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\S 1 Introduction

Let $L(z, \partial_{z})$ be alinear partial differential operator with holomorphic c0-

efficients in aneighborhood of $z=0$ in $\mathbb{C}^{d+1}$ and $K$ be anonsingular com-
plex hypersurface through the origin. The coordinate of $\mathbb{C}^{d+1}$ is denoted by
$(z_{0}, z_{1}, \cdots, z_{d})$ and chosen such that $K=\{z_{0}=0\}$ . Let $u(z)$ be asolution of
$\mathrm{L}(\mathrm{z}, \mathrm{d}\mathrm{z})\mathrm{u}(\mathrm{z})=0$, which is not necessary holomorphic on $K$ . The existence of
singular solutions is studied by many mathematician (for example see $[2],[3]$ ,

[5] and [9] $)$ . The purpose of the present paper is to introduce aclass of par-
tial differential operators and to study the asymptotic behaviors as $z_{0}arrow 0$ of
singular solutions of $L(z, \partial_{z})u(z)=0$ for $L(z, \partial_{z})$ belonging to this class. In
general there are many singular homogeneous solutions, hence we restrict s0-

lutions by adding acondition of the growth order of its singularities to them.
So we treat solutions with at most some exponential order singularities on $K$

which is given the constant $\gamma$ defined by (2.2). It is the main result that we
can give the asymptotic terms of solutions as $z_{0}arrow 0$ and the remainder term
with Gevrey type estimate. The Gevrey exponent is also determined by 7.
The operators considered here have useful examples, so the main result of
$\text{\={O}}$uchi [6] follows from that in this paper and those of Mandai [4] and Tahara
[10] concerning the structure of homogeneous solutions of Fuchsian operators
also do in some sense. So the results here are extensions of results of [4] and
[10] to non-Fuchsian operators in some sense.

The details of this paper will be appeared in Ouchi [8].

52 Operators and and Definitions

In this section let us introduce aclass of operators studied in this paper and
give some definitions. Let $L(z, \partial_{z})$ be an $m$-th order linear partial differential
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operator with holomorphic coefficients in adomain in $\mathbb{C}^{d+1}$ of the form:

(2.1) $(\begin{array}{l}L(z,\partial_{z})=A(z,\partial_{z_{0}})+B(z,\partial_{z})A(z,\partial_{z_{0}})=\sum_{i=0}^{k}a_{i}(z,)(z_{0}\partial_{z_{0}})^{i}B(z,\partial_{z})=\sum_{|\alpha|\leq m}b_{\alpha}(z)\partial_{z}^{\alpha},z=(z_{0},z_{1},\cdots,z_{d})=(z_{0},z’)\end{array}$

Let $j_{\alpha}\in \mathrm{N}$ such that $\mathrm{b}\mathrm{a}(\mathrm{z})=\dot{f}_{0}^{\alpha}\tilde{b}_{\alpha}(z)$ with $\tilde{b}_{\alpha}(0, z’)\not\equiv 0$ on $K=\{z_{0}=0\}$
provided $b_{\alpha}(z)\not\equiv 0$ . Let us assume in this paper that $L(z, \partial)$ satisfies the
following conditions (A) and (B),

(A) $a_{k}(0)\neq 0$ ,
(B) $j_{\alpha}-\alpha_{0}>0$ for all $\alpha$ .

We define an important constant $\gamma$ by

(2.2) $\gamma:=\{\begin{array}{l}\min\{\frac{j_{\alpha}-\alpha_{0}}{|\alpha|-k}..|\alpha|>k\}ifk<m+\infty ifk=m\end{array}$

and a polynomial $\chi(\lambda, z’)$ by

(2.3) $\chi(\lambda, z’)=\sum_{i=0}^{k}a_{i}(z’)\lambda^{i}$ .

Let us give examples, which show that the class of operators considered
in this paper contains useful examples.

(1). Let

(2.4) $P(z, \partial_{z})=\partial_{z0}^{k}+$

$\alpha 0<k\sum_{|\alpha|\leq m},a_{\alpha}(z)\partial_{z}^{\alpha}$

(m $>k)$ .

$P(z, \partial_{z})$ is a linear partial differential operator with order $m$ and is of the
normal form with respect to $\partial_{z\mathrm{o}}$ . By multiplying $P(z, \partial_{z})$ by $z_{0}^{k}$ , consider
$z_{0}^{k}P(z, \partial_{z})$ . Then $z_{0}^{k}P(z, \partial_{z})$ satisfies (A) and (B), by setting $A(z_{0}, \partial_{z_{0}})=$

$z_{0}^{k}\partial_{z_{0}}^{k}$ and $B(z, \partial_{z})=\sum_{|\alpha|\leq m,\alpha_{0}<k}z_{0}^{k}a_{\alpha}(z)\partial_{z}^{\alpha}$ .

(2). Let $P(z, \partial_{z})$ be an $m$-th operator of Fuchsian type weight (m-h) in the
sense of Baouendi-Goulaouic [1]. Then $z_{0}^{m-h}P(z, \partial_{z})$ belongs to the class we
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consider and $\gamma$ $=+\infty$ .

(3). We give aconcrete example. Let $z=(z_{0}, z_{1})\in \mathbb{C}^{2}$ and

(2.5) $L(z, \partial_{z})=z_{0}\partial_{z_{0}}-a(z)+z_{0}^{j}c(z)\partial_{z_{1}}^{m}$ ,

where $j\geq 1$ and $c(0, z_{1})\not\equiv 0$ . Then $\chi(\lambda, z_{1})=\lambda-a(0, z_{1})$ and $\gamma$ $=j/(m-$
1) $(m>1)$ , $\gamma=+\infty(m=1)$ .

Let us introduce function spaces on the sectorial region $U(\theta)$ for our aim.

Definition 2.1. $\mathcal{O}_{(\kappa)}(U(\theta))$ is the set of all $u(z)\in \mathcal{O}(U(\theta))$ such that for
any $\epsilon>0$ and any 0’ with $0<\theta’<\theta$

(2.6) $|u(z)|\leq M\exp(\epsilon|z_{0}|^{-\kappa})$ for z $\in U(\theta’)$

holds for some constant M $=M(\epsilon, \theta’)$ . We put $\mathcal{O}_{(+\infty)}(U(\theta))=\mathcal{O}(U(\theta))$ .

Definition 2.2. $\mathcal{O}_{temp,c}(U(\theta))$ is the set of all $u(z)\in \mathcal{O}(U(\theta))$ such that

for any 0’ with $0<\theta’<\theta$

(2.7) $|u(z)|\leq M|z_{0}|^{c}$ for $z\in U(\theta’)$

holds for some constant $M=M(\theta’)$ .

Set $\mathcal{O}_{temp}(U(\theta))=\bigcup_{c\in \mathbb{R}}\mathcal{O}_{temp,c}(U(\theta))$ , which is the set of all holomorphic
functions on $U(\theta)$ having singularities on $z_{0}=0$ with fractional order. We
also say that $u(z)\in \mathcal{O}(U(\theta))$ is tempered singular on ( $U(\theta)$ , provided $u(z)\in$

$\mathcal{O}_{temp}(U(\theta))$ .

\S 3 Behaviors of singular solutions

Now let us return to the equation $L(z, \partial_{z})u(z)=0$ , $u(z)\in \mathcal{O}(U(\theta))$ . In
order to study the behaviors of solutions more concretely we restrict the
growth properties of singularities, that is, we assume $u(z)\in \mathcal{O}_{(\gamma)}(U(\theta))$ in
this paper, where $\gamma$ is defined by (2.2). Firstly we show that it follows from
this assumption that the singularities of solutions are less irregular.

As for the zeros of $\chi(\lambda, z’)$ it follows from the condition (A), that there
are constants $r’>0$ , $a_{0}$ , $a_{1}$ and $b$ such that $\chi(\lambda, z’)=0$ has $k$ roots for
$z’\in V’=\{|z’|\leq r’\}$ and

(3.1) $\{\lambda;\chi(\lambda, z’)=0\}\subset\{\lambda;a_{0}\leq\Re\lambda\leq a_{1}, |_{S}^{\alpha}\lambda|\leq b\}$.

holds. Then we have, by using the constant $a_{0}$ ,
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Theorem 3.1. ([7]). Let $u(z)\in \mathcal{O}_{(\gamma)}(U(\theta))$ be a solution of $L(z, \partial_{z})u(z)=$

$f(z)\in \mathcal{O}_{temp,c}(U(\theta))$ . Then there is a polydisk $V$ centered at $z=0$ such that
$u(z)\in \mathcal{O}temp,c’(V(\theta))$ for any $c’< \min\{c, a_{0}\}$ .

We show Theorem 3.1 by constructing aparametrix and refer the details
of the proof to $\overline{\mathrm{O}}$uchi [7]. It follows ffom Theorem 3.1 that singularities of
homogeneous solutions of $L(z, \partial_{z})$ are of ffactional order, provided they are
in $\mathcal{O}_{\{\gamma\}}(U(\theta))$ . So we assume $u(z)\in \mathcal{O}_{temp,c}U(\theta)$ in the following of this
paper.

In order to analyze singularities, we make use of the Mellin transform
with respect to $z_{0}$

(3.2) \^u $( \lambda, z’)=\int_{0}^{T}t^{\lambda-1}u(t, z’)dt$ ,

where $T$ is asmall positive constant. The transform (3.2) is Mellin transform
on $argz_{0}=0$ , however, the Mellin transform on $\arg z_{0}=\theta$ is also available
to get the main result.

By the assumption \^u $(\lambda, z’)$ is holomorphic in $\{\lambda;\Re\lambda>-c\}$ . It is the
first aim to show it is meromorphically extensible to alarger region. Put
$\Phi(\lambda, z’):=\chi(-\lambda, z’)$ . We have

Theorem 3.2. \^u $(\lambda, z’)(z’\in V’)$ is meromorphically extensible in Ato the
whole $\lambda$ -plain. Its poles are contained in $\bigcup_{n=0}^{\infty}\{\lambda;\Phi(z’, \lambda+n)=0\}$ .

Outline of the proof. $u(z)$ satisfies $A(z, \partial_{z_{0}})u(z)+B(z, \partial_{z})u(z)=0$, ffom
which we have a partial differential difference equation \^u $(\lambda, z’)$ satisfies, that
is, for any $N\in \mathrm{N}$

(3.3)
$\Phi(\lambda, z’)\hat{u}(\lambda, z’)+\sum_{h=1}^{N}\mathcal{L}_{h}(\lambda, z’, \theta)$ \^u $(\lambda+h, z’)$

$+\hat{u}_{N}(\lambda, z’)+T^{\lambda}H_{N}(\lambda, z’)=0$ ,

where $\mathcal{L}_{h}(\lambda, z’, \theta)$ is apartial differential operator, whose coefficients are
polynomial in $\lambda$ . $H_{N}(\lambda, z’)$ is a polynomial of $\lambda$ and $\hat{u}_{N}(\lambda, z’)$ is holomorphic
in $\{\lambda;\Re\lambda>-N-c\}$ . Equation (3.3) is obtained by the Mellin transform of
the equation, integrations by parts and Taylor expansion of the coefficients.
The order of Taylor expansion of the coefficients depends on $N$. We have
easily the meromorphic extension by the relation (3.3).

Let us calculate the inverse Mellin transform and reconstruct $u(z)$ . So
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the second aim is to obtain estimates of \^u $(\lambda, z’)$ outside of poles. Set

(3.4)
$Z(r)=,\cup\cup\{\Phi(\lambda+n, z’)=0\}|z|\leq rn=0\infty$

$Z(r, \delta)=\{\lambda;d(\lambda, Z(r))\leq\epsilon_{0}\}$,

where $\mathrm{d}(\mathrm{A}, A)$ means the distance of $\lambda$ and set $A$ . We choose $r>0$ and $\delta>0$

so small, if necessary. For $N\in \mathrm{N}$ set

(3.5) $\Lambda(N)=$ {A $\not\in Z(r’,$ $\epsilon_{0});-N+1/2-c\leq\Re\lambda\leq-N+3/2-c$ }.

We have an estimate of \^u $(\lambda, z’)$ in $\Lambda(N)$

Proposition 3.3. There are constants A, B and a polydisk $V’$ such that for
$z’\in V’$ and A $\in\Lambda(N)$

(3.6) |\^u $( \lambda, z’)|\leq AB^{N}T^{\Re\lambda}\frac{\prod_{s=1}^{N}(|\lambda+N|+s)^{m}}{N!^{m}}\Gamma(\frac{N}{\gamma}+1)$ .

Let $\{\sigma_{N}\}_{N\in \mathrm{N}}$ be asequence of real numbers such that the vertical line
$\Re\lambda=-\sigma_{N}$ lies in $\Lambda(N)$ . Define

(3.7) $u_{N}(z)= \frac{1}{2\pi i}\int_{C_{N}}z_{0}^{-\lambda}\hat{u}(\lambda, z’)d\lambda$ ,

where $C_{N}$ is acontour which encloses all the poles of \^u $(\lambda, z’)$ in $\Re\lambda>$$|-\sigma_{N}$ .
$u_{N}(z)$ gives asymptotic behavior of $u(z)$ . We have

Theorem 3.4. Let $u(z)\in \mathcal{O}_{temp}(U(\theta))$ be a solution of $L(z, \partial_{z})u(z)=0$

ancl $u_{N}(z)$ be the function defin$ed$ by (3.7). Then there is a polydisk $V$ cen-
tered at $z=0$ such that for any 0’ with $0<\theta’<\theta$ and any $N\in \mathrm{N}$

(3.8) $|u(z)-u_{N}(z)| \leq AB^{N}|z_{0}|^{\sigma_{N}}\Gamma(\frac{N}{\gamma}+1)$ in $V(\theta’)$

holds for some constants $A$ and $B$ depending on $\theta’$ .

To show the remainder estimate (3.8) consider

(3.9) $u_{N}^{R}(t, z’)= \frac{1}{2\pi i}\int_{\Re\lambda=-\sigma_{N}}t^{-\lambda}\hat{u}(\lambda, z’)d\lambda$ for $t>0$ .

Then formally $u_{N}^{R}(t, z’)=u(t, z’)-u_{N}(t, z’)$ holds for $t$ $>0$ . However the
convergence of the integral of (3.9) is vague, because the estimate of \^u $(\lambda, z’)$
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in $\Lambda(N)$ obtained in Proposition 3.3 is of polynomial growth in SA. So
we do not calculate directly it. However by the assumption that $u(z)$ is
holomorphic on the sectorial region $U(\theta)$ we can modify (3.9), estimate the
difference $u(t, z’)-u_{N}(t, z’)$ by another method and get Theorem 3.4.

If $L(z, \partial_{z})$ is an operator of Fuchsian type (see example 2), then $\gamma=\infty$ , so
it follows from (3.8) that $u(z)= \lim_{Narrow\infty}u_{N}(z)$ in $V(\theta’)$ for small $z$ , which is
ageneralization of the result of Mandai and Tahara concerning the structure
of homogeneous solutions of operator of Fuchsian type.

Corollary 3.5. Let $u(z)\in \mathcal{O}_{temp}(U(\theta))$ be a solution of $L(z, \partial_{z})u(z)=0$

satisfying $|u(z)|\leq A|z_{0}|^{a}$ in $U(\theta)$ for some $a>a_{1},$ $a_{1}$ being the constant in
(3.1). Then there is a polydisk $V$ centered at $z=0$ such that for any 0’ with
$0<\theta’<\theta$

(3.10) $|u(z)|\leq C\exp(-c|z_{0}|^{-\gamma})$ in $V(\theta’)$

holds for some positive constants C and c.

We have Corollary 3.5 by showing that \^u $(\lambda, z’)$ has no poles.
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