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1. INTRODUCTION
Let X be a complex manifold C,, x C? and Z, M be its submanifolds
Z={(w,2) € X;imz =0} ~Z® > M = {Imw = 0,Imz = 0}.
Here Z® is the underlying real manifold of Z. We denote by (w, z; 7, ()
the coordinates of T*X;
w=u+weC, 2=2+iyeC”, 7eC,(=¢(+ineC".
Then the sheaf COz on
T7X ={(w,2z;7,{) € T"X;7 =0,Im2z = 0,Re { = 0}
of microfunctions with a holomorphic parameter w is defined by
COz := {f(u,v,z) € Czz»;0,f = 0}.

Here Cz is the sheaf of usual microfunctions on ZR, and it is well-
known that COy is identified with the sheaf C z1x of relative microfunc-
tions as £x-modules. Then our main theorem is the following:

Theorem. Let U = Z;):_OO Uj(w, 2,¢) be a classical formal symbol
of a pseudo-differential operator with order < 0 defined in an R-conic
open set

W, E{(w,z; %() €T X;Imw > 0,|w| <,z <k,

1651 < pléal (1 < V5 <n—1),|ReGo| < STm(n )

for some r,K,p,6 > 0(6 < 1). We suppose that U; € O(W,) (Vj < 0)
and that there exists some constants C,u > 0 satisfying the following
inequalities:

|U_p(w, 2,¢)| < CPHp!| Imw|P~#|¢|™P on W, (Vp > 0).
Then for any microfunction f(x) € Cn|(0;idz,), a sectionU(w,z, D;)f(z) €
I'{w € C;Imw > 0, jw| < r} x {(0;idz,)};COz) has a microfunction
boundary value at (0, 0;idz,) from Imw > 0.

Further, we show by a counter-example that the growth condition
above is the best possible in some sense.



2. PRELIMINARIES

We give here the precise meaning concerning boundary values of
sections of COz. Let K be a real analytic submanifold of T7X with
codimension 2, and H be a real analytic hypersurface in T; X passing
through K given as follows:

K = {(w,z;in) € T;X;w = 9(z,n)}
C H = {(u+ 1, z;in) € T3 X; ®(u,v,z,m) = 0}.

Here v(z,n) is a complex valued analytic function of (z,7) with ho-
mogeneous degree 0 with respect to 7, and ®(u,v,z,7) is a real-valued
analytic function of (u,v,z,n) of homogeneous degree 0 with respect
to 7 satisfying the following:

V®#0 on®=0, Poy=0.

It is known that we can choose a holomorphic contact transformation
S defined in a neighborhood p € K such that

(2.1) S(K)={w*=0}nTzX C S(H)={Imw" =0} nT}X,
' S(TyX) C TiX.

Set ¢ = the signature of S*(dImw*)/d®, where S*(w) denotes the
pull-back of a differential form w by S. We denote by = : T*X — X
the canonical projection, and by BOz = COgz|z the sheaf on Z of
hyperfunctions with a holomorphic parameter w.

Definition 2.1. Let p = (ﬁ),:%;i?)) be a point of K, and f(w,z) be a
section of COz on {® > 0}NU with an R-conic neighborhood U C T2 X
of p. Then, f(w,z) is said to have a boundary value at p from & > 0

if there exist a small neighborhood U’ of p and a section F(w*,z*) €
I{ocImw* > 0} Nw(S(U")); BOz) satisfying

(%—lf)(w*’x*) = [F(w*’x*)]

as sections of I'({o Imw* > 0}NS(U’); COz). Here 75 is a quantization
of S. -

Though the boundary value [F(u* + i00,z*)] itself depends on a
choice of Ts, this definition neither depends on a choice of S nor Ts
(shown as below).

Remark 2.2. A germ of COj is represented by a germ of BOz. How-
ever it is well-known that a section of COz cannot be represented
globally by a section of BOz in general. Indeed, the cohomological
boundary value (75! f)(u* +i00, z*) defines a second hyperfunction on
T = {(w*,z*;in*) € T3X;Imw* = 0}. On the other hand the sheaf
B of second hyperfunctions is essentially larger than the sheaf Cps|x.
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Here M = {(w,2) € X;Imw = 0,Im2 = 0}. Hence the definition
above is equivalent to the following:

(T f)(u" +i00,5%) € Culggg,

Further this boundary value is equal to [F(u* + i00, z*)] as a micro-
function of (u*,z*) at S(p). The uniqueness of this boundary value
[F(u* +i00,z )] € Culgg, for a section (75" f)(w*,z*) is justified by

Schapira’s N-regularity property of d,-operator. We refer to [2, 3] as
for the second microlocal analysis, and to [8] as for the' N-regularity
of 8,,-operator. Further as for a self-contained proof of the equivalent
fact, see Proposition 4.1.11 of [5].

3. BOUNDARY VALUES AND THE MAIN THEOREM

Lemma 3.1. Let f(w) be a holomorphic function defined in a neigh-
borhood of G = {w € C;19 < Imw < ry,|Rew| < r1} satisfying an
estimate

|f(w)| < Clmuw|™* (vw € G)

for some constants C,p,m1 > 0 andro (0 < 19 < 11 < 1). Choose an
positive mteger pasp<p<p+1l. Thenthe (p+ 1) tzmes mtegratzon

ww)= [ ‘ﬂp—“)—f(w')dw

15 holomorphic in a neighborhood of G, contznuous up to Imw = 1o,
and satisfies

|lgp(w)| < C(2P +1)/p! (Vw € G).

Theorem 3.2. LetU = ¥9__ o Ui(w,2,¢) be a classical formal symbol‘

of a pseudo-differential opemtor wzth order < 0 defined in an R-conic
open set :

(3.1) W, E{(w, z;%,0) €eT*X;Imw > 0, |w| < 1,|2| < &,
G < plGal (1 < ¥5 S m—1), |Re Gl < $Im G, }

for some r,k,p,0 > 0(6 < 1). We suppose that U; € O(W,) (Vj < 0)
and that there exists some constants C,pu > 0 satisfying the following
znequalztzes

32 IUopw,z0) < CHpl| Imu[PH([2 on W, (vp > 0).
Then, for a sufficiently large number

(3.3) ‘ A > max{1,2560C/r}
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we have 2 holomorphic functions E®)(w, 2,z — 2*,8) (k = 1,2) defined
m :

(3.4) wW E{(w,z,z —2*,5) € CxC" x C" x C;|w| < r/40,
max{0, —80Imw/Mr} < Ims < A7}, |Res| < A7%,
2l <k, |55 = 2> p7Hm =7 (G =1,...,n = 1)},
and ‘ < |
(35) W@ E{(w‘, 2,z—2*5) € C x C" x C* x C; | Res| < A7,
|w —ir/80| < /320, —(3200)7! <Ims < A7%,
| 2| <k, 25— 2| > p o — 23| G=1,...,n — 1)}
respectively satisfying the following:

(3.6) Z E®) (w, 2,z —2%,8) = Z | ,‘, (H (izn_—zjiaj;)

k=1 la’|>0,p>0

° (s — 3*)p+u+3 / =2, its* dt
X ///\ T ds* U_pa,(w z,4t) - (it) o

on WO N W@ = Wwe:;
3.7) WO ={(w,z,z—z*,s) €CxC*xC"xC;
o 0<Ims <A} |Res| < A%, |w—ir/80] < r/320,

12l <k |5 = 21> p =2l (G =1, ,n = D)}

Here we expand each U_, in W, as follows:

U_p(w,2,¢) = Y U_par(w, 2,6a)(¢'/6n)*

o'>0
with ¢' /¢ = (C1/Cns -+ + 5 Cn=1/Cn)- Fhﬁﬁer v is some positive integer.
Proof. Each U_p o (w, 2, (,) is holomorphic in w =
{(w,2;¢) € C x C;Imw > 0, |w| <, |2| < k,|Re | < 6Im(,}
and satisfies
(3.8) U_p o (w, 2,Ca)| < PICPHLp71N| Im aw|PH |G| P
on W, By the preceding lemma, we get holomorphic functions

Vo (W, 2,¢n) € O(Wr(/l%) satisfying

(39) aﬁ+u+1%’a, (w’ 2y Cn) = U—P,a'(w? z, C’n)a
|‘/P,a'(w7 z, Cn)' S CP+12p+u+1p_|a'| |(n|—P
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on Wr(/l% for all p,a’. Here v is the integer satisfying u < v < p + 1.
Take a conformal mapping @ = p(w):

¢:{weCImw > 0, |w| < r/2} = {w € C;|w| < 1}
such that ¢(0) = 1; for example,

b0 o= (R ) ()
- <1>( —2(V2— 1)w/r)<I>(2z’(\/§ + 1)w/r),

where ®(t) = (1 4+ t)(1 — t)~'. Then by expanding V}, o (¢~1(%), 2, {n)
into a power series of w, we have expansions

(311) Vow(w,2,6) = D Vpaa(2,Ga)o(w) (V(w,2,6) € W)

£=0
Here V, o ¢(2, (n)’s are holomorphic functions in
W® = {¢, € C;|2| < &,|Re (| < 6Im ¢y}
satisfying
[Vow,e(2,a)| < 2°(2C)P+ p7 1| G, |2
on W@ for all p, o, £. Therefore we have
(3.12) Up =D 357 o)} - (¢'/6a)* Voa(2,Ga).
¥4

Now for a large positive constant A > 1 we introduce 2 kernel functions
for Vo e(z, Ca) (B2

it .o dt
(3.13) AD, (z,5) = / Vol it) - (it)-2e 2.
e A(L+1) 27
(3.14) Ax(,zi,,(z, s) = / Vo (2, it) - (it)P~2e¥* —,
Ve Y 2w

which are holomorphic functions defined in
W® = {s € C;|2| < k,Ims > —b| Re s| }

with the estimates:

(3.15) |A;(:¢l',z(21 3)' S 2”(2C)P+1p—|a’|e-A(l+l)Ims/ﬂ_
on W) for all p, o/, £. Further Agl, (2, s) are entire functions satisfying
(3.16) lAg,),,,e(z, s)| < 2”(2C)P+1 p—la’l e+ (~Ims)y I

on {s € C} for all p,a,£. Here (t)+ =t (Vt > 0), = 0 (Vt < 0).
Therefore for each k = 1,2 and each p, o’ the series

(3.17) A (0,2,8) = Y A% (2, 8)p(w)*
=0
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converges locally uniformly in

{lo(w)]| < e*ms} (Vs e W®)  fork =1,
{|p(w)|er-m)+ < 1} (Vs € C) for k = 2.

We note that ¢(w) at (3.10) is holomorphic in |w| < (\/5 —1)r/2 and

(8.19) Toet®(e] = 38 (2575 TtTZ)) - g; ri(is Ietiltz)u+1

< 4(Ret)s — (—Ret)
for Vt (|t| < 1/4). Consequently if |w| < (v/2 — 1)r/8, we have.
log |p(w)| < (6v2 + 10)(— Imw)/r — (10 — 6v2)(Imw)./r.

Hence Agc),, (w, 2, 8)’s are holomorphic in

3.20)  {(w,z5) € Cx W& ju| < (V2 -1)r/8,|2| < &,
(10 4+ 6v2)(— Imw), < ArIms/2}
>{(w, z,8) € C**' x C; |w| < /20, |2| < &,

(3.18)

(-Imw)y < %Im s} = W,(‘4)

because |p(w)|e™ > < e~*ms/2 < 1 on W, At the same time we
have the following estimates: :

2u(2C)p+l < e2u+1 (2C)p+1

IA(I)
mpll(1 — e-2ms/2) = gAplollm s

p,o’

(w, 2,8)| <

on W)(f) N{0 < Ims < 1/A}. Consequéntly we obtain

re2v*t1(2C)P* /1 80 )P+V+2
80mpl'| ArIms/

851 AL, (w, 2, 8)| < (p+ v + 1))
on

3.21) W = {(w,z25) € C**! x C;|w| < 7/40, |2| < &, |

max{0, —80Imw/(M)} < Ims < 1/X,|Res| < A1)

Further A

P
(3.22) {(w,z,s)€ C"* x C; |lw| < (V2 —-1)r/8,|2| < &,
A(=Ims); — (10 — 6v/2) Imw/(2r) < 0}
>{(w, z,5) € C**! x C; |w| < 7/20,|2| < &, '
Imw > 0,—Imw/(2)r) < Ims} = W)Eﬁ)
and satisfy the following estimates
2v(2C)P+! re2vt1(2C)PH
<
ﬂ-pla’|(1 — e—-Imw/(2r)) - 7rp|a’|]:mw

(w, 2, 8)’s are holomorphic in

| A(z)

p,o’

(w,2,8)| <




on W because lp(w)|eM-ms)+ < o—Imw/@r) . 1 o W®. Conse-
quently, setting

(3.23) W > W = {(w,z2,5) € C™*! x C;|2| < &,

|w — ir/80] < /320, Ims > —(3201)"'},

we get the following estlmates
re2v+1(2C)r+1

a’l(r/320)P+”+2
on W,fn. Fixing the initial point s = i/ A we apply again the pre-
ceding lemma to a2+v+14%) (w, z, 8) for k = 1,2. That is, we have

pa’

holomorphic functions E) oo (W) 2, 8) € O(Wy ) satisfying

(3.24) |6”+"+1A( ) (w, z,8)| < (p+ v+ 1)!

a§+”+4Ez(J,lc)t' (w’ 2 3) &H-V-HAI(IIL’ (w’ Z 8)’
(3.25) B0 < QP+vHpeoU L (90)pH (80)p'+u+2
por\Wh 2 8)1 = 80mpl’l Ar

on W(s) for all p,a’, and E’(fi,(w z,8) € O(Wm N{ls —i/A] < 2/A})
sa.tlsfymg :

3p+u+4E( ) (w, 2, s) = 35+u+1A’(3L(w, z, ),

P’

3.26
(3.26) re2v+1(2C)rH!

P4
71 /320)772 2/ )
on W§7) N{|s - 4/A| <2/A}) for all p,a’. Choose X (> 1) as
(3.27) 1280C/(Ar) < 1/2.

Then we can introduce 2 kernel functions E®(w, 2, 2—2*,s) for k = 1 2
as follows:

62 B0 S Laof] oA

T 5 —m)
la’|>0,p>0

IE()

oo (W) 2,8)| <

Here, E® are holomorphic in W® at (3. 4) (3.5), respectively for
k =1,2. On the other hand, from (3.13), (3.14) and (3.11) we obtain
the followmg

co 2

(3:29) Z&’““A,‘,";,(w, 2,5) = (303 AR (2 9)p(w))
k=

£=0 k=1

= a'?j"*’l( / Voo (w, 2, 3t) - (it)P~2e's d,,tr)
A

o _dt
- fA Uopar (1, 2,it) - ()P~ o
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for any (w, 2,s) € W/{s) AW N {]s —ix71 < 2371}
={(w, z,s) € C"*! x C; |w — r/80| < r/320,
|2l < k, 0 <Ims < A%, |Res| < A7}

Hence we have our conclusion (3.6). O

By using the expressions of the kernel functions obtained in the pre-
ceding theorem, we prove that U(w, z, D,)f(z) has a boundary value
at w = 0 from Imw > 0 for any microfunction f(z). To do so, we
introduce actions of E® (w, z, z— z*, s) on holomorphic functions F(z)

similar to the Bony-Schapira actions of microdifferential operators on
holomorphic functions [3] (also see [4] concerning the action of £%).

Definition 3.3. We inherit the notation from the preceding theorem.

Let F'(z) be a holomorphic function, defined in

(3.30) S :

Q={zeC"|7| <r,|Rezn| < BN) '+ 7,7 >Imz, > k|Im 2’|}
UUg=t1{z € C* || < 7', |zn —0/(3N)| < '} |

for positive small constants 7 (r' < 1/(3X)), and k (< p/(2n)). Let

E(w, z,z — 2*,s) be a holomorphic kernel function defined in W) at

(3.4). For a sufﬁc1ently small € > 0, we define a holomorphlc function.
(B * F)j¢(w, 2) depending on A, € by

1/(3>«)
(3.31) / dz;, /dz*’/ E(w,z,2— 2%, 2z — 23 )F (2", 23" )dz,".

1/(3A)
Here the path for 2}, is the line segment
7(t) = zn +t(ie — ) (0<E<1)
combining z, with ie, ¥ = {2 = 2z;+R(zn, 25(t))e% (0 < 0; < 2m);j =
1,...,n— 1} with some R(zn, 25 (1)) > pze — 25(t)| = tp‘1|zn — i€l
Further the path for z** is the line graph passing through
— (3071, —(3A\)"! + ik Im zi(t), (3A)~! +ihIm 2} (t), (3A)7}
for a constant h (1/2 < h < 1). That is,
—1/(3X) + 3ih6 Im 2;(t) (0<6<1/3),
22*(6;t) = < (260 — 1)/A + ihIm 2} (t) (1/3 <6< 2/3),
1/(3\) +3ih(1 —0)Imz;(t) (2/3<6<1)

Indeed this integral is well-defined if Imw > 0, |w| < /40, 2| <
k,|Rez,| < (8A\)71,0 < Imz, < € < r’ and the following sets are
contamed in Q0 :

{(zl + twi,. .., Zn_1 + twn_1,q + th(Im z, + t(e — Imzn)));O <t<l1,

lgl < BN (g € R), |wi| < pYzn — e, -, W] < P72 — ié‘l},
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{(zl +twy, ...y Znog + twnoy, £(30) ! + dg(Im 2, + t(e — Im 2,)));
0<t<1,0<g<h || <p|zn—ie],..., |wnoa| < p‘llzn—z'sl}-

The former set is contained in Q if £ < 7/ and
|Rezn| < (2h —1)(e — Im 2,), Im 2, > (k/h)|Im /|,
121+ (n/p)|20 — ic] < 7"
The latter set is contained in Q if |Im 2z,| < & < 7’ and
|21+ (v/p)lzn el < 7.
Hence we obtain the following lemmas:

Lemma 3.4. Let € (> 0) be smaller than min{x/2, (1 + 2n/p)~1r'}.
Then (E * F)).(w, z) is holomorphic in

(3.32) {Imw > 0,|w| < 1/40, || < ¢, |2a] < ¢,
Imz, > k|Im2/|,|Rez,| < e — Imz,,}

Further let E'(w, z,2—2*, s) be a holomorphic kernel function defined in
W at (3.5). Then (E'* F)y.(w, 2) is holomorphic in a neighborhood
of

{lw —ir/80| < r/320, z = 0}.

Proof. We have only to prove the latter statement. In this case we
modify the paths of integrations as follows:

Zp(t) = zn +t(ie — 2z,) (0<t<1), |

—1/(3X) + 3ife(t) (0<6<1/3),
2z, (6:8) = § (20 — 1)/A +49(t) (1/3<6<2/3),
1/(3X) +3i(1 - 0)y(t) (2/3<6<1),

where 9(t) = max{Im z%(t), e} with some small ¢ > 0. If we choose
€ < min{(640))~", e}, for any 2z, = iy, (y € (—¢,€)) and t € [0,1] we
have

t nk
Y(t) = max{yn + t(c — yn), €} > 5(6 —Yp) > —p—t(e — Yn).
Therefore (E’ x F'), .(w, 2) is holomorphic in a neighborhood of
{Iw —r/80| < r/320, 2’ =0,Rez, =0,—e < Im 2z, < e}.

This completes the proof. O



The following is our main result. K. Uchikoshi [9] used a similar
method (Bronshtein’s method) of considering boundary values of holo-
morphic pseudodifferential operators for constructing fundamental so-
lutions of weakly hyperbolic microdifferential operators. However the
situations are different from each other, and the proofs and results are
completely independent.

The proof of this theorem is a little long and the most part of the
proof is devoted to the proof of the compatibility of actions of pseudo-
differential operators. So we omit the proof, which will be given in
another paper.

Theorem 3.5. Let U = Z Uj(w, 2,¢) be the classical formal sym-
bol of the pseudo- dzﬁerentzal opemtor treated in Theorem 3.2. Then
for any microfunction f(x) € Cn|oidz,), & section U(w,z, Dg)f(z) €
I'{w € C;Imw > 0, |w| < 7} x{(0;idzn)};COz) has a boundary value
at (0,0;idz,) from Imw > 0 in the sense of Definition 2.1.

Remark 3.6. The growth order condition (3.2) for the lower order
terms of ZJ__OO U;(w, 2,¢) is the best possible in the following sense:
For any constant k (1 < k < 2) there exists a classical formal symbol
U= E]:—OOU (w, 2, () satisfying the following (1)—(3):
(1) U; € O(W,) (V] < 0).
(2) For some constants C, u > 0 we have
U_p(w, 2,Q)| < C?"'p!| Imw|™~#|¢|™ on W (¥p 2 0).
(3) U(w, z, D;)8(z,) does not have a boundary value at (0, 0; idzy,)
in microfunctions of (Rew, z) from Imw > 0.
Indeed, we can give an explicit example as follows:

(3.33) U_p(w, 2,¢) = p{—i(w/i)*} PP,

where p = 0,1,2,... and |arg(w/i)| < m/2. It is easy to see that the
above conditions 1, 2 are satisfied and that

o0

U(w, =, Da)s(an) = [ 3 —é%{—i(w/i)k}“p'lzﬁ log za

p=0

- [271rz ' ﬁluoz‘g(:/z')k]'

Here the equalities are valid for sections of COz over {Imw > €} x

{(0;4dz,)} with any small positive . Then by the followmg lemma we
get the condition (3) above for U.

The following example is a variant of the example in [7] of second
hyperfunctions:

Lemma 3.7. Let k be a constant satisfying 1 < k < 2. Then the

log(z +i0) extends to {(w,z;indz) € C x

microfunction f(w,z) = 7+ (W)
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TRC;Imw > 0,7 > 0} as a microfunction with holomorphic parame-

ter w. However f(w, ) never has a microfunction boundary value at
(0,0;4dz) from Imw > 0.

Proof. Consider a holomorphic function
log 2 — log{ (/)" /i)
F, =
1(w, 2) z+i(w/i)k
defined in {(w,2) € C};Imz > 0,n(1 — k7!)/2 < argw < =}, where
—m < arg{(w/i)*/i} < w(k — 1)/2 < 7/2. Further set

—2m
Z2+i(w/i)k
Then F5(w,z) € O({(w, 2) € C*Imz > 0,0 < argw < 7(1+k~1)/2}).
Hence the extension of f(w, z) is given by

F(w,2) = Fi(w,2) +

f(w,z) = [Fi(w,z +i0)] (7(1—k71)/2 < argw < 7),
o [F2(w,z +10)] (0 < argw < w(1+k71)/2)

as microfunctions with holomorphic parameter w. We suppose here
that f(w,z) has a microfunction boundary value at (0,0;idz) from
Imw > 0. Therefore, we have a holomorphic function G(w, z) defined
in {Imw > 0,Im 2 > 0, |w| + |2| < €} with some £ > 0 satisfying

f(w, z) = [G(w, z + 10)]
as sections of microfunctions with holomorphic parameter w in
{(w, z;indz) € C x TgC;|w| + |z| < &, Imw > 0,7 > 0}.

Since

= [log(z + i0) — {z + i(w/3)*}G(w, T +i0)],
we conclude that |
A(w,z) =logz — {z + i(w/i)'f}G(w, z)
€ O({Imw > 0,Imz > 0, |w| + |2| < €})

0={z+ i(w/i)k}(f(% a:)v— [G(w, z + iO)])

extends holomorphically to {|w| + |z| < ¢/,Imz = 0,Imw > 0} with
some smaller ¢/ > 0. Therefore by Kashiwara’s theorem on the local
version of Bochner’s tube theorem we can extend A(w, z) to a holo-

morphic function A(w, 2) in
Q={lw|+|2| <", |Imz| < " Imw}
for some smaller £” > 0. Set
P(r,0) = (re®®, rke®0—k+D)/Dy ¢ {(y, 2) € C%; 2z + i(w/i)* = 0}



for r > 0,0 < § < m. We note that P(r,6) € Q for any § € (0,7
with any sufficiently small 7 > 0 because k > 1. Therefore H(w)
A(w, —i(w/i)¥) is a holomorphic function in

i

W ={weC;0<argw < 0 < |w| < p(argw)}

with a positive valued continuous function ¢(6) on (0,7). On the other
hand, we have that :

H(re®) = A(re'®, r*e*0-m0+k"0/2h = klogr + ik{6 — m(1 + k~1)/2}
for m(1+ k~1)/2 < 6 < 7, and that
H(re®) = A(re®, rhe*{0+nGk-0/2}y = klogr 4 ik {0+ 7 (3K~} —1)/2}

for 0 < 0 < w(1 = k71)/2. That is, H(w) — klogw € O(W) coincides
with 2 different constants —m(k +1)i/2 and —n(k — 3)2/2 in the above
domains, respectively. This contradicts with the connectedness of W.
Thus f(w,z) never have a mlcrofunctlon boundary value at (0, 0;idz)
from Imw>0. a
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