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ABSTRACT. In the present paper, we will see that aVan der Pol type equations has aperiodic
solution when the forcing term is periodic. By showing the results of some simulations, we
illustrate periodicity of the solutions. We also prove that aperiodic solution found near the
origin is arepellor.
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1INTRODUCTION
Let $f$ , $g$ , $e:\mathrm{R}$ $arrow \mathbb{R}$ be continuous functions. The Lienard type equation with forcing term

(L) $u_{tt}+f(u)u_{t}+g(u)=e(t)$ $t\in \mathrm{R}$

has been studied by many authors due to its adoption to awide variety of mechanical,
electrical, biological and economical systems. The equation (L) is usually called Duffing
type when $f(u)=\langle$ , or Van der Pol type when $g(u)=\eta u$ , where $\langle$ and $\eta$ are constants.

In economics, there have been anumber of elegant mathematical treatments of some
of the traditional business cycle theories e.g. the treatment of Kaldor’s model by Chang
and Smyth (1971) and Schinasi (1982) and of acomplete Keynesian system by Torre (1977).
Because of one dimensional relaxation oscillatorjust like Van der Pol type without an forcing
term, their treatments concentrated on the question of the existence of limit cycles and
consequently made use of the planar properties such as Poincare-Bendixson theory and
Jordan curve (cf. C. Chiarella [14, \S 2, \S 3, \S 7], K. Kawamata [15, pp.131-148]).

Recently, $N$-dimensional extension of the equation (L) has been studied by several au-
that However it is not easy for $N\geq 2$ to obtain similar results as one dimensional cases.
$N$-dimensional existence results for periodic solutions of the forced Van der Pol type are not
yet established until now in comparison with those of the forced Duffing type (e.g., see [1]
by J. Mawhin).

Throughout this paper, unless otherwise explicitly stated, $F$, $g:\mathrm{R}^{N}arrow \mathrm{R}^{N}$ a $\mathrm{e}$ continuous
functions, and $e\in L^{2}(\mathbb{R};\mathbb{R}^{N})$ is aperiodic function with period $T$ . We consider the existence
problem for periodic solutions of the forced $N$-dimensional Van der Pol type equation of the
form

(V) $u_{tt}+ \frac{d}{dt}F(u)+g(u)=e(t)$ $t\in \mathrm{R}$ ,

where $u(t)=(u_{1}(t),u_{2}(t)$ , $\ldots$ , $\mathrm{u}(\mathrm{t})$ , and $u:(t)\in \mathbb{R}$ for each $t\in \mathrm{R}$ and each integer
$i\in[1, N]$ .

In the following section, we shall prove our main result for (V). We make use of the
Leray-Schauder degree theory (cf. N. G. Lloyd [12, \S 4], K. Masuda [21, \S 23, \S 24]). In section
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3, we give the results of the simulations for some concrete models. In section 4, we prove
that the periodic solution found near the origin by simulations in section 3is repellor.

2EXISTANCE OF PERIODIC SOLUTIONS
In this section, we establish an existence result for periodic solutions of (V). To state our
result, we need some preliminaries.

For $x,y$ $\in L^{2}([0,\eta j\mathrm{R}^{N})$ , let us define that

$|x|$
$=( \sum_{=1}^{N}x_{}^{2)^{1/2}},$ $||x||=( \int_{0}^{T}|x(t)|^{2}dt)^{1/2}$ , $(x,y)$ $= \int_{0}^{T}.\sum_{\Leftarrow 0}^{N}x:(t)y_{\dot{*}}(t)dt$ .

In the folowing, we put

$H=\{u\in L^{2}([0,T]j\mathrm{R}^{N}):"(0)=u(T),u_{t}\in L^{2}([0,T];\mathrm{R}^{N})\}$ ,

with the norm
$||u||_{H}=(||u||^{2}+11\mathrm{u}11^{2})^{1/2}$

We also put

$\tilde{H}=\{u\in H:\int_{0}^{T}u(t)dt$ $=0\}$ .

Further, $\dot{g}\mathrm{v}\mathrm{e}\mathrm{n}$ aset $\Omega$ , its closure is written $\overline{\Omega}$, its boundary $\partial\Omega$.

Our main result is the following,

Theorem 2.1 Let e $\in H$ . If $F(u)$ and $g(u)$ satisfy the follow .ng conditions (Fl), (F2) and
(Gl), then the $d|.ffe|\mathrm{e}nt|.al$ equation (V) has at least one periodic solution with period T.

(F1) $F(u_{1},u_{2}, \ldots,u_{N})=(\begin{array}{l}F_{1}(u_{1})F_{2}(u_{2})\vdots F_{N}(u_{N})\end{array})$ ,

where $F_{}\in C^{1}(\mathrm{R};\mathrm{R})$ for each integer: $\in[1, N]j$

(F2) $f_{}(0)<0$ and $\lim_{[\cdot 1arrow}\inf_{\infty}\frac{f_{}(s)}{s^{2}}>0$ ,

where $f_{}$ denotes $F_{j}’$

(G1) $g(u)=Au$ and $\det A\neq 0$ ,

$whm$ $A$ is a $N\mathrm{x}N$ constant matrix.

To prove Theorem 2.1 we need some lemmata. However, we omit those proofs here.

Lemma 2.2 Suppose that (Fl), (F2) and (Gl). Let e $\in H$ . If $u(t)$ is a T periodic solution
of the differential equation (V), then u $\in\tilde{H}$ and

$||u||\leq 2T||u_{t}||$ .
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Remark. For the inequality in Lemma 2.2, which is called Poincare’s inequality, we can have
still stricter evaluation (cf. C. P. Gupta, J. J. Nieto and L. Sanchez [3]). However, the
present evaluation is enough for lemmata in this paper.

Lemma 2.3 Let $\lambda_{0}\in(0, \min(_{\mathrm{T}}^{2\pi}, 1))$ . Then the set

$S_{1}= \{u\in H:u_{tt}+\frac{d}{dt}F(u)+\lambda Au=e(t)$ for some A $\in[\lambda_{0},1]\}$

is bounded in $H$ .

Lemma 2.4 The set

$S_{2}=\{u\in H$ : $u_{tt}+ \delta\frac{d}{dt}F(u)+\mathrm{X}$ Au $=6e(t)$ for some $\delta$ $\in[0,1]\}$

is bounded in $H$ .
Here, let us introduce the topological (Leray-Schauder) degree and its properties.

Definition 2.5 LetX be Banach space, $D$ be a bounded open subset $ofX$ and $\mathcal{L}$ be a compact
mapping from $\overline{D}$ into X. If $\mathcal{L}x\neq p$ for any $x\in\partial D$ , then we define the Leray-Schauder
degree of $\mathcal{L}$ at $p\in X$ relative to $D$ to be $\deg(\mathcal{L}, D,p)$ .

The Leray-Schauder degree is known to have the following three properties.

(i) $\deg(I, D,p)=1$ for every $p\in D$ , where I denotes identity mapping,

(ii) $\deg(\mathcal{L}, D,p)\neq 0$ implies $\mathcal{L}x=p$ for some $x\in D$ .

(iii) If $\mathcal{H}(\xi)$ is ahomotopy of compact mapping with $\mathcal{H}(\xi)x\neq p$ for any $x\in\partial D$ and any
$\xi\in[0,1]$ , then $\deg(\dot{\mathcal{H}}(\xi), D,p)$ is independent of $\langle$ .

Proof of Theorem 2.1 Let $B_{r}(0)$ be the open ball in $\tilde{H}$ centered at 0with radius $r$ $>0$ .
For each $\lambda\in[0,1]$ and $\delta\in[0,1]$ , we define aoperator $\mathcal{T}(\lambda, \delta)$ : $\tilde{H}arrow\tilde{H}$ by

$\mathcal{T}(\lambda,\delta)u=-\delta\int_{0}^{t}F(u(s))ds-\lambda\int_{0}^{t}\int_{0}.Au(\tau)d\tau ds+\delta\int_{0}^{t}\int_{0}.e(\tau)d\tau ds+C$,

where

$C= \delta\int_{0}^{T}F(u(s))ds+\lambda\int_{0}^{T}\int_{0}^{\epsilon}$ Au(r) $d \tau ds-\delta\int_{0}^{T}\int_{0}^{e}e(\tau)d\tau ds$ .

Because $\mathcal{T}(\lambda, \delta)$ is aintegral operator, $\mathcal{T}(\lambda, \delta)U$ is equicontinuous for any bounded subset
$U$ of $\tilde{H}$ . Then $\mathrm{T}(\mathrm{A}, \delta)U$ is relatively compact by Ascoli-Arzela theorem. Hence $\mathcal{T}(\lambda, \delta)$ is a
compact operator. Furthermore, we put

$\mathcal{H}(\xi)u=\{$

$\mathcal{T}(1-3(1-\lambda_{0})\xi, 1)u$ for $\xi\in[0, \frac{1}{3}]$ and $u\in\tilde{H}$ ,
$\mathcal{T}(\lambda_{0},2-3\xi)u$ for $\xi\in[\frac{1}{3}, \frac{2}{3}]$ and $u\in\tilde{H}$ ,
$\mathrm{T}(3\mathrm{A}\mathrm{O}(1-\xi), \mathrm{O})u$ for $\xi\in[\frac{2}{3},1]$ and $u\in\tilde{H}$ .

Then $\mathcal{H}(\xi)$ is ahomotopy of compact mapping on $\tilde{H}$ . It is obvious from the definition of
$\mathcal{H}(\xi)$ that $u$ is afixed points of $\mathcal{H}(0)$ if and only if $u$ is asolution of (V). We have by the
definition of $?t(\xi)$ that

$S_{1}=\{u\in\tilde{H}$ : $u=\mathcal{H}(\xi)u$ for some $\xi\in[0, \frac{1}{3}]\}$
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$S_{2}=\{u\in\tilde{H}$ : $u=\mathcal{H}(\xi)u$ for some $\xi\in[\frac{1}{3}, \frac{2}{3}]\}$ .

Then by Lemma 2.3 and Lemma 2.4, we have that there exists large $M_{0}$ such that

$u\neq \mathcal{H}(\xi)u$ for any $u\in\partial B_{M_{0}}(0)$ and any $\xi$ $\in[0, \frac{2}{3}]$ .

For $\langle$ $\in[\frac{2}{3},1]$ , we can see that each fixed point $u\in\tilde{H}$ of $\mathcal{H}(\xi)$ satisfies

(2.1) $u=-(3 \lambda_{0}(1-())\int_{0}^{t}\int_{0}.$ $\mathrm{v}(\mathrm{t})$ $d\tau ds$ $+C$.

Then we immediately have that $u=0$ is the unique solution of (2.1), we also have that

$u\neq \mathcal{H}(\xi)u$ for any $u\in\partial B_{M_{0}}(0)$ and any $\xi\in[\frac{2}{3},1]$ .

While, we should just calculate $\deg(I-\mathcal{H}$(0) $, B_{M_{0}}(0),0)$ to consider the fixed point
problem $u=\mathrm{H}(0)$ . Since $u\neq \mathcal{H}(\xi)u$ for any $u\in\partial B_{M_{\mathrm{Q}}}(0)$ and any $\xi\in[0,1]$ , then by the
property (iii) of degree,

$\deg(I-\mathcal{H}(0),B_{M_{0}}(0),\mathrm{O})=\deg(I-\mathcal{H}(1),B_{M_{0}}(0),\mathrm{O})=\deg(I,B_{M_{0}}(0),0)$ .

Using the property (i) of degree, $\deg(I,Bu_{0}(0),0)=1$ . Therefore by the property (\"u) of
degree, we obtain that $H(0)$ has at least one fixed point in $\tilde{H}$ , and Theorem 2.1 is proved.

$\mathrm{O}$

3VAN DER POL OSCILLATOR
In section 3, We showed existence of periodic solution of (V). Then we would like to find out
where aperiodic solution with period $T$ exits. In this section, we introduce three concrete
examples and illustrate the results of simulations for each model.

3.1 PRELIMINARY
We define three kinds of periodic solutions with mutually different character.

Definition 3.1 Let u $\in L^{2}([0,T]jR^{N})$ be a periodic solution with period T of (V). If there
exists a neighborhood U of $\Gamma=\{(u(t),u_{t}(t));$t $\in[0,T]\}$ such that

$\lim_{tarrow+\infty}d((v(t),v_{t}(t))$ , $\Gamma)=0$ for each $(v_{0},v_{t0})\in U$,

where $v(t)$ is a solution of (V) with initial value $(\mathrm{v}(0),\mathrm{v}\mathrm{t}(\mathrm{O}))=(\mathrm{v}0\mathrm{i}\mathrm{v}\mathrm{t}0)\in R^{N}\mathrm{x}R^{N}$ and
$d(\cdot$ , $\cdot$ $)$ denotes usual Euclid distance, then $u$ is said to be attractive or attractor.

Definition 3.2 In contrast of Definition 31, if there $\dot{\varpi}stsU$ of $\Gamma$ such that

$\lim_{tarrow-\infty}d((v(t),v_{t}(t))$ , $\Gamma)=0$ for each $(v_{0},v_{t0})\in U$,

then $u$ is said to be repellor.

Definition 3.3 If $u$ is a periodic solution with the integral multiple of $T$ , then $u$ is said to
be subharmonic solution
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3.2 NORMAL MODEL
We first introduce the most basic oscillating circuit with anegative resistor devised by
Van der Pol. On Fig.3.1, $L$ , $C$ and $R$ stands for inductance, capacitance and resistance,

$L$

Fig. 3.1: Van der Pol Oscillator

respectively. This $R$ , is called negative resistor, has the nonlinear property for current $i$ such
that

(3.1) $R(i)=-\prime 0+r_{1}i$ % $r_{2}i^{2}$ ,

where $r_{0}$ , $r_{1}$ and $r_{2}$ is nonnegative. Let $\tau$ be time. Then the circuit equation corresponding
to Fig.3.1 is formalized by the following

$Li_{\tau}+R(i)i+ \frac{1}{C}\int i(\tau)d\tau=0$ .

Differentiating above equation by $\tau$ , we have

$i_{\tau\tau}- \frac{1}{L}(r_{0}-2\mathrm{r}\mathrm{x}\mathrm{i}-3r_{2}i^{2})i_{\tau}+\frac{1}{LC}i=0$ .

Here, transforming $\tau$ into $\sqrt{LC}t$ and putting $i=\sqrt{\overline{3}r_{2}\prime[perp]}x$ , we have

(3.2) $x_{tt}-r_{0} \sqrt{\frac{C}{L}}(1-\frac{2r_{1}}{\sqrt{3r_{0}r_{2}}}x-x^{2})xt+x=0$ .

Put $\epsilon=\prime_{0}\sqrt{\frac{c}{L}}$ now. If we suppose $r_{1}=0$ , then we obtain the Van der Pol type equation

(M1) $x_{tt}+\epsilon(x^{2}-1)\mathrm{x}\mathrm{t}+x=0$ ,

where $x(t)\in \mathrm{R}$ . $\epsilon$ represents the nonlinearity of the system (M1) and (3.1) holds the
essence of Self-induced oscillation. In case that $\epsilon$ is equal to zero, (M1) is actually just a
linear oscillator. It is known as arelaxation oscillation that the solutions of the autonomous
system (M1) have the unique limit cycle for each $\epsilon$ on $(x,x_{t})$ plane by Poincare-Bendixson
Theorem (cf. F. Verhulst [10, \S 4.3]). Fig.3.2 gives the $\omega$-limit set of the orbits. Where
$\epsilon$ change from 0to 20 by 2step. The horizontal axis and the vertical axis indicates $x(t)$

and $x_{t}(t)$ , respectively. We can see in Fig.3.2 the amplitude of limit cycle becomes large
as $\epsilon$ grows. For example, the period of limit cycle for $\epsilon=2,\epsilon=6.5$ and $\epsilon$ $=15$ is about
7.63, 13.79 and 26.80
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$\mathrm{x}’$

$\mathrm{x}$

Fig. 3.2: Limit Cycle

3.3 FORCED MODEL
We next introduce the Van der Pol oscillator with external power source. On Fig.3.3, $E$ is
the voltage of external power source. Using transformation similar to (3.2), we can formulate
the circuit equation corresponding to Fig.3.3 as follows

(3.3) $x_{tt}-r_{0} \sqrt{\frac{C}{L}}(1-\frac{2r_{1}}{\sqrt{3r_{0}r_{2}}}x-x^{2})x_{t}+x=\sqrt{\frac{3r_{2}}{r_{0}}}\sqrt{\frac{C}{L}}E\mathrm{c}\mathrm{o}\mathrm{e}t$

We put $\epsilon=r_{0}\sqrt{\tau c}$ and $B=\sqrt{\underline{3}\mathrm{a}\mathrm{o}},\sqrt{\tau c}E$ . We call $B$ forcing coefficient. If we assume $r_{1}=0$,
then we have the forced Van der Pol type equation

(M2) $x_{tt}+\epsilon(x^{2}-1)x_{\mathrm{C}}+x=B$ coe $t$ .
We show three results of simulations of the model (M2). Then we have to set a

initial value on $[0, 2\pi]$ $\mathrm{x}\mathrm{R}^{N}\mathrm{x}\mathrm{R}^{N}$ . Let us set four initial values $(t_{0},x(t_{0}),x_{t}(t_{0}))$ at
(0,0,0), (0,0,3), $(0,$ $-1, 1)$ and (0, 1,5). Let $\epsilon$ be fixed at 10.0 and $B$ be set at 2.0, 6.5

Fig. 3.3: Van der Pol Oscillator with External power source
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and 15.0. It is rather more important for us than the relation between initial values and
orbits whether aperiodic solution exists or where aperiodic solution was observed or its
period. Fig.3.4, Fig.3.5 and Fig.3.6 are 3-dimensional plots and projections onto $t=0$ of
time series of $x$ and $x_{t}$ of (M2) in case that the amplitude of external force $B$ is weak 2.0,
strong 15.0 and middle 6.5, respectively. In Fig.3.4, we can find a $2\pi$-periodic repellor in
the region of $t<0$ which oscillate near the origin with small amplitude, and a $6\pi$ periodic
subharmonic solution in the region of $t>0$ in which all four orbits reach. In Fig.3.5, we can
observe a $2\pi$-periodic attractor in the region of $t>0$ in which all four orbits was attracted
as time progresses. In the region of $t<0$ , we can hardly calculate because the orbits diverge
instantly to infinity for all four initial values. Fig.3.6 gives acomplicated state that we have
arepellor in the region of $t<0$ and both an attractor and asubharmonic solution in the
region of $t>0$ .

$\mathrm{x}$

Fig. 3.5: Case of $B=2$

$\mathrm{x}$

Fig. 3.5: Case of $B=15$

$\mathrm{x}$

Fig. 3.6: Case of $B=6.5$
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Fig.3.7 and Fig.3.8 are drawn in order to give clearly the orbits of three periodic solutions.
Fig.3.7 is the 3-dimensional plot of $(t\mathrm{m}\mathrm{o}\mathrm{d} 2\mathrm{n}\mathrm{l}\mathrm{x}(\mathrm{t})\mathrm{J}\mathrm{x}\mathrm{t}(\mathrm{t}))$ for large $|t|$ sufficiently, and Fig.3.8
is its projection onto $t=0$. In Fig.3.8, we can see that the oscillation with the smallest
amplitude is repellor, the orbit is attractor which oscillate by the inner side of the largest
swing, and the orbit is subharmonic solution which also has the small amplitude crossing $x$

axis while oscillating with the largest amplitude.

$\mathrm{x}$

Fig. 3.7: Invariant Set for $|t|>>1$ Fig. 3.8: Periodic Solutions

In Fig.3.9, Fig.3.10 and Fig.3.11, $(t\mathrm{m}\mathrm{o}\mathrm{d} T,x(t))$ are drawn for $t$ $\in[1W,20]$ , $t\in$

$[100,200]$ and $t\in[-2W, -1\mathrm{M}]$ to investigate the exact periods of periodic solutions, where
$T=2\pi,2\pi$ and $6\pi$ , respectively. In order to get the exact period, we have to choose $T$

appropriately so that the curves $(t \mathrm{m}\mathrm{o}\mathrm{d} T,x(t))$ may be overlapped at one.

$\mathrm{t}$ $\mathrm{t}$

Fig. 3.9: Repellor Fig. 3.10: Attractor
$\mathrm{x}$

$\mathrm{t}$

Fig. 3.11: Subharmonic Solution
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3.4 COUPLED MODEL WITH FORCING TERM

We introduce the coupling model connected two oscillating circuits with external power
source.

Fig. 3.12: Coupled Van der Pol Oscillator with External power source

On the Fig.3.12, $c$ and $r$ represents the small capacitance added artificially and the
minute resistance included in the lead portion of the circuit, respectively. The characteristic
of negative resistance is described by

$R_{n}(i)=-\mathrm{r}\mathrm{n}\mathrm{O}+rnli+r_{n2}i^{2}$ for $n=1,2$ .

Now assume $\sqrt{L_{1}C_{1}}=\sqrt{L_{2}C_{2}}$ and put $i_{1}=\sqrt{3r_{12}r}" x$ and $i_{2}=\sqrt{\frac{r}{3}r_{22}2\mathrm{L}}y$ . By using same
transformation as (3.3), we have the following circuit equation corresponding to Fig.3.12

$x_{tt}-r_{10} \sqrt{\frac{C_{1}}{L_{1}}}(1-\frac{2r_{11}}{\sqrt{3r_{10}r_{12}}}x-x^{2})x_{t}+x=\sqrt{\frac{3r_{12}}{r_{10}}}\sqrt{\frac{C_{1}}{L_{1}}}E_{1}\cos t$

$+ \frac{C_{1}}{c}(y-x)+r\sqrt{\frac{C_{1}}{L_{1}}}(y_{\mathrm{C}}-x_{t})$ ,

$y_{tt}-r_{20} \sqrt{\frac{C_{2}}{L_{2}}}(1-\frac{2r_{21}}{\sqrt{3r_{20}r_{22}}}y-y^{2})y_{t}+y=\sqrt{\frac{3r_{22}}{r_{20}}}\sqrt{\frac{C_{2}}{L_{2}}}$a $\cos t$

$+ \frac{C_{2}}{c}(x-y)+r\sqrt{\frac{C_{2}}{L_{2}}}(x_{\ell}-y_{t})$ .

Here we put $k_{n}=\mathrm{C}\mathrm{n}/\mathrm{c}$ , $\epsilon_{n}=r_{n0}\sqrt{\frac{c}{L_{\mathrm{n}}}}$ and $B_{n}=\sqrt{\frac{3}{r}\underline{r_{\mathrm{B}0}}l}\sqrt{\frac{c}{L_{n}}}E_{n}$ . If we suppose $r_{n1}=0$ ,
$r\langle(1$ , then we can build up our main model

$x_{tt}-\epsilon_{1}(1-x^{2})x_{t}+x=B_{1}\cos t+k_{1}(y-x)$ ,
(M3)

$y_{tt}-\epsilon_{2}(1-y^{2})y_{t}+y=B_{2}\cos t+k_{2}(x-y)$ ,

where we call $k_{n}$ coupling coefficient.
We show two results of simulations of the model (M3). Then we have to set ainitial

value on $[0, 2\pi]$ $\mathrm{x}\mathrm{R}^{N}\mathrm{x}\mathrm{R}^{N}\mathrm{x}\mathrm{R}^{N}\mathrm{x}\mathrm{R}^{N}$ . Let $\epsilon_{1}$ , $\epsilon_{2}$ and $k_{1}$ , $k_{2}$ be fixed at 2.0, 10.0 and 0.5, 0.3,
respectively. We suppose $B_{1}=B_{2}$ .
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We first show case of weak external force $B_{1}=B_{2}=1.5$ . Let us set four initial val-
ues $(t_{0},x(t_{0}),x_{\ell}(t_{0}),y(t_{0}),y_{(}t_{0}))$ at (0, 0, 0, 0, 0), $(0, 0,$ $-1, 0,$ $-1)$ , $(0,$ $-2,$ $-5,$ $-1,$ $-10)$ and
$(0,$ -2, $5,$ -2.5, -10$)$ .

Fig.3.13 and Fig.3.14 are time series plotting $(t,x(t),x_{t}(t))$ and $(t,y(t),y_{t}(t))$ , respec-
tively. In both Fig.3.13 and Fig.3.14, we can observe a $2\pi$-periodic repellor in the region
of $t<0$ and a $6\pi$-periodic subharmonic solution in the region of $t>0$ . Then $x(t)$ of this
subharmonic solution in Fig.3.13 appears like $2\pi$-periodic. But watching $y(t)$ in Fig.3.14,
we have its period is $6\pi$ .

Furthermore, we expect that, even if amodel was multidimensionalize, the amplitude of
each variable depend on $\mathcal{E}$:of each dimension. In this case, the amplitude of $x(t)$ and $y(t)$

depend on $\epsilon_{1}$ and $\epsilon_{2}$ , respectively. However, if we suppose that coupling coefficients 4is
larger, then we may have amore complicated situation of the orbits.

$\mathrm{x}$

Fig. 3.13: $(t,x(t),x_{l}(t))$ in case of $B_{1}=B_{2}=1.5$

$\mathrm{y}$

Fig. 3.14: $(t,y(t),y_{t}(t))$ in case of $B_{1}=B_{2}=1.5$

Fig.3.15, Fig.3.16 and Fig.3.17 Fig.3.18 give the period of repellor and subharmonic solution,
respectively. We can check that each period is $2\pi$ and $6\pi$ .

We next show case of strong external force $B_{1}=B_{2}=15$ . Let us set four initial values
$(t_{0},x(t_{0}),x_{t}(t_{0}),y(t_{0})$, $y_{t}(t_{0}))$ at (0, 0, 0, 0, 0), $(0,$ $-2,$ $-5,$ $-1,$ $-10)$ , $(0,$ -2, $5,$ -2.5, -10$)$ and
$(0, 3,$ $-1, 3, 1)$ .

In Fig.3.19 and Fig.3.20, we can observe a $2\pi$-periodic attractor in the region of $t>0$
like $B=15$ of case in the last section.In the region of $t<0$ , the orbits diverge instantly to
infinity for all four initial values.Fig.3.21 and Fig.3.22 give the period of attractor is $2\pi$ .

In the end, by the results of some simulations, we can expect that forced Van der Pol
system has an attractor in case that the external force is strong or arepellor in case that the
external force is weak. But it is not easy to investigate completely setting of parameters for
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$\mathrm{t}$
$\mathrm{t}$

Fig. 3.15: Repellor $(t\mathrm{m}\mathrm{o}\mathrm{d} 2\pi,x(t))$ Fig. 3.16: Repellor $(t\mathrm{m}\mathrm{o}\mathrm{d} 2\pi, y(t))$

$\mathrm{x}$
$\mathrm{y}$

t $\mathrm{t}$

Fig. 3.17: Subharmonic(t $\mathrm{m}\mathrm{o}\mathrm{d} 6\pi,x(t)$ Fig. 3.18: Subharmonic(t $\mathrm{m}\mathrm{o}\mathrm{d} 6\pi,y(t)$ )

$\mathrm{x}$

Fig. 3.19: $(x(t),x_{t}(t))$ in case of $B_{1}=B_{2}=15$

$\mathrm{y}$

Fig. 3.20: $(y(t),y_{\mathrm{C}}(t))$ in case of $B_{1}=B_{2}=15$
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$\mathrm{y}$

$\mathrm{t}$

$\mathrm{t}$

Fig. 3.21: Attractor $(t\mathrm{m}\mathrm{o}\mathrm{d} 2\pi,x(t))$ Fig. 3.22: Attractor $(t\mathrm{m}\mathrm{o}\mathrm{d} 2\mathrm{n}\mathrm{t}\mathrm{y}\{\mathrm{t}))$

all cases that asubharmonic solution exists (e.g. regarding the results for one dimensional
system, see J. E. Flaherty and F. C. Hoppensteadt [2] $)$ .

4REPELLOR
In this section , we prove that the periodic solution found near the origin by simulations in
section 3is repellor.

Proposition 4.1 Let $\rho$ be a small constant, $u\in L^{2}(R;R^{N})$ be a $T$-periodic solution of (V)
utsth $||u||\leq\rho$ and $A$ is a Hermite conjugate matrix. Then $u$ is a repellor.

Proof. Using condition (F2), we have that, there exists $\rho:>0$ for $:\in[1,N]$ such that
$f\dot{.}(u:)<0$ for $|u:|<\rho:$ ,

then put $\rho=\mathrm{n}\cdot \mathrm{n}:\epsilon[1,N1$ $\rho:$ . Putting

$f(u)=(\begin{array}{llll}f_{1}(u_{1}) 0 00 f_{2}(u_{2}) 0\vdots \vdots \ddots \vdots 0 0 f_{N}(u_{N})\end{array})$ ,

we can rewrite (V) to

(4.1) $u_{tt}+f(u)u_{t}+Au=e(t)$ .
Let $u\in L^{2}(R_{j}R^{N})$ be a $T$ periodic solution of (4.1) with $||u||\leq\rho$. Further let $h$ be a
constant and $u+h\phi$ be asolution (4.1). Then we have
(4.2) $(u+h\phi)_{tt}+f(u+h\phi)(u+h\phi)_{t}+A(u+h\phi)$ $=e(t)$ .
By (4.1) and (4.2), we have

$\phi_{tt}+\frac{f(u+h\phi)-f(u)}{h\phi}u_{t}\phi+f(u+h\phi)\phi_{t}+A\phi=0$ .

By letting $h$ g0 to 0for the equation above, we get the linearized equation

(4.3) $\phi_{tt}+f(u)\phi_{t}+(f’(u)u_{t}+A)\phi=0$,

where $f’(u)$ is Hessian of $f(u)$ . Here we rewrite the equation above as asystem of first order
ordinary equations of the form

(4.4) $(\begin{array}{l}\phi_{l}\chi_{t}\end{array})=(\begin{array}{ll}0 1-f’(u)u_{\mathrm{C}}-A -f(u)\end{array})(\begin{array}{l}\phi\chi\end{array})$
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We consider the initial value problem of autonomous system (4.4) with $(\phi(0), \chi(0))=$

$(00, \chi_{0})\in \mathrm{R}^{N}\mathrm{x}\mathrm{R}^{N}$ . We put $\Phi(t)=(\phi(t), \chi(t))$ for $t\geq 0$ . Then by Floquet’s theorem
(e.g., see [9, \S 1.4] by F. C. Hoppensteadt), we have that the fundamental solution $\Phi(t)$ of
(4.4) can be written in the form

$\Phi(t)=Q(t)\exp(\Lambda t)$ ,

where $Q(t)=\{q_{j}\}$ is amatrix such that each element $\mathrm{q}\mathrm{i}\mathrm{j}\{\mathrm{t}$ ) is a $T$-periodic function, and A
is aJordan matrix. To prove that $u$ is arepellor, it is sufficient to see that each eigenvalue
$\lambda_{:}$ of Ais positive. Let $\varphi$ is asolution of (4.3). Then we have

$\varphi_{tt}+f(u)\varphi_{t}+(f’(u)u_{t}+A)\varphi=0$.

Integrating the equation above over $[0, t]$ , we have

$\varphi_{t}(t)+(f(u)\varphi)(t)+A\int_{0}^{t}\varphi(s)ds=\varphi_{t}(0)+(f(u)\varphi)(0)$

Here we put $\sigma=\varphi_{t}(0)+(f(u)\varphi)(0)$ . We also put $\phi(t)=\int_{0}^{t}\varphi(s)ds$ . Then we have

$\psi_{tt}+f(u)\psi_{t}+A\psi=\sigma$ for t $\geq 0$ .

Then multiplying the equality above by $\psi_{t}$ and integrating over $[0, t]$ , we get

(4.5) $| \psi_{t}(t)|^{2}+(\langle A\psi(t),\psi(t)\rangle\rangle\geq|\psi_{t}(0)|^{2}+(\langle A\psi(0),\psi(0))\rangle+\frac{1}{2}\int_{0}^{t}|\psi_{t}(s)|^{2}ds+\langle\langle\sigma,\psi(t)-\psi(0)\rangle)$

.

where we put ($\langle x, y\rangle\rangle=\sum_{=1}^{N}.\cdot x:y$:for $x$ , $y\in \mathrm{R}^{N}$ . Suppose that there exists anegative
eigenvalue $\lambda_{:}$ of A. Then by choosing the initial value $(\varphi(0), \varphi_{t}(0))$ appropriately, we have
that for some $D>0$ ,

$|\psi_{t}|\leq De^{\lambda:t},|\psi|\leq De^{\lambda:t}$ for all t $\geq 0$ .

This implies that $\lim_{tarrow\infty}|\psi_{t}(t)|^{2}+\langle\langle A\psi(t),\psi(t)\rangle\rangle=0$ and $\lim_{tarrow\infty}\langle\langle\sigma,\psi(t)-\psi(0))\rangle=0$ .
This contradicts to (4.5). This completes the proof. $\square$
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