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Oscillation and nonoscillation theorems for a class of fourth
order differential equations with deviating arguments
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0. Introduction

We consider the oscillatory and nonoscillatory behavior of fourth order nonlinear func-
tional differential equations of the type

(A) (" ()sen " ()" + a(B)ly(9(t))sgn y(g(t)) = 0
for which the following conditions are always assumed to hold:

(a) o and (3 are positive constants;

(b) ¢:[0,00) = (0,00) is a continuous function;

(c) g:[0,00) = (0,00) is a continuously differentiable function such that
g(t)>0,t>0,and tli)rcr)lo g(t) = oo.

By a solution of (A) we mean a function y : [T,,00) = R which is twice continuously
differentiable together with |y”|*sgny” and satisfies the equation (A) at all sufficiently
large t. Those solutions which vanish in a neighborhood of infinity will be excluded from
our consideration. A solution of (A) is called oscillatory if it has arbitrarily large zeros;
otherwise it is called nonoscillatory. This means that a solution y(t) is oscillatory if and
only if there is a sequence {t;}%2, such that ¢; = oo and y(t;) =0 (i = 1,2, -), and a
solution y(t) is nonoscillatory if and only if y(t) # 0 for all large 2.

In Section 1 we study the problem of existence of nonoscillatory solutions of (A). The
set of all nonoscillatory solutions of (A) is classified into six disjoint classes according to
their asymptotic behavior at oo, and criteria are established for the existence of solutions
belonging to each of these six classes. Some of the criteria are shown to be sharp enough.

In Section 2 we next attempt to derive criteria for the oscillation of all solutions of (A).
Our derivation depends heavily on oscillation theory of fourth order nonlinear ordinary
differential equations

(B) (ly"|%sgny")” + q(t)|y|’sgny = 0

recently developed by Wu [6], in conjunction with a comparison principle which enables us
to deduce oscillation of an equation of the form (A) from that of a similar equation with
a different functional argument. As a result, we are able to demonstrate the existence of
classes of equations of the form (A) for which sharp oscillation criteria can be established.
We note that oscillation properties of second order functional differential equations
involving nonlinear Sturm-Liouville type differential operators have been investigated by
Kusano and Lalli [1], Kusano and Wang [3] and Wang [5]. The present paper is a first
step toward generalizing the above results to higher order functional differential equations
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whose principal parts are composed of genuinely nonlinear differential operators.

1. Nonoscillation theorems

The purpose of this section is to make a detailed analysis of the structure of the set
of all possible nonosciillatory solutions of the equation (A), which can also be written as

(A) (")) + a(®)(w(g(t)))* = 0

in terms of the asterisk notation

(1.1) " =|¢Isgné = [¢["7'¢, €E€R, 7>0.

A) Classtfication of nonoscillatory solutions. It suffices to restrict our consideration
to eventually positive solutions of (A), since if y(t) is a solution of (A) then so is —y(t).
Let y(t) be one such solution. Then, as is easily verified, y(t) satisfies either

L y(t)>0, y"(t)>0, ((¥"@)**)Y >0 for all large ¢
or

I: §'(¢) >0, y"(t)<0, ((¥"(¥)**) >0 for all large ¢.

(See Wu [6].) It follows that y(t), y/(t), y”(t) and ((y"(t))**)’ are eventually monotone, so
that they tend to finite or infinite limits as t — oco. Let

. (?) — .. ;= H " ax\l _
tgrgy (t)=w;, 1=0,1,2, and tllglo((y (t))**) = ws.

It is clear that w; is a finite nonnegative number. One can easily shows that:

(i) if y(t) satisfies I, then the set of its asymptotic values {w;} falls into one of the
following three cases:

I;: Wo =w; =wy =00, ws€ (0,00);
I: W =w) =wz =00, w3z=0;
I5: wp =wy =00, wp€(0,00), wsz=0.

(ii) if y() satisfies II, then the set of its asymptotic values {w;} falls into one of the
following three cases:

I1;: wo =00, w; € (0,00), w;=ws=0;
I1,: W =00, w)=w;=uw3=0;
I15: wp € (0,00), w) =wy;=w3=0.

Equivalent expressions for these six classes of positive solutions of (A) are as follows:

t
I;: lim £(_2 = const > 0;
: t—oo 245
t
I,: lim —y(i? =0, lim M = 00;

t—oo $2+4 t—o0 12
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t

I3 lmy—(—z-—-const>0;
t—o00 t2
t

II;: lim & = const > 0;
t—oco t

Il lim y(t) =0, limy(t) = oo;

t—oo T t—o0

II3:  lim y(¢) = const > 0.

t—o00

B) Integral representations for nonoscillatory solutions. We want to establish the
existence of positive solutions of (A) belonging to each of the above six classes. For this
purpose a crucial role will be played by integral representations for those six types of
solutions of (A) as derived below.

Let y(t) be a positive solution of (A) such that y(t) >0 and y(g(t)) >0fort > T > 0.
Integrating (A) from ¢ to oo gives '

(12) ('O =ws+ [ " g(s)(wlg(s)))ds, t2T.

We now integrate (1.2) three times over [T, t] to obtain

(13) y(®) =kt k-T)+ [[=9) |5+ [ (v [ (o) u(a(0))do dr] ",

r

for t > T, which is an integral representation for a solution y(t) of type I, where
ko = y(T), k1 = y'(T) and k; = y”(T) are nonnegative constants. A type-I; solution y(t)
of (A) is expressed by (1.3) with w3 = 0.

If y(t) is a solution of type I3, then, first integrating (1.2) from t to oo and then
integrating the resulting equation twice from T to ¢, we have

(L) y(t) = ko +ha(e = T)+ [ (t—) [w: [ - s)q(r)(y(g(r)))ﬂdr] ds, t>T.

An integral representation for a solution y(t) of type II; is derived by integrating (1.2)
with ws = 0 twice from ¢t to co and then once from T to ¢:

(15)  y(t)=ko+ / t <w1 t / B [ / (- r)q(o)(y(g(a»)f’da]

An expression for a type-II, solution is given by (1.5) with w; = 0. If y(t) is a solution of
type II5, then three integrations of (A) with w3 =0 yield

Q=

dr) ds, t>T.

16w =wo— [ -0 [/ °°(r—s)q(r)(y(g(r)))ﬁdr]%ds, I>T.

C) Nonoscillation criteria (necessary and sufficient conditions). The four types I, I,
I1, and II5 of solutions are taken up and necessary and sufficient conditions are established
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for the existence of positive solutions of these four types for (A).

THEOREM 1.1. The equation (A) has a positive solution of type 1, if and only if

(17) | @) E2g(at < oo

THEOREM 1.2. The equation (A) has a positive solution of type I3 if and only if
(1.8) /0 " Hg(8)Pq(t)dt < co.

THEOREM 1.3. The equation (A) has a positive solution of type 11, if and only if
(1.9) /Ooo [[w(s - t)(g(s))pq(s)ds] ;_dt < oo.

THEOREM 1.4. The equation (A) has a positive solution of type 1L if and only if
(1.10) /0 T [ /t (s —t)q(s)dsrdt < co.

THE PROOF OF THEOREM 1.1. Suppose that (A) has a solution y(t) of type I,.
Then, it satisfies (1.3) for t > T, T > 0 being sufficiently large, which implies that

/T " a(t)(u(g(t)))Pdt < oo.

This, combined with the asymptotic relation tlim y(t)/ 12+ = const > 0, shows that the
—00

condition (1.7) is satisfied.
Now suppose that (1.7) holds. Let k > 0 be given arbitrarily constant and choose
T > 0 large enough so that

o? B poo . a _ La
(111) (s =) [ (o) Datta s EEZE

Put T, = min{T, gl;g(t)}, and define

o?

t—T)*a, t>T
(a+1)(2a+1)( ) -

: t A
G(t,T) = / (t—s)(s—T)=ds =
T
(1.12)
Gt,T)=0, t<T.
Let Y C C[T.,00) and F : Y — C[T., ) be defined as follows:
(1.13) Y ={yeC[T.,00): kG(t,T) <y(t) <2kG(t,T), t>T.},

= [-9) [ (e[ 0(0)(v(9(0)do) & i>T

r

(1.14)
Fy(t)=0, T.<t<T.
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IfyeY,thenfort > T

Fy(t) > k/Tt(t —38)(s — T)=ds = kG(t,T)

and

Fy(t) < / t(t —s) _ / s (k" + / " q(0)(2kG(g(2), T))ﬁda) dr] : ds

T LJT

< /Tt(t —s) /T(k" + ((a +C;2)(22f+ 1)>ﬁ /roo q(a)(g(g))‘(ﬂ;—)ﬁda) dr] ) ds

L

[

< 2% /Tt(t — s)(s = T)=ds = 2kG(t,T),

and hence Fy € Y. Thus, F maps Y into itself. Let {y.} be a sequence of functions in
Y converging to y € Y in the metric topology of C[T.,c0). Then, by using Lebesgue’s
dominated convergence theorem, we can prove that the sequence {Fyx(t)} converges to
Fy(t) as n = oo uniformly on every compact interval of [T., co), implying that Fy, — Fy
as n — oo in C[T,,o0). Hence F is a continuous mapping.

For any y € Y we have |
Fuo)y = | t [ I (kf' + [ q(o)(y(g(a)))ﬁda) dr] 4, t>T,

which implies that

2ka

- 1(t—T)‘+'f-?, t>T.
«

0 < (F(t)) <2k /t(s — T)«ds =
T

From this inequality, together with the fact that Fy € Y, we conclude that the set F (Y)
is relatively compact in the topology of C[T.,c0). Therefore, by the Schauder-Tychonoff
fixed point theorem, there exists a fixed element y € Y of ¥, i.e.,y = Fy, which satisfies
the integral equation

i s e} 'clT
s o= [e-9[[ (k] (Vo) Pdo) dr| s, 2T,
) T T r
This is a special case of (1.3) with ko = k; = k2 = 0 and w3 = k°. Differentiation of (1.15)
shows that y(t) is a positive solution of (A) on [T,c0). Since tli)m((y"(t))a)' = k% >0,
y(t) is a desired solution of type I;. This completes the proof.

D) Nonoscillation criteria (sufficient conditions). Let us now turn our attention to
positive solutions of types I, and II, of (A). We are content with sufficient conditions for
the existence of these two types of positive solutions of “intermidiate” growth. We observe
that this kind of problem has not been dealt with even for ordinary differential equations
without deviating arguments of the form (B); see Wu [6].
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THEOREM 1.5. The equation (A) has a positive solution of type I, if

(116) | 6@ guyat < oo
and 0
(1.17) /0 " t(g(t))**q(t)dt = co.
THEOREM 1.6. The equation (A) has a positive solution of type I, if
(1.18) /0 " [ /t “(s— t)(g(s))ﬁq(s)ds] " i< oo

and

(119 [t vuera] et = oo

2. Oscillation theorems

A) Our aim in this section is to establish criteria (preferably sharp) for the oscillation
of all solutions of the equation (A). We are essentially based on some of the oscillation
results of Wu [6], which are collected as Theorem W below, for the associated ordinary
differential equation (B).

THEOREM W. (i) Let a > 1 > B. All solutions of (B) are oscillatory if and only if

(2.1) / ” 1(2+2)8g(1)dt = oo.

1]

(i) Let a < 1 < B. All solutions of (B) are oscillatory if and only if

(2.2) /00 tq(t)dt = oo

]
or

(2.3) fo T tg(t)dt < 0o and fo T [ / “(s— t)q(s)ds] " dt = oo.

B) Comparison theorems. Our idea is to deduce oscillation criteria for (A) from
Theorem W by means of the following two lemmas (comparison theorems) which relate
the oscillation (and nonoscillation) of the equation

(2.4) (lu"(2)sgn " (2))" + F(t, u(h(t))) = 0

to that of the equations

(2:5) (Io"()*sgn v"(8))" + G(t, v(k(t))) = 0
and
" " " l’(t) -1
(2.6) (lw”"(®)|"sgn w"(8))" + o e F(RTH(U(2)), w(U(2))) = 0.

h'(h=1(1(2)))
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With regard to (2.4)—(2.6) it is assumed that o > 0 is a constants, that h, k, [ are
continuously differentiable functions on [0, 00) such that

’ / ’ : —_— L — 11 —
R'(t) >0, K'(¢t) >0, I'(t) >0, tllf?o h(t) = tli}rg k(t) = tll,r?ol(t) = o0,
and that F, G are continuous functions on [0, 00) x R such that wF(t,u) > 0, uG(t,u) > 0
and F(t,u), G(t,u) are nondecreasing in u for any fixed ¢ > 0. Naturally, A~ denotes
the inverse function of h.
LEMMA 2.1. Suppose that
(2.7) h(t) > k(t), t=0

(2.8) - F(t,z)sgnz > G(t,z)sgnz, (t,z) € [0,00) xR.
If all the solution of (2.5) are oscillatory, then so are all the solutions of (2.4).

LEMMA 2.2. Suppose that I(t) > h(t) fort > 0. If all the solution of (2.6) are
oscillatory, then so are all the solutions of (2.4).

These lemmas can be regarded as generalizations of the main comparison principles
developed in the papers [2,4] to differential equations involving higher order nonlinear
differential operators. To prove these lemmas we need a result which describes the
equivalence of nonoscillation situation between (2.4) and the differential inequality

(2.9) (I2"(8)Fsan 2"(8))" + F(t, 2(h(1))) < 0.
LEMMA 2.3. If there exists an eventually positive function satisfying (2.9), then (2.4)

has an eventually positive solution.

PROOF OF LEMMA 2.3. Let z(t) be an eventually positive solution of (2.9). It is
easy to see that z(t) satisfies either

L Z{#)>0, 2(t)>0, (")) >0, t>T,
I () >0, 2/(t)<0, ((z"@)™) >0, t>T,

provided T > 0 is sufficiently large. -
If z(t) satisfies I, integrating (2.9) from ¢ to oo, we have

(2.10) (("(t)*) > w+ [00 F(s,z(h(s)))ds, t2>T,

where w = tlim((z"(t))“)’ > 0. Further three integrations of (2.10) from T' to ¢ yield the

inequality

(211)  2(t) > 2(T) + /T (=) [ /T s (w + / B F(a,z(h(o)))da) dr] g, 13T,
Let T, = min{T, ti?; g(t)}. Put

(2.12) U={yeC[Tl.,0): 0<u(t)<z(t), t=> T.}
and define
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du(t) = 2(T) + /T,t(t —s) [ /T ’ (w + / " Fo, u(h(a)))do) er : ds, t>T

(2.13)
Pu(t) =2(t), T.<t<T.

Then, it is easily verified that & maps continuously U into a relatively compact set of U,
and so there exists a function u € U such that v = ®u, which implies that

(214)  u(t) = 2(T) + /T t—s) [ /T | (w + / " Flo, u(h(a)))da) dr] b, t>T.

This shows that u(t) is a positive solution of the equation (2.4).
If 2(t) satisfies II, then (2.10) holds with w = 0, and integrating (2.10) from ¢ to oo,
we find

1

(2.15) —z”(t)Z[/too(s—t)F(s,z(h(s)))ds] . t>T,

from which, integrating twice, first from ¢ to co and then from T to t, we obtain

1

(2.16) 2(t) > 2(T) + /; /3‘00 [/':Oo(a —r)F(o, z(h(a)))da] ;drds, t>T.

Let T, = min{T, gl;" 9(t)} and let U and ¥ be defined, respectively, by (2.12) and

Yu(t) = 2(T) + /T t / " [ / (o= r)F(o, u(h(cr)))da] - drds, t>T,

(2.17)
Yu(t)=2(t), T.<t<T.

The Schauder-Tychonoff fixed point theorem also applies to this case, and there exists a
function u € U such that u = Wu, that is,

(2.18) u(t) = 2(T) + /; /300 [[w(a —r)F (o, u(h(a)))da] : drds, t>T.

It follows that u(t) is a positive solution of (2.4). This completes the proof of Lemma 2.3.

C) Oscillation criteria. We first give a sufficient condition for all solutions of (A) in
the sub-half-linear case to be oscillatory.

THEOREM 2.1. Let o > 1 > B. Suppose that there ezists a continuously differen-
tiable function h : [0,00) — (0,00) such that h'(t) > 0, tl_i_)m h(t) = oo, and

(2.19) min{t,g(t)} > h(t) for t>0.
if
(2:20) | )@+ eya = oo,
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then all solutions of (A) are oscillatory: ’
THEOREM 2.2. Let a > 1 > [ and suppose that

(2.21) lim sup gﬁtﬂ < 0.

t—o0

Then, all solutions of (A) all oscillatory if and only if

(222) | ) Er (e = o

An oscillation' criterion for the equafion (A) in the super—half-linear‘ case is given in
the following theorem.

THEOREM 2.3. Leta<1<p and suppose that

(2.23) liminf 9(t) > 0.

t—o00 t

Then, all solution of (A) are oscillatory if and only if either (2.2) or (2.3) holds.
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