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On the local center of Liénard-type systems

BARFEETFEE K # (MAKOTO HAYASHI)

1. Introduction

Our aim in this paper is to seek a necessary and sufficient condition in order
that an analytic Liénard-type system has a local center. The equilibrium point
is called a local center of the system if all the orbits in every neighborhood
of it are closed. To decide the number of the non-trivial closed orbits of a
Liénard-type system is important, and to see if an equilibrium point of the
system is a center is a difficult problem . It has continued until today to draw
attention of many mathematicians. For this purpose we assume the case where
the corresponding linear system has a pair of pure imaginary eigenvalues (since
otherwise the equilibrium point cannot be a center). Thus, we consider an
analytic Liénard-type system of the following form:

=y
{ Y = fa(2)y? — (= + g4(2)), (t)

where the dot (*) denotes differentiation, f.(z) and g,(z) are real analytic
functions of the form (C) below.

fa(z) = Z axz* and g (z) = Ebkx", (©)

k=n k=q

where n + p > 2* and ¢ > 2.

Then the system (L) has an equilibrium point at the origin and the coeffi-
cient matrix of the linear system approximating the system at the origin has
a pair of purely imaginary eigenvalues. In this case the equilibrium point is
either a center or a focus.

In the old paper of T. Saito[Sa] he gave a necessary and sufficient condition
on the case g;(r) = 0. Recently, the author have treated on the special case
n =p=1and ¢ = 2 in [Ha]. Our results are an improvement of these papers
and are stated as follows.

Theorem A. Suppose that g, is an odd function. The system (L) with the
form (C) has a local center at the origin if and only if one of the following
conditions is satisfied:

(1) p is an even number;

(2) p is an odd number and f, is an odd function.

*For the case n 4+ p < 1 see §3 Appendix



Theorem B. Suppose that f, is an odd function and n +p < q. The system
(L) with the form (C) has a local center at the origin if and only if g, is an odd
function.

We shall apply our results to an analytic Liénard-type system of the form

T=y
§ = fale)y™ — sina.

with f,(0) = 0 and n > 1. Using Theorem A for this system, it follows that
the equilibrium point (0, 0) is a local center if and only if f, is an odd function.

2. Proof of Theorems

Now let us prove Theorem A. We suppose that g, is an odd function. Let
(z(t),y(t)) be a solution of the system (L). Then, if p is an odd number and f,
is an odd functions, (—z(—t),y(—t)) is also a solution of the system (L) with
the form (C). Thus the orbits defined by the system (L) have mirror symmetry
with respect to the y-axis. Hence the system (L) cannot have a focus at the
origin. Similarly, if p is an even number, since (z(—t), —y(—1)) is also a solution
of the system (L), the system cannot have a focus at the origin.

Conversely, we suppose that the origin is a local center. To prove the theo-
rems we use the following fundemental tool which is well-known as Poincaré-
Lyapunov’ lemma(see [Ha], [P] or [Sch]).

Proposition. If the system (L) has a local center at the origin, then it has a
nonconstant real analytic first integral M (z,y) = const. in a neighborhood of
the origin. It can be written by a power series of the form

M(zay) =‘C(.’132+y2)+M3(fE,y)+M4(:E,y)+~--v, (1)

where ¢ is some real constant and M, (z,y) is a homogeneous polynomial in z
and y of degree m > 3.

Introducing the polar coordinates z = r cosf and y = rsin#é, the equality
(1) is written as

M(rcosf,rsinf) = r2]\72(9) + raﬂz,(a) NI

where r™M,,(6) = M, (r cos8,r sin §) for m > 2 and M,(6) = c. ,
Now let (z(t),y(t)) be a periodic solution of the system (L) with the form
(C) and write z(t) = r(t) cos 6(t) and y(t) = r(t) sin6(¢). Then we have

r = Z apr*t?! cos* §sin® 6 — E bir* cos* sin 6 (2)
k=n k=q
and )
0=-1+ Z apr® cos®t! @sin 6 — Z ber® 1 cos*t1 9. (3)

k=n k=gq
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Differentiating with respect to ¢ the relation

M(r(t) cos 6(t),r(t) sin 6(t)) = D r(t)™Mpm(8(t)) = const.,

m=2

we obtain

Y mrmT M (8) + Y P M, (6)6 = o, (4)

m=2 m=3

where the prime (') denotes differentiation with respect to 6. It follows from
(2), (3) and (4) that

Y rmM,,(6) | (5)

m=3
k) . ——
= Z r™M,.(9) Z ar¥tP=1 cosk+1 gsin? 9 — Z bir*—1 coskt1 g
m=3 k=n k=q

+ Z mr"‘_lﬁm(e) [Zakrk'ﬂ” cos* @sin?t1 9 — Zbkrk cos® @ sin 0] .
m=2 k=n k=gq

We give the proof by dividing all possible cases to the cases (I) n+p+s=gq,
s> 0and (II) n+p =g+t ¢t > 0. Moreover, we need to divide these cases
to the eight cases as is shown in the table below, where the sign e(resp. o)
denotes an even(resp. odd) number.

@ TG6@ [ @ [ [ [ 60 ] o ] om
p_ o o o o e e e e
q (o] € o € (o] € (o] €

Case(I) :n+p+s=gq,5s>0

First, we get the following lemma by comparing the terms of the same degree
in r on both sides of the equality (5).

Lemma 1. If m < n +p, then ﬁ,'n(0) =0.
We shall consider the case (I)-(i).

Lemma 2. Suppopse that n +p<m<n+p+s=gq. Thena; =0 for even
numbers i € [n,n + s — 1] and M,(0) is a polynomial of sin 6 only.

The proof is given by the same discussion as in [Sa]. So we omit it.

Lemma 3. Suppopse that m > q. Then a; = 0 for even numbers i > n + s
and M, (0) is a polynomial of sin 6 only.



Proof. From (5) we remark that the equality

s+r—1
M;+r(9) = Z (k + 2)Mk+2(9)an+s+r—k——1 cos™ etk gginPtl g
k=0
r—1 __ .
- Z(k + 2)Mk+2(6)bq+r—k—1 COSq-*-r_—k_1 0 sin 6
k=0
s+r—2~
+ Z M;c+3 (0)antst+r—k—2 cos™ Tt =kF=1ginP @
k=0 ’
-2

Z )0gtr—k—2 cosItT k-1 g, (6)
k=0

holds for 1 < r. When r = 1, we have

q+1 (6) Z (k+2 Mk+2(9)an+3 c cos" ek gsinPt1 g
k=0

- 2M2(9)bq cosq fsin 6
s—1

+ ZMk+3 e)an+s—k 1 cos™t*~F @sin? 4.
k=0

By Lemma 1 and 2, since
— — — 2m
Mg11(27) — My41(0) = 2M3(6)an+s / cos™t® Bsin?*1 0d6 = 0, -
0
we get an+s = 0. Hence we see that Mq_,.l(ﬁ) is a polynomial of siné only.
Moreover, from (6) we have
s+1

M;H (9) :Z(k + 2)Mk+2(9)an+s_k+1 cos" T+ gsin?t1 g

k=0

(k+ 2)Mk+2(9)bq k+1 cos?™ k+19sin 8

MH

-~
Il

0
3

+ ]\7,;+3(9)an+3_k cos™ T~k +1 g5in? ¢
k=0 ’
- M;(G)bq cos?T1 6.

By ants = 0 and the assumption that g, is an odd function, we obtain that

q+2(9) is also a polynomial of sin § only.
From now on, we suppose that forall [ > 1

Up4s = Qnts+2 = * = Qpyst2(l-1) = 0
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and Mm(é’) have been determined up to m = q+2! as polynomials of sin § only.
Then, from (6), the equality determining M, 5:41(6) is given by

s+21
ﬁ;+21+1 (0) =Z (k + 2)ﬁk+2(0)a,,+,+21_k COSn+’+21_k 0sin"+1 6
=0
2l —
— ) (k+2)My42(0)bys 21—k cos™ 2% g sin

k=0
s+21-1

+ E m+3(0)an+,+21_k cos"t*t2l-k gginr g

k=0 :
211

- Z M,;+3(0)bq+zl_k_1 cos?t2l-k g

k=0
= 2m(ﬂ)an+,+2l cos™tet2lgginrtlg Z( --). (7

From Lemma2, the assumption of induction and that 9q is an odd function, all
the terms on the right-hand side of the equality (7), expect the first one, have
the form (polynomial of sin ) x (odd power of cos 6). Thus, since

27
Ma+2141(27) — Myt2141(0) = 2M2(0)an+s+2l/ cos™+*+2! §5in?+1 ggg = ¢,
0

we get an4,421 = 0. Hence we see that A?q+21+1(0) is a polynomial of sin
only.

Moreover we consider 1\7,+2(,+1,(e). By (6), Mq+2(l+l)(0) is determined
from the equality

s+21+1
M;+2(l+1)(0) = Z (k + 2)Mi12(0)@ntstai—p4q cos™Ho2I=k+1 g o o4l g
k=0
2141 —
= ) (K + 2)Miy2(0)bysri_rs1 costH2—F+1 g gin g

k=0
s+21~

+ ZMIL+3(0)an+a+2I—k+1 cos"tet2l-k+1 g g
k=0

2l

k=0
= 21?4; (0)@nistaipr cos™ o2t gginptig E( -+). (8)

From the above fact(i.e. @n+s+21 = 0), the assumption of induction and that
gq is an odd function, all the terms on the right-hand side of the equality (8)
have the form (polynomial of sin 6) x (odd power of cos ). Thus we conclude

that M1 5341)(9) is a polynomial of sin 8 only.



Other seven cases are also proved by a similar method to the above one.

Case(Il) :n+p=q+t,t>0

First, we get the following lemma by comparing the terms of the same degree
in r on both sides of the equality (5).

Lemma 4. If m < g, then M, (6) = 0.
We shall consider the case (II)-(i). We get the following

Lemma 5. Suppopse that ¢ < m < g+t = n+p. Then M, (9) is a polynomial
of cos 6 only.

Proof. From (5) we have

o~y

M, 1(0) = —2M,(8)b, cos? sin 6.

Thus M, +1(0) is a polynomial of cos 6 only.

From now on, we suppose that Mm(O) have been determined up to g + 71 —
1 (2 < r < t) as polynomials of cosf only. Then the equality determining
Mq+r(9) is given by

r—1
ATy (8) = — 3 (k +2)Miy2(8)bgtr—k—1 cos? 71 fsin 6
k=0
r—2~
- ZMk+3(0)bq+r—k—2 cos?tm—F-1¢. (9)
k=0

Thus, we see from the assumption of induction and Lemma 4 that M, g+r(0) is
a polynomial of cos§ only. O

Lemma 6.ﬂvSuppopse that m > ¢+t =n+ p. Then a; = 0 for even numbers
i > n and M,(6) is a polynomial of cos 6 only.

Proof. From (5) we remark that the equality

r—1
]Tf;_‘_t,’_r(G) =Z(k + 2)Mk+2(0)an+,._k_1 cos™t k=1 g5inP*1 g
k=0
r+t—1 __
— 3 (k+2)Mrs2(8)bgte4r—k-1 cos?tt+" k=1 g5in g
k=0
r—2 ~
+ ZM;+3(9)an+r—-k—2 cos™t7 %=1 gsin? 6
k=0
r+t—2~
— N My ya(8)bgitr—i—a costTTTETN (10)
k=0
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holds for 1 < r. When r = 1, we have

1

M, 141(0) =2M;(8)ay, cos™ 9 sin?+!
t
- Z(k + 2)Mk+2(0)bq+t_k cos? % gsing
k=0
t—1

k=0

By Lemma 4 and 5, since
27
Mq+t+1(27r) - Mq+¢+1 (0) = 2M2(0)a,./ cos" 0sin”'*f1 0do = 0,
0

we get a, = 0. Hence we see that Hq+t+1 () is a polynomial of cos 6 only. As
the result, we obtain from (10) that M, 142(8) is also a polynomial of cos 6
only.

From now on, we suppose that for all [ > 1

An = AQpy2z =+ = an+2(1_1) =0 (11)

and Mm(O) have been determined up to m = g+t + 2/ as polynomials of cos 6
only. Then, from (10), the equality determining M, 42;41(6) is given by

2l
M;+t+2l+1(o) =Z(k + 2)Mk+2(9)an+2l—k cos" T2k gginrtl g
k=0
t+21
- Z(k + 2)Mk+2(0)bq+t+2l—k cositit2l-kgqing

k=0
2-1

+ ZMl’c+3(e)an+21—k—l cos™ 2=k ggin? ¢
k=0 ,

t+21-1
- Z mm (0)bgtt421—k—1 cos?t?t2—kg
k=0

= 2M;(0) a2 cos™? @ sinP+1 g + Y- (12)
From the assumption of induction and that g4 is an odd function, all the terms

on the right-hand side of the equality (12), except the first one, have the form
(polynomial of sin§) x (odd power of cos ). Thus, since

2w
Myt e42141(2m) — Myye42142(0) = 2M2(9)an+21/ cos" 2 §5in?*! 9dg = 0,
0

we get a,42; = 0. Hence we see that Hq+t+21+1(9) is a polynomial of cos
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Moreover we consider ]\7,1+t+2(,+1)(9). By (10), Mq+t+2(l+1)(9) is deter-
mined from the equality

21+1
k=0
t+2l+1 ‘
Z (k + 2 Mk+2(9)bq+t+2l—k+1 COSq+t+21_k+:l GsinG
k=0 : . ‘

21
—_~ L
+ ZMk+3(0)an+2[_k cos™ T2kt gsin? §
k=0
t+21

AT t+21—k+1
- ZMk+3(9)bq+t+2I“k COSq+ + + 0
k=0

= 2]\72(6)an+21+1 COSn+S+2!+1 9sinp+1 0 + Z( . ) (13)

From the above fact(i.e. ant21 = 0), the assumption of induction and that g, is
an odd function, all the terms on the right-hand side of the equality (13) have
the form (polynomial of sinf) x (odd power of cos 6). Thus we conclude that

Mq+t+2(1+1)(0) is a polynomial of cos 6 only.

~ Other seven cases are also proved by a similar method to the above one.
Therefore the proof of Theorem A is now completed. U ' |

The following fact is é, key in the proof of Theorem B.

Lemma 7. Suppopse thatn+p<m <n+p+s=gq. If misanodd (resp.

even) number, then Mm(G) is a polynomial of cos 8 of odd(resp. even) degree
only.

We omit the details for the proofs of Lemma 7 and Theorem B.

3. Appendix

[1] We consider the case n+p < 1 in the form (C) If (n p) =(1,0) and a; > 1,
then there exists the first integral (1/2)y? + fo {f1(&) — &€ — gq(&) }d€ = const.
of the system (L). Since z{f1(z) — z — gq(z)} > 0 (z ;é 0) in the neighborhood
of the origin, the equilibrium point is a center.

If (n,p) = (0,1) and a; > 1, then we can apply Theorem A and B to this
system.

We set P(z) = fo(z) — ¢ — g¢(z). Let a solution of the equation P(z) =0
be z = a. If (n,p) = (0,0) and P'(—a) > 0, then we also can apply Theorem
A and B to this system.

[2] By combining the mentioned facts above and the result in [Su], we have the
following result on a global center of the system (L).



Corollary. Consider the system (L) with p = 1 of the form (C). Suppose that
(C1) g4 is an odd function with g,(0) = 0 and z{z + g,(z)} > 0 (z # 0),
(C2) there exists 0 < A\ < /8 such that

I/x fa(§)dEl < A /ng(ﬁ)df for sufficiently large z.
0 0

Then the equilibrium point (0,0) of the system (L) is a global center if and
only if fooo g(z)dz = oo.

References

[Ha] M. Hayashi, On the local center of an analytic Liénard system, Aequa-
tiones Mathematicae (to appear).

[P] H.Poincaré, Sur les courbes définies par les équations différentielles, Jour-
nal de Mathématiques pures et appliqués, séries 4, 1 (1885), 167-244.

[Sa] T. Saito, On center-type singular points, Kodai. Math. Sem. Rep., 7
(1955), 89-96.

[Sch] D. Schlomiuk, Elementary first integrals and algebraic invariant curves of
differential equations, Expo. Math., 11 (1993), 433—454.

[Su] J. Sugie, The global center for the Liénard system, Nonlinear Anal., 17
(1991), 333-345.

[Yan]Y. Yan-gian and others, Theory of Limit Cycles, Trans. Math. Mono-
graphs in Amer. Math. Soc., 66 (1986).

150



