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PERIODIC SOLUTIONS FOR
FORCED VAN DER POL TYPE EQUATIONS

CHIKAHIRO EGAMI AND' NORIMICHI HIRANO

ABSTRACT. In the present paper, we will see that a Van der Pol type equations has a periodic
solution when the forcing term is periodic. By showing the results of some simulations, we
illustrate periodicity of the solutions. We also prove that a periodic solution found near the
origin is a repellor.
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1 INTRODUCTION
Let f,g,e: R = R be continuous functions. The Liénard type equation with forcing term
(L) ug + f(uue + g(u) =e(t) teR

has been studied by many authors due to its adoption to a wide variety of mechanical,
electrical, biological and economical systems. The equation (L) is usually called Duffing
type when f(u) = ¢, or Van der Pol type when g(u) = nu, where { and 7n are constants.

In economics, there have been a number of elegant mathematical treatments of some
of the traditional business cycle theories e.g. the treatment of Kaldor’s model by Chang
and Smyth (1971) and Schinasi (1982) and of a complete Keynesian system by Torre (1977).
Because of one-dimensional relaxation oscillator just like Van der Pol type without an forcing
term, their treatments concentrated on the question of the existence of limit cycles and
consequently made use of the planar properties such as Poincaré-Bendixson theory and
Jordan curve (cf. C. Chiarella [14, §2, §3, §7], K. Kawamata [15, pp.131-148]).

Recently, N-dimensional extension of the equation (L) has been studied by several au-
thors. However, it is not easy for N > 2 to obtain similar results as one-dimensional cases.
N-dimensional existence results for periodic solutions of the forced Van der Pol type are not
yet established until now in comparison with those of the forced Duffing type (e.g., see [1]
by J. Mawhin).

Throughout this paper, unless otherwise explicitly stated, F,g : RV — R" are continuous
functions, and e € L?(R; R") is a periodic function with period T'. We consider the existence
problem for periodic solutions of the forced N-dimensional Van der Pol type equation of the

form
d
(V) Uge + aF(u) + g(u) = e(t) teR,
where u(t) = (u1(t),ua(t),--- ,un(t)), and u;(t) € R for each t € R and each integer
i€[1,N].

In the following section, we shall prove our main result for (V). We make use of the
Leray-Schauder degree theory (cf. N. G. Lloyd [12, §4], K. Masuda [21, §23, §24]). In section



3, we give the results of the simulations for some concrete models. In section 4, we prove
that the periodic solution found near the origin by simulations in section 3 is repellor.

2 EXISTANCE OF PERIODIC SOLUTIONS
In this section, we establish an existence result for periodic solutions of (V). To state our

result, we need some preliminaries.
For z,y € L*([0,T); RY), let us define that

N 1/2 T 1/2 TN
_ z? = 2 . . . .
|zl—(z ) . el (/0 =)l dt) . @n= X mwe)d

i=1
In the following, we put

H = {u € L*([0,THR") : u(0) = u(T),u € L*([0, T};R™)},
with the norm

1/2
lfuller = (llull® + luel®) "

ﬁ:{ueH:/Tu(t)dt=0}.
o

Further, given a set 2, its closure is written {1, its boundary 89Q.

We also put

Our main result is the following,

Theorem 2.1 Let e € H. If F(u) and g(u) satisfy the following conditions (F1), (F2) and
(G1), then the differential equation (V) has at least one periodic solution with period T.

Fi(u1)
F;
(F1) Flunua,.. o= | 702 |,
Fn(un)
where F; € C'(R;R) for each integer i € (1, N};
(F2) , £0)<0  and  liminf £8) 5o,

|sl>c0 82
where f; denotes F};
(G1) g(u) = Au and det A #0,
where A is a N x N constant matriz.

To prove Theorem 2.1 we need some lemmata. However, we omit those proofs here.

Lemma 2.2 Suppose that (F1), (F2) and (G1). Lete € H. If u(t) is a T-periodic solution
of the differential equation (V), then u € H and

llull < 2T (ju|l.
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Remark. For the inequality in Lemma 2.2, which is called Poincaré’s inequality, we can have
still stricter evaluation (cf. C. P. Gupta, J. J. Nieto and L. Sanchez (3]). However, the
present evaluation is enough for lemmata in this paper.

Lemma 2.3 Let )\ € (0, min(-%rl'-, 1)). Then the set
S = {u €EH:uy+ %F(u) + MMu = e(t) for some A € [Ao, l]}
is bounded in H.
Lemma 2.4 The set
Sp = {u €EH:uy+ J%F(u) + XoAu = de(t)  for some 6 €0, 1]}

is bounded in H.
Here, let us introduce the topological (Leray-Schauder) degree and its properties.

Definition 2.5 Let X be Banach space, D be a bounded open subset of X and L be a compact
mapping from D into X. If Lz # p for any = € 8D, then we define the Leray-Schauder
degree of L at p € X relative to D to be deg(L, D, p).

The Leray-Schauder degree is known to have the following three properties.
(i) deg(I,D,p) =1 for every p € D, where I denotes identity mapping.
(ii) deg(L,D,p) # 0 implies Lz = p for some z € D.

(iif) If H(&) is a homotopy of compact mapping with #({)z # p for any z € 8D and any
€ € [0,1}], then deg(H(€), D, p) is independent of &.

Proof of Theorem 2.1 Let B,(0) be the open ball in H centered at 0 with radius r > 0.
For each X € [0,1] and ¢ € [0, 1], we define a operator 7(A,6) : H — H by

T(z}\, du=-4 /Ot F(u(s))ds — A /ot/o" Au(r)drds + 6/(:/0' e(r)drds+ C,

where

c=J/OTF(u(s))dH,\/OT/O'Au(T)drds—6/0T/o’e(r)drds.

Because 7 (), ) is a integral operator, T(\,d)U is equicontinuous for any bounded subset
U of H. Then T()A,68)U is relatively compact by Ascoli-Arzela theorem. Hence 7(),4d) is a
compact operator. Furthermore, we put

T(1-3(1=X)¢ u for £ €[0,4] and u € H,
H(Eu =< T(Xo,2 - 3)u for € € [%, %] and u € H,
T(3X(1-¢),0)u for € [2,1] and u € H.

Then #H(£) is a homotopy of compact mapping on H. It is obvious from the definition of

H(€) that u is a fixed points of #(0) if and only if u is a solution of (V). We have by the
definition of H(£) that

S, = {u eH u= H(E)u for some £ € [0, %]}
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Sz={u€ﬁ:u=’H(£)u for some 56[32}

Then by Lemma 2.3 and Lemma 2.4, we have that there exists large M, such that
2
u#H(E)u  for any u € 3By, (0) and any £ € [0, §]'

For £ € [2,1], we can see that each fixed point u € H of H(€) satisfies

t prs
2.1) u=—(3M(1-8) / / Au(r)drds +C.
o/o
Then we immediately have that u = 0 is the unique solution of (2.1), we also have that
u#H(E)u  for any u € B, (0) and any £ € [g, 1.

While, we should just calculate deg(l — #(0), Bas,(0),0) to consider the fixed point
problem u = H(0)u. Since u # H(€)u for any u € 0B, (0) and any £ € [0, 1], then by the
property (iii) of degree,

deg(I — #(0), Ba,(0),0) = deg(I — #(1), B, (0),0) = deg(Z, Bas,(0),0).

Using the property (i) of degree, deg(l, By, (0),0) = 1. Therefore by the property (ii) of
degree, we obtain that H(0) has at least one fixed point in H, and Theorem 2.1 is proved.
O

3 VAN DER PoL OSCILLATOR

In section 3, We showed existence of periodic solution of (V). Then we would like to find out
where a periodic solution with period T exits. In this section, we introduce three concrete
examples and illustrate the results of simulations for each model.

3.1 PRELIMINARY
We define three kinds of periodic solutions with mutually different character.

Definition 3.1 Letu € L?([0,T]; RN) be a periodic solution with period T of (V). If there
ezists a neighborhood U of ' = {(u(t),us(t)) : t € [0,T]} such that

t_léinmd((v(t),vg(t)),P) =0 for each  (vo,vee) € U,

where v(t) is a solution of (V) with initial value (v(0),v:(0)) = (vo,ve0) € RN x RN and
d(-,-) denotes usual Euclid distance, then u is said to be attractive or attractor.

Definition 3.2 In contrast of Definition 3.1, if there exists U of ' such that
t_l'“_n d((‘U(t), vt(t))1 F) =0 fOT each (vO’ vtO) € Ur
then u is said to be repellor.

Definition 3.3 If u is a periodic solution with the integral multiple of T, then u is said to
be subharmonic solution.
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3.2 NORMAL MODEL

We first introduce the most basic oscillating circuit with a negative resistor devised by
Van der Pol. On Fig.3.1, L, C and R stands for inductance, capacitance and resistance,

R

-

Fig. 3.1: Van der Pol Oscillator

respectively. This R, is called negative resistor, has the nonlinear property for current i such
that

(3.1) R(3) = —ro + 118 + 1282,

where 9,7, and r, is nonnegative. Let 7 be time. Then the circuit equation corresponding
to Fig.3.1 is formalized by the following

Liy + R(i)i + é f i(r) dr = 0.
Differentiating above equation by 7, we have
. 1 . 21 . 1 .
e = T (ro — 2r1i — 3r2i?) i, + o= 0.

Here, transforming 7 into v LCt and putting i = ,/5'-,“2-:1:, we have

C 2r
(3.2) Ty —To -E(l— ‘/37_;sz-—$2) . +z=0.

Put € = 7o / % now. If we suppose r; = 0, then we obtain the Van der Pol type equation

(Ml) Ty + 6(12 - 1).’1::, +z=0,

where z(t) € R. & represents the nonlinearity of the system (M1) and (3.1) holds the
essence of Self-induced oscillation. In case that € is equal to zero, (M1) is actually just a
linear oscillator. It is known as a relaxation oscillation that the solutions of the autonomous
system (M1) have the unique limit cycle for each € on (z,z:) plane by Poincaré-Bendixson
Theorem (cf. F. Verhulst [10, §4.3]). Fig.3.2 gives the w-limit set of the orbits. Where
e change from 0 to 20 by 2 step. The horizontal axis and the vertical axis indicates z(t)
and z,(t), respectively. We can see in Fig.3.2 the amplitude of limit cycle becomes large
as € grows. For example, the period of limit cycle for € = 2,e = 6.5 and ¢ = 15 is about
7.63,13.79 and 26.80.
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Fig. 3.2: Limit Cycle

3.3 FORCED MODEL

We next introduce the Van der Pol oscillator with external power source. On Fig33, Eis
the voltage of external power source. Using transformation similar to (3.2), we can formulate
the circuit equation corresponding to Fig.3.3 as follows

JE(1- 22 =/, /C
(3.3) T —To L(l mz z)z¢+z— T LEcost

We put € = ro\/g and B = \/ 3—,';1\/_%:E We call B forcing coefficient. If we assume r; = 0,
then we have the forced Van der Pol type equation :

(M2) Zee + £(z® - 1)z, + = = Bcost.
We show three results of simulations of the model (M2). Then we have to set a

initial value on [0,27] x RY x RM. Let us set four initial values (to,z(to),e(to)) at
(0,0,0),(0,0,3),(0,—1,1) and (0,1,5). Let € be fixed at 10.0 and B be set at 2.0, 6.5

R

Q —.

K
S
Esin et
Fig. 3.3: Van der Pol Oscillator with External power source




and 15.0. It is rather more important for us than the relation between initial values and
orbits whether a periodic solution exists or where a periodic solution was observed or its
period. Fig.3.4, Fig.3.5 and Fig.3.6 are 3-dimensional plots and projections onto ¢ = 0 of
time series of z and z, of (M2) in case that the amplitude of external force B is weak 2.0,
strong 15.0 and middle 6.5, respectively. In Fig.3.4, we can find a 27-periodic repellor in
the region of ¢t < 0 which oscillate near the origin with small amplitude, and a 6x-periodic
subharmonic solution in the region of ¢ > 0 in which all four orbits reach. In Fig.3.5, we can
observe a 2m-periodic attractor in the region of ¢ > 0 in which all four orbits was attracted
as time progresses. In the region of ¢t < 0, we can hardly calculate because the orbits diverge
instantly to infinity for all four initial values. Fig.3.6 gives a complicated state that we have
a repellor in the region of ¢ < 0 and both an attractor and a subharmonic solution in the
region of t > 0.

Fig. 3.6: Case of B = 6.5

165



Fig.3.7 and Fig.3.8 are drawn in order to give clearly the orbits of three periodic solutions.
Fig.3.7 is the 3-dimensional plot of (¢ mod 27, z(t), z.(t)) for large |t| sufficiently, and Fig.3.8
is its projection onto t = 0. In Fig.3.8, we can see that the oscillation with the smallest
amplitude is repellor, the orbit is attractor which oscillate by the inner side of the largest
swing, and the orbit is subharmonic solution which also has the small amplitude crossing z
axis while oscillating with the largest amplitude. '

Fig. 3.7: Invariant Set for || > 1 Fig. 3.8: Periodic Solutions

In Fig.3.9, Fig.3.10 and Fig.3.11, (¢ mod T,z(t)) are drawn for ¢t € [100,200], ¢t €
[100,200] and t € [—200, —100] to investigate the exact periods of periodic solutions, where
T = 2m,2n and 6n, respectively. In order to get the exact period, we have to choose T
appropriately so that the curves (t mod T, z(t)) may be overlapped at one.

2
0.75
0.5 N
0.25
) F) 1 c 3 3 e °
-0.25
-0.5 \/ -1
-0.75 " —
Fig. 3.9: Repellor Fig. 3.10: Attractor

X

2
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Fig. 3.11: Subharmonic Solution

166



167

3.4 CouPLED MODEL WITH FORCING TERM

We introduce the coupling model connected two oscillating circuits with external power
source.

L1 R1 C1 L2 R2 02

. 1 E
El sin T 2 sm W;T

141

Fig. 3.12: Coupled Van der Pol Osc1llator with Extemal power source

On the Fig.3.12, ¢ and r represents the small capaéitance added artificially and the
minute resistance included in the lead portion of the circuit, respectively. The characteristic
of negative resistance is described by

Ro(i) = —Tno + T1i +7o2i2  for n=1,2.

Now assume +/L,C; = +/L;C; and put i; = 1/3r . and i; = ‘/:mzy By using same
transformation as (3.3), we have the following circuit equation correspondmg to Fig.3.12

Cl 21'11 ) 31'12 01
- 1 - +z= —F t
Tee = Ti0yf Ll( o - )TN e VI e
+ "'l(y -z)+ TV '—i(yt - ),
Cs ( 2r9; ) 3rag
- —=1(1- +y= cost
e\, (1= Tt =¥ ) u v =RV
+ —Ez-(a: -y)+ r\/-l—f(zt - ).
Here we put k, = Cp/c, €, = r,,m/%:- and B, = ,/%,/%En. If we suppose rn; = 0,

r{(1, then we can build up our main model

ze — € (1—2?) 2 +2 = By cost + k (y — z),

(M3) -
Yee —€2 (1 - y°) ye +y = By cost + ka(z — y),
where we call k, coupling coefficient.

~ We show two results of simulations of the model (M3). Then we have to set a initial
value on [0,27] x RN x RN x RN xRN, Let €1,€2 and k), k2 be fixed at 2.0,10.0 and 0.5,0.3,
respectively. We suppose B; = B,.



We first show case of weak external force B; = B, = 1.5. Let us set four initial val-
ues (to, z(to), z(t0), y(to), y(to)) at (0,0,0,0,0), (0,0,-1,0,-1), (0,-2,-5,-1,-10) and
(0,-2,5,—2.5, —10).

Fig.3.13 and Fig.3.14 are time series plotting (¢,z(t),z.(t)) and (¢,y(t),y:(t)), respec-
tively. In both Fig.3.13 and Fig.3.14, we can observe a 2m-periodic repellor in the region
of t < 0 and a 6n-periodic subharmonic solution in the region of t > 0. Then z(t) of this
subharmonic solution in Fig.3.13 appears like 27m-periodic. But watching y(t) in Fig.3.14,
we have its period is 6.

Furthermore, we expect that, even if a model was multidimensionalize, the amplitude of
each variable depend on ¢; of each dimension. In this case, the amplitude of z(t) and y(t)
depend on ¢, and &3, respectively. However, if we suppose that coupling coefficients k; is
larger, then we may have a more complicated situation of the orbits.

Fig. 3.13: (t,z(t),z:(t)) in case of B, = B, = 1.5

20
15
10

Fig. 3.14: (¢,y(t),¥:(t)) in case of By = B, = 1.5

Fig.3.15, Fig.3.16 and Fig.3.17, Fig.3.18 give the period of repellor and subharmonic solution,
respectively. We can check that each period is 2r and 6.

We next show case of strong external force B, = B, = 15. Let us set four initial values
(tO: z(tO)azi(tO)v y(tO), yl(tO)) at (Ov 0’ 0’ 0, O)a (ot —2s _'5r -1, -10)0 (0: -21 $5,-235, —10) and
0,3,-1,3,1).

In Fig.3.19 and Fig.3.20, we can observe a 2w-periodic attractor in the region of t > 0
like B = 15 of case in the last section.In the region of ¢ < 0, the orbits diverge instantly to
infinity for all four initial values.Fig.3.21 and Fig.3.22 give the period of attractor is 2.

In the end, by the results of some simulations, we can expect that forced Van der Pol

system has an attractor in case that the external force is strong or a repellor in case that the
external force is weak. But it is not easy to investigate completely setting of parameters for
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0.75 0.15
0.5 0.1
0.25 : 0.05/\
2 \ 4 / t 2 N4 6 -t
-0.25 -0.05
-0.75 ) -0.15

Fig. 3.15: Repellor (t mod 2m,z(t))  Fig. 3.16: Repellor (¢ mod 2, y(t))

:/\\S/RI\/D\ | | [\\ |
U .

Fig. 3.17: Subharmonic(¢t mod 6, z(t))Fig. 3.18: Subharmonic(t mod 6, y(t))

Fig. 3.20: (y(t),y:(t)) in case of B; = By =15
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Fig. 3.21: Attractor (t mod 27, z(t)) Fig. 3.22: Attractor (¢t mod 2m,y(t))

all cases that a subharmonic solution exists (e.g. regarding the results for one-dimensional
system, see J. E. Flaherty and F. C. Hoppensteadt [2]).

4 REPELLOR

In this section , we prove that the periodic solution found near the origin by simulations in
section 3 is repellor.

Proposition 4.1 Let p be a small constant, u € L*(R; RV) be a T-periodic solution of V)
with ||u|| < p and A is a Hermite conjugate matriz. Then u is a repellor.

Proof. Using condition (F2), we have that, there exists p; > 0 for i € [1, N] such that
f.-(u,-) <0 for |u.-| < pi,

then put p = minse(; Ny pi. Putting

fl(ul) 0 ‘e 0
f(u) - 0 f2(“2) ..- ? ’
0 0 ... fn(un)

we can rewrite (V) to
(4.1) U + f(w)ue + Au = e(t).

Let u € L?*(R; R") be a T-periodic solution of (4.1) with llull < p. Further let k be a
constant and u + h¢ be a solution (4.1). Then we have

(4.2) (u+ hd)ee + f(u+ ho)(u + ho)e + A(u + ho) = e(t).
By (4.1) and (4.2), we have
flu+ho) - f(u)

Pee + ho u¢¢+f(u+h¢)¢¢+A¢=0.
By letting h go to 0 for the equation above, we get the linearized equation
(4.3) o Gt f(w)de + (f (u)ue + A)p =0,

where f'(u) is Hessian of f(u). Here we rewrite the equation above as a system of first order
ordinary equations of the form

(4.4) (f:) = (_ f'(u;)u, —A —fl(u)) (z)
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We consider the initial value problem of autonomous system (4.4) with (¢(0),x(0)) =
(0, x0) € RY x RY. We put ®(t) = (¢(t),x(t)) for t > 0. Then by Floquet’s theorem
(e.g., see [9, §1.4] by F. C. Hoppensteadt), we have that the fundamental solution ®(t) of
(4.4) can be written in the form

8(t) = Q(t) exp(At),

where Q(t) = {g:;} is a matrix such that each element g;;(¢) is a T-periodic function, and A
is a Jordan matrix. To prove that u is a repellor, it is sufficient to see that each eigenvalue
A; of A is positive. Let ¢ is a solution of (4.3). Then we have

o + f(u)pr + (f (u)ue + A)p = 0.

Integrating the equation above over [0,t], we have
t
ee(t) + (fu)p)(t) + A /o ©(s) ds = ¢:(0) + (f(u)p)(0)

Here we put o = ¢;(0) + (f(u)¢)(0). We also put ¢(t) = [ ¢(s) ds. Then we have
Yu+ fu)e+AY =0 for t > 0.
Then multiplying the equality above by 4; and integrating over [0, t], we get
[ (8 + (Av(2), v (1) 2 Iilfe(O)I2 + ((A¢(0 ¥(0))

(45) ,
+3 [ Wulo)ds + (or0(0) ~ w(OD.

where we put {z,y)) = Zfil z;y; for £,y € RY. Suppose that there exists a negative

eigenvalue \; of A. Then by choosing the initial value (¢(0),:(0)) appropriately, we have

that for some D > 0, ‘

l1e] < De*, |9 < De**  forallt > 0.

This implies that lim,_,oo [1:(t)]? + (A¥(t),¥(¢))) = 0 and lim;_, {0, %(t) — 1/;(0))) 0.
This contradicts to (4.5). This completes the proof. O

REFERENCES

(1] Jean Mawhin, An Extension of a Theorem of A.C.Lazer on Forced Nonlinear Oscilla-
tions, Journal of Mathematical Analysis and Applications, Vol.40, pp.20-29, (1972).

[2] J.E.Flaherty, F.C.Hoppensteadt, Frequency Entrainment of a Forced van der Pol Os-
cillator, Studies in Applied Mathematics, Vol.58, pp.5-15, (1978).

[3] Duane W.Storti, Per G.Reinhall, Stability of in-phase and out-of-phase modes for a
pair of linearly coupled van der Pol oscillators, Nonlinear dynamics, pp.1-23, Series on
Stability, Vibration and Control Systems. Series B, Vol.2, World Scientific Publishing,
River Edge, NJ, (1997).

[4] Nguyen Phuong Cic, Periodic Solutions of a Liénard equation with forcing term, Non-
linear Analysis, Vol.43, pp.403-415, (2001).

[5) Chaitan P.Gupta, Juan J.Nieto, Luis Sanchez, Periodic Solutions of Some Lienard and
Duffing Equations, Journal of Mathematical Analysis and Applications, Vol.140, pp.67-
82, (1989).

171



172

(6] Norman Levinson, A Second Order Differential Equation with Singular Solutions, An-
nals of Mathematics, Vol.50, No.1, pp.127-153, (1949).

[7] M.L.Cartwright, J.E.Littlewood, Some Fized Point Theorems, Annals of Mathematlm,
Vol.54, No.1, pp.1-37, (1951).

(8] John Guckenheimer, Philip Holmes, “Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fnelds” Applied Mathematical Sciences, 42, Springer-Verlag,
(1983).

[9] Frank C. Hoppensteadt, “Analysis and Simulation of Chaotic Systems”, Applied Math-
ematical Sciences, 94, Springer-Verlag, (2000).

(10] Ferdinand Verhulst “Nonlinear Differential Equations and Dynamical Systems”,
Springer-Verlag, (1990).

[11] Wolfgang Walter “Ordinary Differential Equations ”, Springer-Verlag, (1998).
(12] N.G.Lloyd, “Degree Theory”, Cambridge University Press, (1978).

(13] G.Hardy, J.E.Littlewood, G. Pélya, “INEQUALITIES”, Cambridge University Press,
(1934).

[14] Carl Chiarella, “The Elements of a Nonlinear Theory of Economic Dynamics”, Lec-
tureNotes in Economics and Mathematical Systems, 343, Springer-Verlag, (1990).

[15] Toru Maruyama, Wataru Takahashi, “Nonlinear and Convex Analysis in Economic
Theory”, LectureNotes in Economics and Mathematical Systems, 419, Springer-Verlag,
(1995).

[16] Gianni Ricci, Kumaraswamy Velupillai, “Growth Cycles and Multisectoral Economics:
the Goodwin Tradition”, LectureNotes in Economics and Mathematical Systems, 309,
Springer-Verlag, (1988).

(17] B3, “BASART", BT ¥4, (1972).

(18] WAFIX, Wi, TEFRA, RERAAZR", HEM, (1985).
[19] RE&E—BS, “BHE L BRO~ 7 u@y", BAEHFFRL, (1997).
[20] 7S, “FERTEGR", ERMERES Y —X, 2, BABE, (1970).
(21] MEAR, “JERKE", FHERE, 15, HAEE, (1985).

CHIKAHIRO EGAMIt AND NoriMicHi HIRANO?

Division of Information Media Environment Sciences,

Graduate School of Environment and Information Sciences,

Yokohama National University, ]

79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501

E-mail address: tchika@hiranolab.jks.ynu.ac.jp, *hirano@math.sci.ynu.ac.jp



