolynomial of $\cos\theta$
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Moreover we consider $\overline{M}_{q+t+2(l+1)}(\theta)$ . By (10), $M-_{q+t+2(l+1)(\theta)}$ is deter-
mined from the equality

$\overline{M}_{q+t+2(l+1)}^{l}(\theta)=\sum_{k=0}^{2l+1}(k+2)\overline{M}_{k+2}(\theta)a_{n+2l-k+1}\cos^{n+2l-k+1}\theta\sin^{p+1}\theta$

- $\sum_{k=0}^{t+2l+1}(k+2)\overline{M}_{k+2}(\theta)b_{q+t+2l-k+1}\cos^{q+t+2l-k+1}\theta\sin\theta$

$+ \sum_{k=0}^{2l}\overline{M}_{k+3}^{l}(\theta)a_{n+2l-k}\cos^{n+2l-k+1}\theta\sin^{p}\theta$

$t+2l$

$- \sum_{k=0}\overline{M}_{k+3}’(\theta)b_{q+t+2l-k}\cos^{q+t+2l-k+1}\theta$

$=2 \overline{M}_{2}(\theta)a_{n+2l+1}\cos^{n+s+2l+1}\theta\sin^{p+1}\theta+\sum(\cdots)$ . (13)

From the above fact(i.e. $a_{n+2l}=0$), the assumption of induction and that $g_{q}$ is
an odd function, all the te rms on the right-hand side of the equality (13) have
the form (polynomial of $\sin\theta$ ) $\cross$ (odd power of $\cos\theta$). Thus we conclude that
$M_{q+t+2(l+1)}(\theta)$ is apolynomial of $\cos\theta$ only.

Other seven cases are also proved by asimilar method to the above one.
Therefore the proof of Theorem Ais now completed. $\square$

The following fact is akey in the proof of Theorem B.

Lemma 7. $Suppop\underline{se}$that n-l- $p<m\leq n+p+s=q$ . If $m$ is an odd (resp.

even) number, then $M_{m}(\theta)$ is apolynomial of $\cos\theta$ of oc#ci(resp. even) degree
only.

We omit the details for the proofs of Lemma 7and Theorem B.

3. Appendix

[1] We consider the case $n+p\leq 1$ in the form (C). If $(n,p)=(1,0)$ and $a_{1}>1$ ,
then there exists the first integral (1/2)y $+ \int_{0}^{x}\{f_{1}(\xi)-\xi-g_{q}(\xi)\}d\xi=const$ .
of the system (L). Since $x\{f_{1}(x)-x-g_{q}(x)\}>0(x\neq 0)$ in the neighborhood
of the origin, the equilibrium point is acenter.

If $(n,p)=(0,1)$ and $a_{1}>1$ , then we can apply Theorem Aand $\mathrm{B}$ to this
system.

We set $P(x)=f_{0}(x)-x-g_{q}(x)$ . Let asolution of the equation $P(x)=0$

be $x=ex$ . If $(n,p)=(0,0)$ and $P’(-\alpha)>0$ , then we also can apply Theorem
Aand $\mathrm{B}$ to this system.

[2] By combining the mentioned facts above and the result in [Su], we have the
following result on aglobal center of the system (L).
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Corollary. Consider the system (L) with p $=1$ of the form (C). Suppose that
$(C_{1})g_{q}$ is m odd function with $\mathrm{g}\mathrm{q}\{0$) $=0$ and $x\{x+g_{q}(x)\}>0(x\neq 0)$ ,
$(C_{2})$ there exists $0\leq\lambda<\sqrt{8}$ such that

$| \int_{0}^{x}f_{n}(\xi)d\xi|\leq\lambda\sqrt{\int_{0}^{x}g_{q}(\xi)d\xi}$ for sufficiently iarge x.

Then the equilibrium point (0, 0) of the system (L) is aglobal center if and
only $\mathrm{j}f\int_{0}^{\infty}g(x)dx=\infty$ .
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