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1Introfunction
Amarket game that derive ffom an exchange economy in which the finite
number of traders have continuous concave monetary utility functions was
studied fully in [4] and amarket game with infinitely many traders described
with anon-atomic measure space was extensively investigated in [1]. The
non-atomic measure space played acrucial role to remove the concavity of
utility functions from the assumption in [4]. In this paper, we shall study
amarket game with infinite traders described with ageneral measure space
preserving the concavity assumption for utilities. It will be shown that such
amarket game has properties parallel to those of an exact game studied in
[3] and each member of the core of amarket game has an outcome density
with respect to the measure.

Let $(\Omega, \ovalbox{\tt\small REJECT})$ be ameasurable space. Agame $v$ is anonnegative real valued
function, defined on the $\mathrm{c}\mathrm{r}$-field $*\varphi$ , which maps the empty set to zero. An
outcome of agame $v$ is afinitely additive real valued function $\alpha$ on $\ovalbox{\tt\small REJECT}$ scuh
that $\alpha(\Omega)=v(\Omega)$ . For an outcome $\alpha$ of $v$ , an integrable function $f$ satisfying
$\int_{S}fd\mu=\alpha(S)$ for all $S\in*\varphi$ is said to be an outcome density of $\alpha$ with
respect to $\mu$ . An outcome indicates outcomes to each coalitions while an
outcome density designates outcomes to every players. The core of $v$ is the
set of outcomes asatisfying $\alpha(S)\geq v(S)$ for all $S\in\ovalbox{\tt\small REJECT}$ .

To every game $v$ we associate an extended real number $|v|$ defined by

$|v|= \sup\{\sum_{i=1}^{n}\lambda_{i}v(S_{i})$ : $\sum_{i=1}^{n}\lambda_{i}\chi s_{:}\leq\chi_{\Omega}\}$ , (1)

where $n=1$ , 2, $\ldots$ , $S_{i}\in*\varphi$ , $\lambda_{i}$ is areal number. The notation $\chi_{A}$ denotes
the characteristic function of asubset $A$ of $\Omega$ . For agame $v$ with $|v|<\infty$ ,
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we define two games $\overline{v}$ and $\hat{v}$ by

$\overline{v}(S)=\sup\{\sum_{i=1}^{n}\lambda:v(S_{i})$ : $\sum_{\dot{l}=1}^{n}\lambda_{i}\chi_{S}\dot{.}\leq\chi s\}$ , S $\in P$ , (2)

$\mathrm{v}(\mathrm{S})=\min$ { $\mathrm{v}(\mathrm{S})$ : $\alpha$ is additive, $\alpha\geq v$ , $\alpha(\Omega)=|v|$ }, S $\in\ovalbox{\tt\small REJECT}$ , (3)

following [3]. Agame $v$ is said to be balanced if $v(\Omega)=|v|$ , totally balanced
if $v=\overline{v}$ and exact if $v=\hat{v}$ , respectively. It is proved in [3] that the core of
agame is nonempty if and only if it is balanced, every exact game is totally
balanced, and every totally balanced game is balanced.

Agame $v$ is said to be monotone if $S\subset T$ implies $v(S)\leq v(T)$ .
Agame $v$ is said to be inner continuous at $S\in*$?if it follows that
$\lim_{narrow\infty}v(S)=v(S)$ for any nondecreasing sequence $\{S_{n}\}$ of measurable
sets such that $\bigcup_{n=1}^{\infty}S_{n}=S$. Similarly, agame $v$ is said to be outer continu-
ous at $S$ $\in\ovalbox{\tt\small REJECT}$ if it follows that $\lim_{narrow\infty}v(S_{n})=v(S)$ for any nondecreasing $\mathrm{g}$

sequence $\{S_{n}\}$ of measurable sets such that $\bigcap_{n=1}^{\infty}S_{n}=S$ . Agame $v$ is
continuous at $S\in\ovalbox{\tt\small REJECT}$ if it is both inner and outer continuous at $S$ .

2Market Games

Let $(\Omega, P, \mu)$ be afinite measure space throughout this paper. We denote
utilities of players by aCaratheodory type function $u$ defined on $\Omega \mathrm{x}R_{+}^{l}$

to $R_{+}$ , where $R_{+}^{l}$ denotes the nonnegative orthant of the $l$-dimensional Eu-
clidean space $R^{l}$ , and $R_{+}$ is the set of nonnegative real numbers. The non-
negative number $u(\omega, x)$ designates the density of the utility of aplayer $\omega$

getting goods $x$ . We always use the ordinary coordinatewise order when
having concern with an order in $R_{+}^{l}$ . We suppose that the function $u$ :
$\Omega\cross R_{+}^{l}arrow R_{+}$ satisfies the conditions:

1. The function $\omega$ $\mapsto u(\omega,$x) is measurable for all x $\in R_{+}^{l}$ ;

2. The function x $\mapsto \mathrm{v}(\mathrm{S})$ x) is continuous, concave, nondecreasing, and
$u(\omega, 0)=0$ , for almost all $\omega$ in $\Omega$ ;

3. $\sigma\equiv\sup\{u(\omega,$x) :$(\omega, x)\in\Omega \mathrm{x}B_{+}\}<\infty$ , where $B_{+}=$ {x $\in R_{+}^{l}$ :
$||x||\leq 1\}$ , and $||x||$ denotes the Euclidean norm of x $\in R_{+}^{l}$ .

For any measurable set S $\in*r$ , the set of integrable furictions on S to
$R_{+}^{l}$ is denoted by $L_{1}(S, R_{+}^{l})$ . We take an element e of $L_{1}(S, R_{+}^{l})$ as the
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density of initial endowments for the players. For any $S\in\ovalbox{\tt\small REJECT}$ , defifine

$v(S) \equiv\sup\{\int_{S}u(\omega, x(\omega))d\mu,(w)s$ $x\in L_{1}(S, R_{+}^{l})$ ,
$\int_{S}xd\mu=\int_{S}ed\mu\}.(4)$

The set function $v$ defifined above is called a market game derived from the
market $(\Omega, \ovalbox{\tt\small REJECT}, \mu, u, e)$ .

We shall confirm that the market game $v$ is actually a game in the
rest of this section. It is well known that the function $\omega\mapsto u(\omega, x(\omega))$ is
measurable for any $x\in L_{1}(S, R_{+}^{l})$ . Moreover we need to show that the
mapping $\omega\mapsto u(\omega, x(\omega))$ is integrable in order to defifine $v(S)$ as a real
number.

Lemma 1 If $x\in L_{1}(S, R_{+}^{l})$ , then $u(\cdot, x(\cdot))\in L_{1}(S, R+)$ for any $S\in*$? and
the map $x\mapsto u(\cdot, x(\cdot))$ is continuous with respect to the norm topologies of
$L_{1}(S, R_{+}^{l})$ and $L_{1}(S, R+)$ .

Proof Let $x\in L_{1}(S, R_{+}^{l})$ . Since $u(\omega$ , $\cdot$ $)$ is concave, for any $x\in R_{+}^{l}$ with
$||x||>1$ , we have the inequality

$\frac{u(\omega,x)-u(\omega,x/||x||)}{||x-x/||x||||}\leq\frac{u(\omega,x/||x||)-u(\omega,0)}{||x/||x||||}$ , (5)

and hence we have $u(\omega, x)\leq||x||\sigma$ . It is obvious ffom the definition of $\sigma$

that $u(\omega, x)\leq\sigma$ for all $x$ with $||x||\leq 1$ . Thus we have $u(\omega, x)\leq\sigma(1+||x||)$

for any $x\in R_{+}^{l}$ and this leads to the inequalities

$\int_{S}u(\omega, x(\omega))d\mu\leq\int_{S}\sigma(1+||x(\omega)||)d\mu=\sigma$ $( \mu(S)+\int_{S}||x(\omega)||d\mu)<\infty$ .
(6)

Thus it follows that $u(\cdot, x(\cdot))\in L_{1}(S, R_{+})$ . The second part of the assertion
is verifified in Theorem 2.1 of [2]. Although Theorem 2.1 of [2] is proved under
the hypotheses that $\Omega$ is ameasurable set in $R^{l}$ and the second argument $x$

of the function $u$ runs over $R$ , the proof of Theorem 2.1 of [2] is valid even
in our setting. Thus the map $x\mapsto u(\cdot, x(\cdot))$ is norm continuous. Q.E.D.

Remark 1The assumption of the finiteness of a is necessary to prove
Lemma 1. The following example violates the assumption and shows that $u$

does not necessarily convey an integrable function to an integrable function
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Example 1 Let l $=1$ and $\Omega=(0,$ 1). Defifine u : (0, 1) $\cross R_{+}arrow R+\mathrm{b}\mathrm{y}$

$\mathrm{u}(\mathrm{u}, x)=\sqrt{x}/\omega$ . Then, for the function $x(\omega)=1$ for all $\omega\in(0,$ 1), it
follows $u(\omega, \mathrm{x}(\mathrm{u})=1/\omega,$ and obviously it is not integrable.

Lemma 2 A market game $v$ is actually a game and is monotone.

Proof It is obvious $v(\emptyset)=0$ . The fifinitenaes of $v(S)$ follows since the
inequalities

$\int_{S}u(\omega, x(\omega))d\mu(\omega)\leq\sigma\int_{S}(1+||x||)d\mu$

$\leq\sigma(\mu(S)+\sum_{i=1}^{l}\int_{S}x^{i}d\mu)=\sigma(\mu(S)+\sum_{i=1}^{l}\int_{S}e^{i}d\mu)$ (7)

hold if

$\int_{S}xd\mu=\int_{S}ed\mu$ , (8)

where $x^{i}\mathrm{m}\mathrm{d}$ $e^{i}$ are the $i$-th coordinate functions of $x$ and $e$ , respectively.
Moreover $v$ is monotone because the function $x\mapsto u(\omega,x)$ is nondecreasing
for almost all $\omega\in\Omega$ . Q.E.D.

Remark 2 The supremum in the defifinition of a market game cannot be
replaced by maximum in general as the following example shows.

Example 2 $[[1], \mathrm{p}\mathrm{p}. 204]$ Let $l=1$ , $\Omega=[0,1]$ and $\mu$ be the Lebesgue
measure. Defifine $u$ : $[0, 1]\cross R+arrow R+\mathrm{b}\mathrm{y}u(\omega, x)=\omega x$ and let $e(\omega)=1$

for all $\omega\in\Omega$ . Then $v([0,1])=1$ but, for any $x\in L_{1}([0,1], R+)$ with
$\int_{0}^{1}xd\mu=1$ , $\int_{0}^{1}\omega x(\omega)d\mu(\omega)$ never reaches 1.

3Cores of Market Games

We shall investigate properties of the cores of the market games in this
section. We start with a lemma on concave functions.

Lemma 3 If $f$ : $R_{+}^{l}arrow R$ is concave and $f(0)=0$, then for any $x_{1}$ , $\ldots$ , $x_{n}\in$

$R_{+}^{l}$ and $\lambda_{1}$ , $\ldots$ , $\lambda_{n}\geq 0$ with $\sum_{\dot{l}=1}^{n}\lambda_{i}\leq 1$ , it follows that

$\sum_{i=1}^{n}\lambda_{i}f(x_{i})\leq f(\sum_{=1}^{n}\lambda_{i}x_{i})$ . (9)
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Proof We can assume that $\lambda=\sum_{i=1}^{n}\lambda_{i}>0$ without loss of generality. It
follows that

$\sum_{i=1}^{n}\lambda_{i}f(x_{i})=\lambda$ $\sum_{i=1}^{n}\frac{\lambda_{i}}{\lambda}f(x_{i})$ (10)

$\leq\lambda f(\sum_{i=1}^{n}\frac{\lambda_{i}}{\lambda}x_{i})$ (11)

$=(1- \lambda)f(0)+\lambda f(\frac{1}{\lambda}\sum_{i=1}^{n}\lambda_{i}x_{i})$ (12)

$\leq f(\sum_{i=1}^{n}\lambda_{i}x_{i})$ . (13)

Q.E.D.
Let $S’$ and $S$ be measurable sets with $S’\subset S$ . For any $x\in L_{1}(S’, R_{+}^{l})$ ,

defifine an extension $\overline{x}\in L_{1}(S, R_{+}^{1})$ of $x$ to $S$ by

$\overline{x}(\omega)=\{$

$x(\omega)$ , if $\omega$ $\in S’$ ;
0, if $\omega$ $\in S\backslash S’$ .

(14)

Proposition 1 A market game $v$ is totally balanced.

Proof Take any $s\in\ovalbox{\tt\small REJECT}$ and $S_{\mathrm{i}}\in\ovalbox{\tt\small REJECT}$ and $\lambda_{i}>0$ , $i=1$ , $\ldots$ , $n$ with
$\sum_{i=1}^{n}\lambda_{i}\chi s_{i}\leq\chi s$ . We can assume that $\mu(S)>0$ without loss of generality.

Let $\epsilon$ be an arbitrary positive number. Take $x_{i}\in L_{1}(S_{i}, R_{+}^{l})$ such that

$\int_{S}.\cdot x_{i}d\mu=\int_{S_{i}}ed\mu$ and $v(S_{i})- \frac{\epsilon}{n}<\int_{S}.\cdot u(\omega, x_{i}(\omega))d\mu(\omega)$ , (15)

and defifine y $\in L_{1}(S, R_{+}^{l})$ by

y $= \sum_{i=1}^{n}\lambda_{i}\overline{x}_{i}$ . (16)
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Then we have the following:

$\int_{S}yd\mu=\sum_{i=1}^{n}\lambda:\int_{S}\overline{x}_{\dot{l}}d\mu$ (17)

$= \sum_{=\dot{l}1}^{n}\lambda_{i}\int_{S}.\cdot ed\mu$ (18)

$= \int_{S}e.\cdot\sum_{=1}^{n}\lambda:\chi s\dot{.}d\mu$ (19)

$\leq\int_{S}ed\mu$ . (20)

Defifine $y’\in L_{1}(S, R_{+}^{l})$ by

$y’=y+ \frac{1}{\mu(S)}(\int_{S}ed\mu-\int_{S}yd\mu)$ . (21)

Then it is easily seen that $\int_{S}y’d\mu=\int_{S}ed\mu$ .
On the other hand, let $A$ be the family of all nonempty subsets $A$ of

$\{1, \ldots, n\}$ such that $T_{A} \equiv\bigcap_{:\in A}S_{\dot{l}}\cap\bigcap_{j\in A^{\mathrm{c}}}(S\backslash S_{j})\neq\emptyset$ . Then it is easily
seen that $S_{i}=\cup A\ni iTA$ for $i=1$ , $\ldots$ , $n$ and {TA : $A\in A$} is a partition of
$\bigcup_{\dot{|}=1}^{n}S_{i}$ , and $\sum_{i\in A}\lambda_{i}\leq 1$ for all $A\in A$ . For any $i$ and $A$ with $i\in A\in A$ ,
defifine $x_{i}^{A}=x:|\tau_{A}$ , the restriction $\mathrm{o}\mathrm{f}_{X:}$ to $T_{A}$ . Then we have

$\overline{x}_{\dot{l}}=\sum_{A\in i}\overline{x}_{\dot{l}}^{A}$
and y

$= \sum_{A\in A}\sum_{\dot{l}\in A}\lambda_{i}\overline{x}_{\dot{l}}^{A}$
. (22)
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Thus we have

$\sum_{i=1}^{n}\lambda_{i}v(S_{i})-\epsilon<\sum_{i=1}^{n}\lambda_{i}\int_{S}\dot{.}u(\omega, x_{i}(\omega))d\mu(\omega)$ (23)

$= \sum_{i=1}^{n}\sum_{A\ni i}\lambda_{i}\int_{T_{A}}u(\omega, x_{i}^{A}(\omega))d\mu(\omega)$ (24)

$= \sum_{A\in A}\sum_{i\in A}\lambda_{i}\int_{T_{A}}u(\omega, x_{i}^{A}(\omega))d\mu(\omega)$ (25)

$= \sum_{A\in A}\int_{T_{A}}\sum_{i\in A}\lambda_{i}u(\omega, x_{i}^{A}(\omega))d\mu(\omega)$ (26)

$\leq\sum_{A\in A}\int_{T_{A}}u(\omega,\sum_{i\in A}\lambda_{i}x_{i}^{A}(\omega))d\mu(\omega)$ by Lemma 3 (27)

$= \int_{S}u(\omega,\sum_{A\in A}\sum_{i\in A}\lambda_{i}\overline{x}_{i}^{A}(\omega))d\mu(\omega)$ by $u(\omega, 0)=0$ (28)

$= \int_{S}u(\omega, y(\omega))d\mu(\omega)$ (29)

$\leq\int_{S}u(\omega, y’(\omega))d\mu(\omega)$ by monotonicity of $u(\omega$ , $\cdot$ $)$ (30)

$\leq v(S)$ . (31)

Therefore, we have

$\sum_{i=1}^{n}\lambda_{i}v(S_{i})\leq v(S)$ . (32)

Thus $\overline{v}(S)\leq v(S)$ and the reverse inequality is obvious. Hence we have
$\overline{v}=v$ . Q.E.D.

Amarket game has acontinuity property by nature.

Proposition 2 A market game $v$ is inner continuous at any $S$ in $\ovalbox{\tt\small REJECT}$ .

Proof Let $\{S_{n}\}$ be asequence of measurable sets with $\bigcup_{n=1}^{\infty}S_{n}=S$ and $\epsilon$

an arbitrary positive number. Then, there is $x\in L_{1}(S, R_{+}^{l})$ such that

$v(S)- \epsilon<\int_{S}u(\omega, x(\omega))d\mu(\omega)$ and $\int_{S}xd\mu=\int_{S}ed\mu$. (33)
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Let $x_{n}$ be the restriction $x|s_{\mathfrak{n}}$ and defifine a sequence $\{y_{n}\}$ of functions in
$L_{1}(S_{n}, R_{+}^{l})$ by

$y_{n}^{i}=\{\frac{\int_{S_{\mathrm{J}1}}e}{xJs_{\mathfrak{n}}^{x_{\dot{\hslash}}},ni+}...\frac{d\mu d\mu^{X_{n}}1}{\mu(S_{n})}..,(\int_{S_{f*}}e^{i}d\mu-\int_{S_{n}}x_{n}^{i}d\mu)$
$\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}\int_{\int_{S_{\mathfrak{n}}}}s_{\mathfrak{n}}x_{n}^{\dot{1}}x_{n}^{i}$ $d \mu>\int_{\leq d\mu\int_{S_{\mathfrak{n}}}}s_{\mathfrak{n}}e^{i}d\mu e^{}d\mu’.$

,
(34)

for $i=1$ , $\ldots$ , $l$ . It is obvious that

$\int_{S_{\mathfrak{n}}}y_{n}d\mu=\int_{S_{\tau*}}ed\mu$. (35)

On the other hand, since

$\lim_{narrow\infty}\int_{S_{\mathfrak{n}}}|y_{n}^{\dot{l}}-x_{n}.\cdot|d\mu=\lim_{narrow\infty}|\int_{S_{\mathfrak{n}}}e^{:}d\mu-\int_{S_{\mathrm{B}}}x_{n}^{\dot{l}}d\mu|=0$ , (36)

for $i=1$ , $\ldots$ , $l$ , we have

$\lim_{narrow\infty}\int_{S}||\overline{y}_{n}-x||d\mu=\lim_{narrow\infty}\int_{S_{\mathfrak{n}}}||y_{n}-x||d\mu+\lim_{narrow\infty}\int_{S\backslash S_{\mathfrak{n}}}||x||d\mu=0$, (37)

$\mathrm{m}\mathrm{d}$
$\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}\overline{y}_{n}$ converges to $x$ with respect to the norm topoloy of $L_{1}(S, R^{l})+\cdot$

Therefore, by Lemma 1, it follows that

$\lim_{narrow\infty}\int_{S_{\mathfrak{n}}}u(\omega, y_{n}(\omega))d\mu(\omega)=\lim_{narrow\infty}\int_{S}u(\omega,\overline{y}_{n}(\omega))d\mu(\omega)=\int_{S}u(\omega, x(\omega))d\mu(\omega)$

(38)

and hence, for sufficiently large $n$ ,

$v(S)- \epsilon<\int_{S_{*}}.u(\omega, y_{n}(\omega))d\mu(\omega)\leq v(S_{n})$ . (39)

Thus we have $\lim_{narrow\infty}v(S_{n})=v(S)$ . Q.E.D.

Remark 3 Every exact game which is continuous at $\Omega$ , equivalently inner
continuous at $\Omega$ , is continuous at every $S\in\ovalbox{\tt\small REJECT}$ according to [3]. A market
game, however, is not necessarily continuous at each $S\in*\Psi$ . Consider again
the market game in Example 2. The game is not outer continuous at each
$S\in f\ovalbox{\tt\small REJECT}$ with $0<\mu(S)<\mu(\Omega)$ according to [1].

$\mathrm{N}\mathrm{o}\iota \mathrm{v}$ we have reached our main theorem combining Proposition 1 and
Proposition 2.
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Theorem 1 A market game v has anonempty core, and every element $\alpha$

of the core is countably additive and has a unique outcome density f $\in$

$L_{1}(\Omega, R+)$ , and hence it follows that

$\alpha(S)=\int_{S}fd\mu$ , $S\in\ovalbox{\tt\small REJECT}$ . (40)

Proof The core is nonempty by Proposition 1. Each element $\alpha$ of the core
is continuous at $\Omega$ by Proposition 2, and hence $\alpha$ is countably additive. To
prove existence of an outcome density for $\alpha$ , it is sufficient to show that $\alpha$

is absolutely continuous with respect to $\mu$ by virtue of the Radon-Nikodym
theorem. If $\mu(S)=0$ , then $v(S^{c})=v(\Omega)$ by the definition of the game $v$ ,
and hence we have $\alpha(S^{c})\geq v(S^{c})=v(\Omega)=\alpha(\Omega)$ , that is, $\alpha(S)=0$ . Q.E.D.

Remark 4 Similar to the assertion of Theorem 1, an exact game which
is continuous at $\Omega$ has anonempty core and every member of the core is
countably additive. Moreover, there is ameasure $\lambda \mathrm{o}\mathrm{n}*?$ such that every
member of the core is absolutely continuous with respect to $\lambda$ according to
[3]. The following example shows that there is a market game which is not
exact, and hence Theorem 1 is independent of the results of [3].

Example 3 $[[1], \mathrm{p}\mathrm{p}. 192]$ Let $l=1$ , $\Omega=[0,1]$ and $\mu$ be the Lebesgue
measure. Defifine $u$ : $[0, 1]\cross R+arrow R+\mathrm{b}\mathrm{y}$

$u(\omega, x)=\sqrt{x+\omega}-\sqrt{\omega}$ and $e( \omega)=\frac{1}{32}$ for all $\omega\in[0,1]$ . (41)

According to [1], the core of the market game has only one member $\alpha$ and
the outcome density $f$ of $\alpha$ is given by

$f(\omega)=\{$ $\frac{(\frac{1}{12}}{32},-\sqrt{\omega})^{2}+\frac{1}{32}$

, if
$\omega\in[0, \frac{1}{4}]$

;
if $\omega$ $\in[\frac{1}{4},1]$ .

(42)

Thus it follows $\alpha([\frac{1}{2},1])=\frac{1}{64}$ , and hence $\hat{v}([\frac{1}{2},1])=\frac{1}{64}$ . On the other hand,
we have

$\sqrt{x+\omega}-\sqrt{\omega}\leq\sqrt{x+\frac{1}{2}}-\sqrt{\underline{\frac{1}{9}}}\leq\sqrt{\frac{1}{2}}x$ (43)

for $1/2\leq\omega\leq 1$ and $x\geq 0$ . Thus, if $x\in L_{1}([0,1], R_{+})$ satisfies

$\int_{\frac{1}{2}}^{1}xd\mu=\int_{\frac{1}{2}}^{1}ed\mu=\frac{1}{64}$ , (44)
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$\int_{\frac{1}{2}}^{1}u(\omega, x(\omega))d\mu(\omega)\leq\int_{\frac{1}{2}}^{1}\sqrt{\frac{1}{2}}xd\mu=\frac{1}{64\sqrt{2}}<\frac{1}{64}$ . (45)

Therefore we have $v([ \frac{1}{2},1])<\hat{v}([\frac{1}{2},1])$ and $v$ is not exact.

4 Concluding Remark

We have shown that every member of the core of a market game is countably
additive and hence has an outcome density, and an exact game which is
continuous at $\Omega$ has these properties as written in Remark 4. If we proved
that every totally balanced game that is continuous at $\Omega$ is a game derived
from a market in our sense, then we could deduce from Theorem 1 that
every totally balanced game that is continuous at $\Omega$ has a nonempty core
whose members are all countably additive and have outcome densities. $\mathrm{T}\acute{\mathrm{h}}\mathrm{i}\mathrm{s}$

problem is the infinite version of the problem solved in [4], but it is still
open.
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