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A Market Game with Infinitely Many Players

Hidetoshi Komiya (/NE 3#)
Faculty of Business and Commerce

~ Keio University (B KZFERFEER)

1 Introduction

A market game that derive from an exchange economy in which the finite
number of traders have continuous concave ‘monetary utility functions was
studied fully in [4] and a market game with infinitely many traders described
with a non-atomic measure space was extensively investigated in [1]. The
non-atomic measure space played a crucial role to remove the concavity of
utility functions from the assumption in [4]. In this paper, we shall study
a market game with infinite traders described with a general measure space
preserving the concavity assumption for utilities. It will be shown that such
a market game has properties parallel to those of an exact game studied in
[3] and each member of the core of a market game has an outcome density
with respect to the measure.

Let (2, #) be a measurable space. A game v is a nonnegative real valued
function, defined on the o-field &, which maps the empty set to zero. An
outcome of a game v is a finitely additive real valued function o on & scuh
that a(2) = v(2). For an outcome a of v, an integrable function f satisfying
Jsfdp = a(S) for all S € & is said to be an outcome density of a with
respect to . An outcome indicates outcomes to each coalitions while an
outcome density designates outcomes to every players. The core of v is the
set of outcomes a satisfying a(S) > v(S) for all S € £.

To every game v we associate an extended real number |v| defined by

!’Ul = sup {Z )\i‘U(Si) : Z ’\iXSi S XQ} ’ (1)
i=1

i=1

where n = 1,2,..., S§; € &, A; is a real number. The notation x4 denotes
the characteristic function of a subset A of Q. For a game v with |v] < oo,



we define two games ¥ and ¥ by

7(S) = sup {Z Aiv(Si) - Z)\iXsi < Xs} , Se€F, (2)

=1 =1

#(S) = min {a(S) : a is additive, a > v, a(2) = |[v]}, S € ZF, (3)

following [3]. A game v is said to be balanced if v(Q) = |v|, totally balanced
if v =7 and ezact if v = D, respectively. It is proved in (3] that the core of
a game is nonempty if and only if it is balanced, every exact game is totally
balanced, and every totally balanced game is balanced.

A game v is said to be monotone if S C T implies v(S) < v(T).
A game v is said to be inner continuous at S € & if it follows that
lim, 00 ¥(Sn) = v(S) for any nondecreasing sequence {S,} of measurable
sets such that | J;>; Sp, = S. Similarly, a game v is said to be outer continu-
ous at S € & if it follows that lim,_.. v(S,) = v(S) for any nonincreasing
sequence {S,} of measurable sets such that (),—; S, = S. A game v is
continuous at S € & if it is both inner and outer continuous at S.

2 Market Games

Let (9, #,u) be a finite measure space throughout this paper. We denote
utilities of players by a Carathéodory type function u defined on 2 x Rﬂ,
to R, where R} denotes the nonnegative orthant of the l-dimensional Eu-
clidean space R, and R, is the set of nonnegative real numbers. The non-
negative number u(w, z) designates the density of the utility of a player w
getting goods z. We always use the ordinary coordinatewise order when
having concern with an order in R‘+. We suppose that the function u :
Q x R’_,_ — R, satisfies the conditions:

1. The function w = u(w, z) is measurable for all € R%;

2. The function z — u(w, z) is continuous, concave, nondecreasing, and
u(w, 0) = 0, for almost all w in Q;

3. 0 = sup{u(w,z) : (w,z) € Q x By} < oo, where B, = {z € R, :
lz|l < 1}, and ||z|| denotes the Euclidean norm of z € RY,..

For any measurable set S € &, the set of integrable functions on S to
RY is denoted by Li(S,RY). We take an element e of L1(S, R}) as the
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density of initial endowments for the players. For any S € &, define

v(S) = sup {/Su(w,:v(w)) du(w) : z € L1(S, RY), /S:vd,u = /Sed,u} .
(4)

The set function v defined above is called a market game derived from the
market (Q, &, pu,u,e).

We shall confirm that the market game v is actually a game in the
rest of this section. It is well known that the function w — u(w,z(w)) is
measurable for any z € L;(S, R}). Moreover we need to show that the
mapping w +— u(w,z(w)) is integrable in order to define v(S) as a real
number. ‘

Lemma 1 If z € Ly(S, RY), then u(-,z(:)) € L1(S, R4) for any S € & and
the map z — u(-, z(-)) is continuous with respect to the norm topologies of
Li(S,RY) and Li(S, R4).

Proof Let z € Ly(S, RY). Since u(w,-) is concave, for any z € Rl with
lz|| > 1, we have the inequality

ww, z) —uw, z/||zl]) _ wlw,z/||z]]) — u(w,0)
e —=z/llzlll  ~ ll/ 1l ’
and hence we have u(w,z) < ||z|lo. It is obvious from the definition of o

that u(w, r) < o for all z with ||z]| < 1. Thus we have u(w,z) < o(1+ ||z]|)
for any z € Rl+ and this leads to the inequalities

()

[uz@dus [[ot+le@Mdu=o (uS)+ [ lz@)ldn) <o
)

Thus it follows that u(-,z(-)) € L1(S, R+). The second part of the assertion
is verified in Theorem 2.1 of [2]. Although Theorem 2.1 of [2] is proved under
the hypotheses that  is a measurable set in R' and the second argument z
of the function u runs over R, the proof of Theorem 2.1 of [2] is valid even
in our setting. Thus the map z ~ u(:, z(-)) is norm continuous. Q.E.D.

Remark 1 The assumption of the finiteness of o is necessary to prove
Lemma 1. The following example violates the assumption and shows that u
does not necessarily convey an integrable function to an integrable function.

259



Example 1 Let | = 1 and Q = (0,1). Define u : (0,1) x Ry — Ry by
uw(w,z) = yZT/w. Then, for the function z(w) = 1 for all w € (0,1), it
follows u(w, z(w)) = 1/w, and obviously it is not integrable.

Lemma 2 A market game v is actually a game and is monotone.

Proof It is obvious v(P) = 0. The finiteness of v(S) follows since the
inequalities

/ w(w, 2(w)) dp(w) < 0 / (1 + llzll) dp
S S

l l
50(p(3)+2£m'du) =a(,u(5)+iz=;/se'd,u) (7)

t=1%"

fsxdu=[sedu, ‘ (8)

where z* and €' are the i-th coordinate functions of z and e, respectively.
Moreover v is monotone because the function z — u(w, ) is nondecreasing
for almost all w € Q. Q.E.D.

hold if

Remark 2 The supremum in the definition of a market game cannot be
replaced by maximum in general as the following example shows.

Example 2 [[1], pp. 204] Let I = 1, Q = [0,1] and p be the Lebesgue
measure. Define u : [0,1] x R+ — Ry by u(w,z) = wz and let e(w) =1
for all w € Q. Then v([0,1]) = 1 but, for any z € Ly([0,1], R4) with
fol zdu=1, fol wz(w) du(w) never reaches 1.

3 Cores of Market Games

We shall investigate properties of the cores of the market games in this
section. We start with a lemma on concave functions.

Lemma 3 If f : R — Ris concave and f(0) = 0, then for any z1,...,Zn €
RY and )j,...,An >0 with 31, A < 1, it follows that

> hif (@) < FO_ Aim). (9)
i=1 i=1
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Proof We can assume that A = 37, A\; > 0 without loss of generality. It
follows that

é&f(sm - Aé @) (10)
< Af(i Ta) )

= (1= A)f(0)+ A (% Z Xiz;) (12)

< f(; M) - (13)

Q.E.D.
Let S’ and S be measurable sets with S’ ¢ S. For any z € Li(S’, R}),
define an extension T € Ly (S, R,) of z to S by

—\_ Jr(w), ifweds] |
2w) = {o, ifweS\S. (14)

Proposition 1 A market game v is totally balanced.

Proof Take any S € £ and S; € & and \; > 0, ¢ = 1,...,n with
Yo Aixs; < xs. We can assume that p(S) > 0 without loss of generahty
Let € be an arbltrary positive number. Take z; € L1(S;, R) such that

/Si Tidp = /S,- edu and v(S;) — E < /S.- u(w, z;(w)) du(w), (15)

and define y € L, (S, Rf,_) by

n
y= Z AiZi. (16)
i=1
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Then we have the following:

/Sydu=zn:z\i/fidu | (17)

i=1 Y5
n

=> X\ / edy (18)
i=1 Y5

= / e Aixs; dp (19)
S =1

< / edy. (20)
S

Define v’ € L;(S, R,) by

y’=y+ﬁ(/sedu—/sydu)- (21)

Then it is easily seen that [gy'dp = [gedp.

On the other hand, let A be the family of all nonempty subsets A of
{1,...,n} such that Tq = ;c4 Si NNjcac(S\ Sj) # 0. Then it is easily
seen that S; = UgsiT4 fori =1,...,n and {Ta : A € A} is a partition of
Uiy Siand 3 ;.4 X < 1 for all A € A. For any i and A with i € A € A,
define z#* = x;|7,, the restriction of z; to T4. Then we have

T; = Z_:I_:;A and y= Z Z /\i:_ff. (22)

Aegi AcAieA



Thus we have

Z,\,v(s —e< Z/\ / w(w, z4(w)) da(w) (23)

—ZZA/ u(w, 38(w) duw) 24)
i=1 A3i

=S 3A | @) dute) (25)
AcAicA Ta

= Aiv(w, z(w)) du(w) (26)
T hE e

< Z/ w,Z)\im{*(w))du(w) by Lemma 3 (27)
A€A i€EA

/u(w Z Z ME8 (w)) dp(w) by u(w, 0) (28)

, AcAicA ,
= [ o y(w)) duse) (@)
< / u(w,y’(w)) du(w) by monotonicity of u(w,-) (30)
S )
< v(S). (8

Therefore, we have
n ,
S Aw(S5) < u(S). (32)
i=1 -

Thus 7(S) < v(S) and the reverse inequality is obvious. Hence we have
7v=v. QE.D.
A market game has a continuity property by nature.

Proposition 2 A market game v is inner continuous at any S in F.

Proof Let {S,} be a sequence of measurable sets with |52, S, = S and €
an arbitrary positive number. Then, there is z € L1(S, R ‘) such that

U(S)—e<Lu(w,x(w))du(w) and /S:cdu=/sedu. (33)
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Let z, be the restriction z|s, and define a sequence {y,} of functions in
Ll(Sm R{{—) by

fdy . : i : |
Ji = Tff:%m; if Js, 7 d“ > Js €'d " (39)
T (et 1), it

fori=1,...,1. It is obvious that

/ Yndp = / edpy. (35)

Sn Sn

/ é du—/ T dul =0, (36)
Sn Sn

Jm g alldu= tim [ o —slldu+ Jim [ feldu=0, (30
Sn S\Sn

On the other hand, since

Jim [ i - bl dp = Jim

fori=1,...,l, we have

n—oo0

and hence ,, converges to z with respect to the norm topology of L;(S, R’ Y-
Therefore, by Lemma 1, it follows that

dim [ o, ) ) = lim, [ e, 3 dis) = [ o, 50)) )

(38)

and hence, for sufficiently large n,

o(S) — € < /S U(w, Yn(w)) da(w) < V(S). (39)

Thus we have lim, .o v(Sn) = v(S). Q.E.D.

Remark 3 Every exact game which is continuous at 2, equivalently inner
continuous at 2, is continuous at every S € & according to [3]. A market
game, however, is not necessarily continuous at each S € &#. Consider again
the market game in Example 2. The game is not outer continuous at each

S € & with 0 < u(S) < p(R2) according to [1).

Now we have reached our main theorem combining Proposition 1 and
Proposition 2.
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Theorem 1 A market game v has a nonempty core, and every element «

of the core is countably additive and has a unique outcome density f €
L,(Q, R,), and hence it follows that

a(S) = /S fdu, SegZ. (40)

Proof The core is nonempty by Proposition 1. Each element o of the core
is continuous at 2 by Proposition 2, and hence a is countably additive. To
prove existence of an outcome density for a, it is sufficient to show that «
is absolutely continuous with respect to p by virtue of the Radon-Nikodym
theorem. If u(S) = 0, then v(S€) = v(2) by the definition of the game v,
and hence we have a(S¢) > v(S°¢) = v(Q) = a(Q), that is, a(S) = 0. Q.E.D.

Remark 4 Similar to the assertion of Theorem 1, an exact game which
is continuous at 2 has a nonempty core and every member of the core is
countably additive. Moreover, there is a measure A on & such that every
member of the core is absolutely continuous with respect to A according to
[3]. The following example shows that there is a market game which is not
exact, and hence Theorem 1 is independent of the results of [3].

Example 3 [[1], pp. 192] Let | = 1, Q = [0,1] and p be the Lebesgue
measure. Define u: [0,1] x R+ — R4 by

w, r)=Vz+w—+vw and e(w)= -31—2 for all w € [0, 1]. (41)

According to [1], the core of the market game has only one member a and
the outcome density f of a is given by

1)+, ifwel0,d);
f(w):{(ﬁ vt ifwié,ﬂ. (42)

Thus it follows o([4, 1]) = g;, and hence 9([3,1]) = g7 . On the other hand,

we have v
1 1 1
\/7x+w—\/5S\/a:+§—\/t.<_\/;x (43)

for 1/2<w<1and z > 0. Thus, if z € L1([0, 1], R4) satisfies

1 1 1
/lxdu=/ledu=6—4, (44)

2 2
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1 1
/| e, 2(w)) due) < ) \/gx dp= o < o (45)

Therefore we have v([3,1]) < #([$,1]) and v is not exact.

4 Concluding Remark

We have shown that every member of the core of a market game is countably
additive and hence has an outcome density, and an exact game which is
continuous at Q has these properties as written in Remark 4. If we proved
that every totally balanced game that is continuous at Q is a game derived
from a market in our sense, then we could deduce from Theorem 1 that
every totally balanced game that is continuous at §2 has a nonempty core
whose members are all countably additive and have outcome densities. This
problem is the infinite version of the problem solved in [4], but it is still
open.
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