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Asymptotic behaviors of singular homogeneous solutions of some
partial differential operators in the complex domain

Sunao OucHI  (Sophia Univ.)

KA B (EEKRF)

§1 Introduction

Let L(z,0,) be a linear partial differential operator with holomorphic co-
efficients in a neighborhood of z = 0 in C**! and K be a nonsingular com-
plex hypersurface through the origin. The coordinate of C%*+1 is denoted by
(20,21, , 24) and chosen such that K = {20 = 0}. Let u(z) be a solution of
L(z,8,)u(z) = 0, which is not necessary holomorphic on K. The existence of
singular solutions is studied by many mathematician (for example see [2],[3],
5] and [9]). The purpose of the present paper is to introduce a class of par-
tial differential operators and to study the asymptotic behaviors as zo — 0 of
singular solutions of L(z,8,)u(z) = 0 for L(z,d,) belonging to this class. In
general there are many singular homogeneous solutions, hence we restrict so-
lutions by adding a condition of the growth order of its singularities to them.
So we treat solutions with at most some exponential order singularities on K
which is given the constant ~ defined by (2.2). It is the main result that we
can give the asymptotic terms of solutions as 2o — 0 and the remainder term
with Gevrey type estimate. The Gevrey exponent is also determined by 7.
The operators considered here have useful examples, so the main result of
Ouchi [6] follows from that in this paper and those of Mandai [4] and Tahara
[10] concerning the structure of homogeneous solutions of Fuchsian operators
also do in some sense. So the results here are extensions of results of [4] and
[10] to non-Fuchsian operators in some sense.

The details of this paper will be appeared in Ouchi [8].

§2 Operators and and Definitions

In this section let us introduce a class of operators studied in this paper and
give some definitions. Let L(z,8,) be an m-th order linear partial differential



88

operator with holomorphic coefficients in a domain in C¢+! of the form:

( L(z’ az) =A(z’ 820) +B(z) az),
k
1) A=) =) @) =d.,),
B(2,8,) = ) ba(2)8%, z= (20,21, ,23) = (20, 7).
\ la|<m ,

Let jo € N such that b,(2) = 2*b,(2) with b4(0, Z)#Z0on K = {z = 0}
provided b,(z) # 0. Let us assume in this paper that L(z,0) satisfies the
following conditions (A) and (B),

(A) ax(0) # 0,
(B) Ja— 0o >0 for all a.

We define an important constant ~ by

. Ja— Qg .
. miny——; |a| >k} if k< m,

+ 00 if k=m.
and a polynomial x(},2’) by

k

(2.3) | x(M2) = 3 a2

=0

Let us give examples, which show that the class of operators considered
in this paper contains useful examples.

(1). Let

(2.4) P(2,0,) = 85 + > a4(2)02 (m> k).
la|l<m
ap<k

P(z,0,) is a linear partial differential operator with order m and is of the
normal form with respect to d,,. By multiplying P(2,0,) by z&, consider
25P(2,8;). Then z¥P(z,8,) satisfies (A) and (B), by setting A(zo,0,,) =
Z(l;:afo and B(Z, az) = Z|a|5m,ao<k Z(I)ca’a(z)ag‘

(2). Let P(2,0,) be an m-th operator of Fuchsian type weight (m —h) in the
sense of Baouendi-Goulaouic [1]. Then zJ*~"P(z, 8,) belongs to the class we
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consider and v = +o0.

(3). We give a concrete example. Let 2z = (20, 21) € C? and
(2.5) L(z,8,) = 200, — a(2) + 24c(2)07,

where 7 > 1 and ¢(0, 21) # 0. Then x(A, zl) =X—a(0,2) and v = j/(m
1) (m>1),y=4o00 (m=1).

Let us introduce function spaces on the sectorial region U(6) for our aim.

Definition 2.1. O (U(9)) is the set of all u(z) € O(U(0)) such that for
any € >0 and any 0’ with0 < 6" <6

(2.6) u(z)| < M exp(elzo| ™) for z€U(®)
holds for some constant M = M(g,8"). We put O400)(U(8)) = O(U(0)).

Definition 2.2. Oumpo(U(6)) is the set of all u(z) € OU(Y)) such that
for any & with0< ¢ <6

@7 u@) < Mzl for zeUE)
holds for some constant M = M(¢).

Set, Otemp(U () = UcerOtemp.c(U(0)), which is the set of all holomorphlc
functions on U(#) having singularities on zp = 0 with fractional order. We
also say that u(z) € O(U(0)) is tempered singular on (U(6), prov1ded u(z) €

Otemp(U (0))-

§3 Behaviors of singular solutions

Now let us return to the equation L(z,8;)u(z) = 0, u(z) € OU(9)). In
order to study the behaviors of solutions more concretely we restrict the
growth properties of singularities, that is, we assume u(z) € O, (U(6)) in
this paper, where 7 is defined by (2.2). Firstly we show that it follows from
this assumption that the singularities of solutions are less irregular.

As for the zeros of x()\, 2') it follows from the condition (A), that there

are constants 7 > 0, ag, a; and b such that x(X,2’) = 0 has k roots for
2 eV ={| <r'} and |

(3.1) (N x(\, 2) =0} C {X ag < RA<ag, [SA] S B}

holds. Then we have, by using the constant ao,
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Theorem 3.1. ([7]). Let u(z) € O, (U(6)) be a solution of L(z,0,)u(z) =
f(2) € Ortemp(U(6)). Then there is a polydisk V centered at z = 0 such that
u(2) € Otemp,(V(0)) for any ¢ < min{c, ao}.

We show Theorem 3.1 by constructing a parametrix and refer the details
of the proof to Ouchi [7]. It follows from Theorem 3.1 that singularities of
homogeneous solutions of L(z,d,) are of fractional order, provided they are
in Or13(U(#)). So we assume u(z) € Otemp,cU(#) in the following of this
paper.

In order to analyze singularities, we make use of the Mellin transform
with respect to 2z,

T
(3.2) i\, 2) = / Plu(t, )dt,
0

where T is a small positive constant. The transform (3.2) is Mellin transform
on argzo = 0, however, the Mellin transform on arg zp = 6 is also available
to get the main result.

By the assumption (), 2) is holomorphic in {\; R\ > —c}. It is the
first aim to show it is meromorphically extensible to a larger region. Put
D(A, 2') := x(=), 2’). We have

Theorem 3.2. 4(),2') (2 € V') is meromorphically extensible in X to the
whole A-plain. Its poles are contained in U o{\; B(2', A + n) = 0}.

Outline of the proof. u(z) satisfies A(z, 8,, )u(z) + B(z,0,)u(z) = 0, from
which we have a partial differential difference equation 4(A, 2’) satisfies, that
is, for any N € N

N
(N, 2)a(X, 2) + D Lu(, 2, 8)a(A + h, 2)
h=1
+in(A, 2') + T*Hy (), ') = 0,

(3.3)

where Lp(A,2',d) is a partial differential operator, whose coefficients are
polynomial in A\. Hy (], 2') is a polynomial of A and Un(A, 2') is holomorphic
in {A\;®A > —N — c}. Equation (3.3) is obtained by the Mellin transform of
the equation, integrations by parts and Taylor expansion of the coefficients.
The order of Taylor expansion of the coefficients depends on N. We have
easily the meromorphic extension by the relation (3.3).

Let us calculate the inverse Mellin transform and reconstruct u(z). So
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the second aim is to obtain estimates of @(), 2’) outside of poles. Set

z(r) = |J J{®(\ +n,#) =0}

(34) |z/|<r n=0
Z(r,8) = {& d(X\ Z(r)) < o},

where d()\, A) means the distance of A and set A. We choose r > 0and § >0
so small, if necessary. For N € N set

35) AN)={\¢gZ(r,e);—N+1/2—c<RAS-N+3/2— c}.
We have an estimate of 4(A, 2') in A(IV)

Proposition 3.3. There are constants A, B and a polydisk V' such that for
2 €V and A € A(N)

N m

Let {on}nen be a sequence of real numbers such that the vertical line

R\ = —oy lies in A(N). Define

1

. = — AN, 2')d
N un(z) = g [ 560, 2

where Cy is a contour which encloses all the poles of @(}, 2') in RA > —on.
un(z) gives asymptotic behavior of u(z). We have -

Theorem 3.4. Let u(z) € Opemp(U(0)) be a solution of L(z,0,)u(z) = 0
and un(z) be the function defined by (3.7). Then there is a polydisk V' cen-
tered at z = 0 such that for any @' with0 <@ <0 and any N € N

(3.8) u(z) — un(2)] < ABN|zo|°Nr<—]7V—' 11) V(@)

holds for some constants A and B depending on ¢'.
To show the remainder estimate (3.8) consider

(3.9) ul(t, ) = ——1—/ t~2 (N, 2 )dX for t > 0.

270 Jpa=—on
Then formally uR(t,2) = u(t,2') — un(t, 2’) holds for t > 0. However the
convergence of the integral of (3.9) is vague, because the estimate of 4(], 2')
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in A(N) obtained in Proposition 3.3 is of polynomial growth in $)\. So
we do not calculate directly it. However by the assumption that u(z) is
holomorphic on the sectorial region U(6) we can modify (3.9), estimate the
difference u(t, 2') — un(t, 2’) by another method and get Theorem 3.4.

If L(z, ,) is an operator of Fuchsian type (see example 2), then v = oo, so
it follows from (3.8) that u(z) = limy—e up(z) in V(¢) for small z, which is
a generalization of the result of Mandai and Tahara concerning the structure
of homogeneous solutions of operator of Fuchsian type.

Corollary 3.5. Let u(z) € Otemp(U(6)) be a solution of L(2,0;)u(z) = 0
satisfying [u(z)| < Alzo|* in U(0) for some a > ay, a; being the constant in
(3-1). Then there is a polydisk V centered at z = 0 such that for any @ with
0<6# <6

(3.10) lu(2)| < Cexp(—c|zo|™) in V(€)
holds for some positive constants C and c.

We have Corollary 3.5 by showing that (), Z') has no poles.
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