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Abstract

In this paper, we consider large economies in which both consumption
and production sets may be non-convex. We show that each economy is
approximated by asequence of economies having equilibria. We prove
that the core equivalence is also adense property. Neither desirability
assumption nor $\mathrm{f}\mathrm{r}\mathrm{e}\Leftarrow$ isposal is needed for these results. If we allow per-
fectly indivisible commodities, some desirability conditions are needed for
our purposes.

1Introduction,

In this paper, we consider large economies in which both consumption and pro
duction sets may be non-convex. In particular, we do not impose any desirability
assumptions on preferences or free disposability on productions. Our purpose
is to show that each economy can be approximated in an appropriate topology
by asequence of economies having equilibria. Moreover, it will be shown that
the core equivalence is also adense property.

In our model, it is assumed that each consumer is also an individual producer
and there is no production sector independent of the consumption side.l It is
well-known that in coalition production economies, the production process can
be decomposed into individual consumers under some plausible assumptions.
Therefore, our model is comparable with the model of Hildenbrand (1974).
In Hildenbrand (1974), the individual production set correspondence is closed
and convex-valued with measurable graph and satisfies free disposability. In
this paper, we do not impose the convexity and free disposability of individual
production sets, while aslightly stronger measurability condition is required
on the production set correspondence. Hence, there is no logical relationship
between these two models.

In our model, however, we have alot of difficulties in establishing the exis-
tence of an equilibrium in contrast to Hildenbrand (1974). At first, without free
disposability, the multi-dimensional Fatou’s lemma is not applicable so that the
standard method would be useless. Second, production sets may be non-convex,
which may complicate the arguments. Third, the non-convexity of consumption
sets is another source of difficulty. Anon-convex consumption set may result a
discontinuous excess demand. An excess demand may be discontinuous if the

Similar models have been analyzed by many authors such as Rash$\mathrm{i}\mathrm{d}$ (1978), Greenberg,
Shitovitz and Wieczorek (1979), Suzuki (1995) and others
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budget line contains points having no local cheaper point. In particular, if an
isolation point of the consumption set is on the budget line, the demand may
have acritical jump.

Yamazaki (1978a) shows that the set of incomes at which the correspond-
ing budget line contains such critical points is at most countable. Then, if the
distribution of endowments is dispersed and the set of agents having apartic-
ulut income is negligible, one can obtain acontinuous mean demand function
in exchange economies. (See, also Mas Colell (1977a).) In economies with pr0-
duction, however, the dispersed endowment distribution is not sufficient for the
existence of equilibrium. The income of each agent comes from the sales of
outputs as $\mathrm{w}\mathrm{e}\mathrm{U}$ as endowments. Then, even if the endowment distribution is
dispersed, the income distribution may concentrate on aparticular value and
there may exist non-negligible agents having discontinuous demand, which may
result non-existence of equilibrium. This possibility is recently pointed out by
Suzuki (1995).

Despite these observations, we can show that the set of production economies
having equilibria is dense in the $\alpha$-topology used by Hildenbrand (1974) and
Mas Colell (1977b). In the first model, we consider economies in which en-
dowments are implicit in order to focus on profit distribution. We prove that
each production set is approximated by acompact set. An economy with com-
pact production sets is approximated by asimple economy. Finaly, we show
that each simple economy having compact production sets is approximated by
an economy having dispersed profit distribution. The equilibrium existence is
obtained in this case.

In our arguments in the first model, we allow perturbations of production
sets in all directions. This may exclude the existence of perfectly indivisible
commodities. In the second model, we would like to consider the non-convexity
resulting from indivisibilities. But, we need some additional desirability as-
sumptions on preferences which restricts the structure of the consumption set.
Because we do not impose free disposability, this would be the minimum cost
that we must pay to obtain positive results in large economies. We will show
that the existence of equilibrium is also adense property in this setting.

In the final section, it will also be shown that the core equivalence is dense
in afairly large class of non-convex $\mathrm{e}\infty \mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{o}\mathrm{e}$.

The paper is constructed as follows. The next section summarizes some
mathematics that we need in the subsequent sections. The third section presents
our first model. The forth section gives the second model. The final section
discusses the core equivalence.

2Mathematical Preliminaries.
In this section, we collect mathematical results which will be used in the subse
quent sections. We start from the following definition.

Definition 1. Afunction $f$ from ameasurable space $(A,d)$ into aset $X$ is
called simple if there exists afinite measurable partition $\{A_{k}\}_{k=1}^{K}$ of $A$ such
that $f$ is constant over $A_{k}$ for each $k$ $=1$ , $\cdots$ , $K$.

The first result is as follows.
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Proposition 2.1. Let $f$ be a Borel measurable function from a probability space
$(A, \mathscr{A}, \nu)$ into a separable metric space $(X, \rho)$ . Then, there exists a sequence of
simple functions $\{f_{n}\}$ converging to $fa.e$.

Proof Since $X$ is separable, the range $f(A)$ of $f$ is also separable. Then, $f(A)$

has acountable dense subset,

$D(f)=\{x_{1},x_{2}, \cdots,x_{k}, \cdots\}\subset f(A)$ .
For each positive integer $k$ , the function

$A\ni aarrow\rho(f(a),x_{k})\in \mathrm{R}_{+}$

is ameasurable real-valued function. Hence, for each positive integer $n$ and $k$ ,
the set

$B_{kn}= \{a\in A|\rho(f(a),x_{k})<\frac{1}{n}\}$

is measurable in $A$ . Because $\{x_{k}\}_{k=1}^{\infty}$ is dense in $f(A)$ , $A= \bigcup_{k=1}^{\infty}B_{k\mathrm{r}\iota}$ . For each
positive integer $n$ , we define acountable measurable partition $\{A_{kn}\}_{k=1}^{\infty}$ of $A$

by,

$A_{1n}=B_{1n}$ and

$A_{kn}=B_{kn} \backslash _{j}\bigcup_{=1}^{k-1}B_{jn}$ for aU k $\geqq 2$ .

For each positive integer n, let us define afunction $f_{n}’$ by $f_{n}’(a)=x_{k}$ for
a $\in A_{kn}$ . Then, for each a $\in A$ and for each n, we have,

$\rho(f(a), f_{n}’(a))=\rho(f(a),x_{k})<\frac{1}{n}$ ,

which implies $f_{n}’(a)arrow f(a)$ for each $a\in A$ . Now, we construct asequence of
simple functions $\{f_{n}\}$ converging to $f\mathrm{a}.\mathrm{e}$. using the sequence $\{f_{n}’\}$ that we have
obtained. At first, for each positive integer $n$, we can find apositive integer $K_{n}$

satisfying,

$\nu(\cup K_{n}A_{\mathrm{j}n})\geqq 1-\frac{1}{n}$ and
$\kappa_{n}\kappa_{n+1}\cup A_{jn}\subset\cup A_{jn\dagger 1}$ .

$\mathrm{j}=1$ $j=1$ $j=1$

Define $f_{n}$ by,

A(a) $=\{$

$f_{n}’(a)$ if $a\in K_{n}\cup A_{jn}$ ,
$j=1$

$x\kappa_{n}$
$\mathrm{o}\mathrm{t}$herwise.

Let $C_{n}=A \backslash \bigcup_{\mathrm{j}=1}^{K_{n}}A_{jn}$ and $C= \bigcap_{n=1}^{\infty}C_{n}$ . Since $\nu(C)<\nu(C_{n})<\frac{1}{n}$ for $\mathrm{a}1$ $n$ ,

$\nu(C)=0$ . Since for each $a\in A\backslash C$, there exists $\overline{n}$ such that $a$ EE $\cup^{K_{\hslash}}Aj=1j\overline{n}$ ,
$a \in\bigcup_{j=1}^{K_{n}}A_{jn}$ for all $n\geq\overline{n}$ . Therefore, by the definition of $f_{n}$ , for all $n\geq\overline{n}$ ,

$\rho(f(a), f_{n}(a))=\rho(f(a), f_{n}’(a))$,

which implies $\rho(f(a), f_{n}(a))arrow 0$ as $narrow\infty$ . Because each $f_{n}$ is simple, we may
conclude that $\{f_{n}\}$ is the desired sequence. $\square$
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Proposition 2.2. Let (A,d,$\nu)$ be an atomless probability space. Then, there
exists a Borel measurable function f:A $arrow[0,$1] such that $\nu\circ f^{-1}(\{s\})=0$ for
all s $\in[0,$ 1].

Proof. Because $(A,d,\nu)$ is atomless, for each positive integer n, there exists a
finite measurable partition $\{A_{kn}|k=1,2, \ldots,2^{n}\}$ of A such that,

$\nu(A_{kn})=\frac{1}{2^{n}}$ for aech k $=1,2$ ,\ldots ,2’’,

$A(2k-1)(n+1)\cup A(2k)(n+1)=Akn$ for each k $=1,$ 2, \ldots ,
$2^{n-1}$ .

For each positive integer n, let us define r : A $arrow[0,$ 1] by

$f^{\mathfrak{n}}(a)= \frac{k}{2^{n}}$ for a $\in A_{kn}$ .
$\mathrm{N}$ $a\in A_{kn}$ , then $f^{n+1}(a)= \frac{2k-1}{2^{n+1}}$ or $fl^{*+1}(a)= \frac{2k}{2^{n+\mathrm{T}}}$ because $a\in A_{(2k-1)(n+1)}\cup$

$A(2k)(n+1)$ . Hence for each $a\in A$ and for each $n$, $P(a)\geqq fl^{+1}(a)\geqq 0$.
Therefore, for each $a\in A$, $\mathrm{f}(\mathrm{a})=linarrow.\infty$ $f(a)$ is well-defined. Because it is a
limit of simple functions, the function $f$ is measurable.

Let $s\in[0, 1)$ be given. For each positive integer $n$, there exists $k_{n}\in$

$\{1,2, \ldots,2^{n}\}$ such that

$\frac{k_{n}}{2^{n}}\leqq s$ $< \frac{k_{n}+1}{2^{n}}$ .

If $f(a)=s$, then $\Psi^{k}$. $\leq f^{n}(a)\leqq\underline{k}\mathrm{a}\frac{+1}{n}$ for $\mathrm{a}1$ $n$ . hdoed, if $fi^{*}(a)<\#^{k}$ for some
$n$, then $s=f(a) \leqq f(a)<\frac{k}{2}n\mathrm{A}$ , which is acontradiction. On the other hand, if
$k_{n}+1=2^{n}$ , then it is obvious that $f^{n}(a) \leqq\frac{k_{n}\dagger 1}{2}.=1$ . Suppose that $k_{n}+1<2^{n}$
$\mathrm{m}\mathrm{d}$ $\frac{k_{n}+1}{2^{n}}<f^{n}(a)$ for some $n$ . Then, because $\frac{k_{\mathrm{n}}+2}{2^{n}}\leqq f^{n}(a)$ , $\underline{k}\mathfrak{F}^{\frac{+1}{n}}\leqq f(a)$ for
$\mathrm{a}\mathrm{L}$ $m\geqq n$ . Therefore, $\frac{h\dagger 1}{2^{n}}\leq f(a)=s$, which is also acontradiction. Hence, it
has been shown that

$\{a\in A|f(a)=s\}\subset\{a\in A|\frac{k_{n}}{2^{n}}\leqq f^{\mathfrak{n}}(a)\leqq\frac{k_{n}+1}{2^{n}}\}$

for all $n$ . Thus, for all $n$,

$\nu(\{a\in A|f(a)=s\})\leqq\frac{1}{2^{n-1}}$ ,

which implies $\nu(\{a\in A|f(a)=s\})=0$ .
Finally, let $f(a)=1$ . Then, for all positive integer $n$ , $\frac{2^{n}-1}{2^{n}}\leqq f^{n}(a)$ . 0th-

erwise, for some $n$, $f(a)<. \frac{2-1}{2^{n}}$ , which implies $1=f(a)< \frac{2^{n}-1}{2^{n}}<1$ , a
contradiction. Therefore, for all $n$ ,

$\nu(\{a\in A|f(a)=1\})\leqq\frac{1}{2^{n-1}}$ ,

which implies $\nu(\{a\in A|f(a)=1\})=0$ . This completes the proof. $\square$

Corollary 1. Let $(A,d,\mu)$ be an atomless measure space such that $\mu(A)>$
$0$ . Then, there exists a Borel measurable function $f$ : $Aarrow[0,1]$ such that
$\mu \mathrm{o}f^{-1}(\{s\})=0$ for each $s\in[0,1]$ .
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Proof. For each $B\in d$ , let $\nu(B)=\tau\mu\mu(\begin{array}{l}B\mathrm{z}\end{array})T$ . Then, $(A,d, \nu)$ is an atomless
probability space. Applying proposition 2.2 to this probability space, we obtain
ameasurable function $f$ : $Aarrow[0,1]$ such that $\nu \mathrm{o}f^{-1}(\{s\})=0$ for each
$\mathit{8}\in[0,1]$ . This is the desired one since for each $B\in d$ , $\mu(B)=0$ if and only if
$\nu(B)=0$ . Cl

3The First Model
In our model, there are $\ell$ commodities and hence the $\ell$-dimensional Euclidean
space $\mathrm{R}^{\ell}$ is the underlying commodity space. The non-negative orthant of $\mathrm{R}^{\ell}$ is
written as $\mathrm{R}_{+}^{\ell}$ . The set of all agents is denoted by an atomless probability space
(A , $\nu$). The consumption set of agent $a\in A$ is aclosed subset $X_{a}$ of $\mathrm{R}^{\ell}$ . The
preference of agent $a\in A$ is given by an irreflexive and transitive binary relation
$\succ_{a}$ on $X_{a}$ which is open in $X_{a}\mathrm{x}X_{a}$ . The set of all pairs of aconsumption set $X$

and apreference $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\succ \mathrm{o}\mathrm{n}X$ is denoted by $\mathscr{B}$ . Endowed with the topology
of closed convergence, 7is aseparable metric space.

Each agent $a\in A$ is also an individual producer, whose production set is
given by Ya. Each production set $\mathrm{Y}_{a}$ is aclosed subset of $\mathrm{R}^{\ell}$ . Let $\mathscr{T}(\mathrm{R}^{\ell})$ be the
set of all closed subsets of $\mathrm{R}^{\ell}$ . When no confusion arises, we denote $\mathscr{T}(\mathrm{R}^{\ell})$ by
$\mathscr{F}$. An economy is afunction,

9 : (A,A,$\nu)arrow \mathscr{B}$ x $\mathscr{T}$ ,

where 9$(a)=(X_{a}, \succ_{a},\mathrm{Y}_{a})$ for each $a\in A$ . We assume that the consumption
sector $A\ni aarrow(X_{a}, \succ_{a})\in$ ?is aBorel measurable function and the production
set correspondence $\mathrm{Y}_{a}$ satisfies the measurability in the following sense, that is,
for any closed subset $F$ of $\mathrm{R}^{\ell}$ , the set $\{a\in A|\mathrm{Y}_{a}\cap F\neq\emptyset\}$ is d-measurable.
We also assume that the correspondence $A\ni aarrow X_{a}\cap \mathrm{Y}_{a}$ admits abounded
selection $b$ , i.e., $b$ is abounded function on $A$ such that $b(a)\in X_{a}\cap \mathrm{Y}_{a}$ for each
$a\in A$ .

Now, we introduce the definitions of quasi-equilibrium and of market equi-
librium.

Definition 2. Aquasi-equilibrium is alist $(f,g,p)$ of integrable functions $f$ and
$g$ from $A$ into $\mathrm{R}^{\ell}$ and aprice vector $p\neq 0$ satisfying the following conditions.

(1) For almost every a $\in A$, p. $f(a)\leqq \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\cdot \mathrm{Y}_{a}$ and $x\succ_{a}f(a)$ implies that
p.x $\geqq \mathrm{s}\mathrm{u}\mathrm{p}p\cdot \mathrm{Y}_{a}$.

(2) For almost every a $\in A$ , $g(a)\in \mathrm{Y}_{a}$ and p. $g(a)=\mathrm{s}\mathrm{u}\mathrm{p}p$ . $\mathrm{Y}_{a}$ .

(3) $\int f=\int g$ .

Definition 3. Aquasi-equilibrium $(f,g,p)$ is amarket equilibrium if for almost
every $a\in A$ , $f(a)\mathrm{i}\mathrm{s}\succ_{a}$-maximal in the budget set $\{x\in X|p\cdot x\leqq \mathrm{s}\mathrm{u}\mathrm{p}p\cdot \mathrm{Y}_{a}\}$

at $p$.

At first, we show that the consumption set correspondence $X_{a}$ has ameasur-
able graph. Because the projection $(X, \succ)arrow X$ is continuous, the consumption
set correspondence $X_{a}$ is aBorel measurable function. Now, consider the set
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$S_{B}=$ {F $\in ff$| $F\cap B\neq\emptyset\}$ for an open set of $\mathrm{R}^{\ell}$ . Because ffB is open in the
topology of closed convergence and $X_{a}$ is Borel measurable,

$\{a\in A|X_{a}\in s_{B}\}=\{a\in A|X_{a}\cap B\neq\emptyset\}\in d$.

Since $X_{a}$ is closed, by proposition 4in page 61 of Hildenbrand (1974), $X_{a}$ has
ameasurable graph.

In order to discuss the relationship between aquasi-equilibrium and amarket
equilibrium, we need the following definition.

Definition 4. The profit distribution is dispersed if for any $p\neq 0$ and for any
$w\in \mathrm{R}$,

$\nu(\{a\in A|\mathrm{s}\mathrm{u}\mathrm{p}p\cdot \mathrm{Y}_{a}=w\})=0$.
By an analogous argument as in Yamazaki (1978b), we may obtain the fol-

lowing result.

Theorem 3.1. If the profit distribution is dispersed, then a quasi-equilibrium
is a market equilibrium.

The next existence theorem of aquasi-equilibrium will be afundamental
step towards our main result.

Theorem 3.2. If the $\ovalbox{\tt\small REJECT} ondmoes$ $X_{a}$ and $\mathrm{Y}_{a}$ are integrably bounded, then
there $\dot{\varpi s}b$ a quasi-equilibrium.

Proof. Because $X_{a}$ and $\mathrm{Y}_{a}$ are integrably bounded and closed-valued, they are
compact-valued. Hence, the integrals $\int X_{a}$ and $\int \mathrm{Y}_{a}$ are well-defined, compact
and convex. For each $a\in A$ and for each price vector $p$ in the unit disk $D=$
$\{p\in \mathrm{R}^{\ell}|||p||\leqq 1\}$ , where $||p||$ denotes the Euclidean norm of $p$, let

$s(p,a)=\{y\in \mathrm{Y}_{a}|p\cdot y=\mathrm{s}\mathrm{u}\mathrm{p}p\cdot \mathrm{Y}_{a}\}$ ,
$\hat{B}(p,a)=\{x\in X_{a}| p\cdot x\leqq \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\cdot \mathrm{Y}_{a}+(1-||\mathrm{p}||)\}$ ,
$d(p,a)=$ {$x\in\hat{B}(p,a)|x’\succ_{a}x$ implies $p\cdot$

$x’>\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\cdot$ $\mathrm{Y}_{a}+(1-||p||)$ }.

For each $a\in A$ , $s(p,a)$ is $\mathrm{w}\mathrm{e}\mathrm{U}$-defined and upper hemi-continuous in $p$. Because
$X_{a}\cap \mathrm{Y}_{a}\neq\emptyset$ for every $a\in A$, $d(p,a)$ is welkdefined and upper hemi-continuous in
$p$. The measurability of these correspondences also follows bm the standard ar-
guments. Because they are integrably bounded, $\int s(p,a)\neq\emptyset$ and $\int d(p,a)\neq\emptyset$ .
Therefore, the mean excess demand correspondence $\eta(p)=\int d(p,a)-\int s(p,a)$

is well-defined, compact and convex-valued and upper hemi-continuous in $p$. Let
us define acorrespondence $\varphi(p,x)$ from $D \mathrm{x}(\int X_{a}-\int \mathrm{Y}_{a})$ into itself as follows.
If $||x||\neq 0$, let $\varphi(p,x)=\{\frac{x}{[|x[|}\}\mathrm{x}\eta(p)$ and if $||x||=0$, let $\varphi(p,x)=D\mathrm{x}\mathrm{V}(\mathrm{P})$ .
It is easy to see that $\varphi(p,x)$ is compact and convex-valued and upper hemi-
continuous. By Kakutani’s theorem, there exits $(p,x) \in D\mathrm{x}(\int X_{a}-\int \mathrm{Y}_{a})$ such
that $(p^{*},x^{*})\in\varphi(p^{*},x.)$ . By the same arguments as in Bergstrom (1975), we
may prove that $||p.||=1$ and $x^{*}=0$. By construction, there exist integrable
functions $f$ and $g$ such that $f(a)\in d(p^{*},a)$ , $g(a)\in s(p^{*},a)$ for almost every
$a\in A$ and $\int f=\int g$ . Therefore, the list $(f,g,p^{*})$ is aquasi-equilibrium. 0
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Because we have assumed that for each closed subset $F$ of $\mathrm{R}^{\ell}$ , the weak
inverse of $F$ by $\mathrm{Y}_{a}$ is $\mathscr{A}$-measurable, the remark in page 61 of Hildenbrand
(1974) implies that for each open set $B$ of $\mathrm{R}^{\ell}$ , the set $\{a\in A|\mathrm{Y}_{a}\cap B\neq\emptyset\}$ is
$d$-measurable. Then, for each finite collection $\mathscr{B}$ of open subsets of $\mathrm{R}^{\ell}$ and a
compact subset $K\subset \mathrm{R}^{\ell}$ ,

{ $a\in A|\mathrm{Y}_{a}\cap K=\mathrm{G}5$ , $\mathrm{Y}_{a}\cap B\neq\emptyset$ for each $B\in \mathscr{B}$}

$=\cap\{a\in A|\mathrm{Y}_{a}\cap B\neq\emptyset\}\cap\{a\in A|\mathrm{Y}_{a}\cap K\neq\emptyset\}^{e}\in \mathscr{A}B\in \mathit{9}^{\cdot}$

Therefore, $\mathrm{Y}_{a}$ is aBorel measurable function ffom $A$ into $\mathscr{T}$ , where $\mathscr{T}$ is endowed
with the topology of closed convergence. Conversely, if $\mathrm{Y}_{a}$ is aBorel measurable
function in this sense, the weak inverse of aclosed subset by $\mathrm{Y}_{a}$ is measurable.
Therefore, the economy

9 : (A,d,$\nu)arrow \mathscr{T}$
$\cross \mathscr{T}$

is aBorel measurable function from $A$ into aseparable metric space. For a
positive integer $K$ , let

$C^{K}=\{x\in \mathrm{R}^{\ell}|||x||\leqq K\}$ .
Let an economy $\mathrm{S}$ $=\{(X_{a}, \succ_{a},\mathrm{Y}_{a})\}_{a\in A}$ be given. We define ameasurable
function

$\mathit{9}^{K}$ : $(A,d,\nu)$ $arrow \mathscr{B}\mathrm{x}\mathscr{T}$

by $\mathit{9}^{K}(a)=(X_{a}^{K}, \succ_{a}^{K},\mathrm{Y}_{a}^{K})$ where $X_{a}^{K}=X_{a}\cap C^{K},$ $\succ_{a}^{K}$ is the restriction $\mathrm{o}\mathrm{f}\succ_{a}$

to $X_{a}^{K}$ and $\mathrm{Y}_{a}^{K}=\mathrm{Y}_{a}\cap C^{K}$ . For sufficiently large $K$, $\mathit{9}^{K}$ is an economy and
$\mathit{9}^{K}(a)arrow \mathit{9}(a)$ for each $a\in A$ as $Karrow\infty$ . By proposition 2.1, each $\mathit{9}^{K}$ can be
approximated by an economy with finitely many values in almost everywhere
convergence. Therefore, any given economy 9 can be approximated by asimple
economy in which consumption sets and production sets are compact.

Proposition 3.1. Let $\mathrm{Y}$ : $(A,d, \nu)arrow \mathcal{F}$ be a compact-valued simple function.
Then, $\mathrm{Y}$ can be approximated in the sense of almost convergence by $\mathrm{Y}’$ th at
profit distribution is dispersed.

Proof. Since $\mathrm{Y}$ is asimple function, there exists afinite measurable partition
{A. $|i=1$ , $\ldots$ , $n$} of $A$ such that $\nu(A_{i})>0$ and Y.$\cdot$ $=\mathrm{Y}_{a}$ for each $a\in \mathrm{A}_{4}$ and
for each $i=1,2$, $\ldots$ , $n$ . For each $i=1,2$, $\ldots$ , $n$ and for each $\epsilon$ $>0$, let

$\mathrm{Y}^{e}.\cdot=\{y\in \mathrm{R}^{\ell}|d(y,\mathrm{Y}\dot{.})\leqq\epsilon\}$

where $d(y,\mathrm{Y}\dot{.})$ is the distance from $y$ to the set $\mathrm{Y}\dot{.}$ . Then, define $\mathrm{Y}^{e}$ by the
following way.

$\mathrm{Y}_{a}^{e}=\mathrm{Y}_{i}^{efj(a)}$ if $a\in A_{*}.$ ,

where $f\dot{.}$ : $A_{:}arrow[0,1]$ is the function given by corollary 2.1. Then, the profit
distribution determined by $\mathrm{Y}^{e}$ is dispersed. Indeed, for each $p\in \mathrm{R}^{\ell}$ with $p\neq 0$

and for each $w\in \mathrm{R}$,

$\nu(\{a\in \mathrm{A}$|supp $\cdot \mathrm{Y}_{a}^{e}=w\})=0$

for each i $=1,$ 2, \ldots ,n by the construction of $f\dot{.}$ . It is obvious that $\mathrm{Y}^{e}arrow \mathrm{Y}$

everywhere as $\epsilon$ $arrow 0$ . This completes the proof. $\square$
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Hence, by theorem 3.2, we may conclude that,

Theorem 3.3. Each $e\omega nmy\mathit{9}$ can be approimated by an economy having $a$

market equilibrium in the sense of almost everywhere convergence.

4The Second Model
In the previous model, we allow to perturb production sets in any directions.
This may not be justified if there exists perfectly indivisible commodities. In
this section, we would like to consider the existence of perfectly indivisible com-
modities. But, this requires us to introduce additional assumption on prefer-
ences which may restrict the non-convexity of the consumption set. Because we
do not impose ffae disposability at all, this would be the minimum cost we must
pay in the setting of large economies.

In the following, each consumer has acommon consumption set $X$ . Suppose
that the $\ell$-th commodity is perfectly divisible and the consumption set $X$ always
contains the $\ell$-th commodity. Namely, the consumption set $X$ is aclosed subset
of $\mathrm{R}^{\ell}$ bounded from below satisfying the foffiwing condition.

For any $x=$ $(x_{1},x_{2}, \cdots,x_{\ell-1},x\ell)$ , If $x_{\ell}’\geq x\ell$ , then $(x_{1},x_{2}, \cdots,X\ell-1,x_{\ell}’)\in$

$X$ .
The preference relation $\succ\subset X$ xX of each consumer satisfies the following

additional assumptions.

(1) (Local Nonsatiation): For any x $\in X$ and for any neighborhood U of x,
there exists y $\in U\cap X$ such that y $\succ x$ .

(2) (Weak Desirabilty): For any x $\in X$ and any i $=1$ , \cdots ,
$\ell$, there exists y $\in X$

such that y.. $>x:$ , $y_{j}\leq x_{j}$ for all j $\neq$ :and y $\succ x$ .
(3) (Overriding Desirability of the Divisible Commodity): For any x,y $\in X$,

there exists z $\in X$ such that z $\succ y$ and $z\ell>x\ell$ , zj $\leq x\mathrm{j}$ for all j $\neq\ell$.

Let $g*$ be the set of all preference relations on $X$ satisfying the above
conditions. We also explicitly introduce the initial endowment of each agent.
On the other hand, each individual production set $\mathrm{Y}$ is aclosed subset of $\mathrm{R}^{\ell}$

such that $\mathrm{Y}\cap \mathrm{R}_{+}^{\ell}=\{0\}$ . Let

$\mathscr{T}^{\cdot}=\{\mathrm{Y}\in \mathscr{T} |\mathrm{Y}\cap R_{+}^{\ell}=\{0\}\}$ .
Then, an economy 9* is afunction,

9*: (A,d,$\nu)arrow \mathscr{T}^{*}\mathrm{x}\mathrm{R}^{\ell}\mathrm{x}\mathscr{T}^{\mathrm{c}}$

which is Borel measurable. For each $a\in A$ , $\mathit{9}^{*}(a)=(\succ_{a},e_{a}, \mathrm{Y}_{a})$ and assume
that $e_{a}\in X$ for all $a\in A$, $\int e<+\infty$ and that there exist $\overline{x}\in\int X$ and $\overline{y}\in\int \mathrm{Y}$

such that $\overline{x}\ll\int e+\overline{y}$. Note that $\int \mathrm{Y}\neq\emptyset$ because $0 \in\int \mathrm{Y}$ and $\int X=\infty X$ ,
where $\mathrm{c}\mathrm{o}X$ is the convex hull of $X$ .
Definition 5. Amarket equilibrium for an mnomy 9 is alist $(p,f,g)$ of a

price vector $p \in S=\{p\in \mathrm{R}_{+}^{\ell}|.\cdot\sum_{=1}^{\ell}p:=1\}$ and apair of integrable functions

$(f,g)$ from $A$ into $\mathrm{R}^{\ell}$ such that,
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(i) p. $f(a)\leq p\cdot e(a)+\mathrm{s}\mathrm{u}\mathrm{p}p\cdot \mathrm{Y}_{a}$ and $y\succ_{a}f(a)$ implies p. y $>p\cdot$ $e(a)+\mathrm{s}\mathrm{u}\mathrm{p}p\cdot \mathrm{Y}_{a}$

for a.e. a $\in A$ .

(ii) $g(a)\in \mathrm{Y}_{a}$ and $p\cdot$ $g(a)=\mathrm{s}\mathrm{u}\mathrm{p}p\cdot$ $\mathrm{Y}_{a}$ for $\mathrm{a}.\mathrm{e}$ . $a\in A$ .

(iii) $\int f=\int e+\int g$ .
Definition 6. Given an economy $g*$ , the endowment distribution is dispersed
if for any price $p\in S$ and for any $w\in \mathrm{R}$,

$\nu(\{a\in A|p\cdot e(a)=w\})=0$ .
Then, we have the following theorem.

Theorem 4.1. Suppose that for an economy 9*, the endowment distribution is
dispersed and the production set correspondence $\mathrm{Y}$ is simple and compact valued.
Then, $g*has$ a market equilibrium.

Proof For each p $\in S$ and a $\in A$ , the budget set $B(p,$a) is defined in the usual
way. We define the weak demand set 4(p,a) by,

$d_{w}(p,a)=$ {x $\in B(p,a)|y\succ_{a}x$ implies p. y $\geq p$ . $e(a)+\mathrm{s}\mathrm{u}\mathrm{p}p$ . $\mathrm{Y}_{a}$ }

For any given positive integer n, let $S_{\frac{1}{n}}=$ {p $\in S|p:\geqq\frac{1}{n}$ for each i $=1$ , \ldots ,
$\ell.$ }.

$\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{u}\mathrm{a}1\mathrm{w}\varpi \mathrm{k}\mathrm{d}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{d}\infty \mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{F}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}p\in S_{\frac{1}{\mathrm{d}}},d_{w}(p,a)\mathrm{i}\mathrm{s}\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{e}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{y}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}$

. It is not difficult to show

Si $\ni parrow d_{w}(p,a)\subset \mathrm{R}^{\ell}$

is upper hemi-continuous. Let $\alpha=\max\{\mathrm{s}\mathrm{u}\mathrm{p}p\cdot \mathrm{Y}_{a}|p\in s_{n}[perp], a\in A\}<+\infty$

and $\beta=\max\{|b\dot{.}||i=1, \cdots,t\}$ , where $b=$ $(b_{1}, \ldots,b\ell)$ is the lower bound of
the consumption set $X$ . Define $\hat{e}(a)=\max\{|e_{\dot{*}}(a)||i=1, \ldots,\ell\}$ for $a\in A$ .
\^e is integrable because $e$ is integrable. For each $x\in d_{w}(p,a)$ and $i=1$ , $\ldots,\ell$,
$x\dot{.}-b:\geqq 0$ . Hence,

$\frac{1}{n}(x:-b:)\leqq p:(x:-b:)\leqq\sum_{=1}^{\ell}(p_{i}x \dot{.}-p\dot{.}b_{i})\leqq\hat{e}(a)+\alpha+\beta$.

Then,

$-\beta\leqq x:\leqq n(\hat{e}(a)+\alpha+\beta)+\beta$

and thus $|x:|\leqq h(a)$ for all $i=1$ , $\ldots$ , $\ell$, where $h(a) \equiv\max\{n(\hat{e}(a)+\alpha+\beta)+$

$\beta,\beta\}$ , which is integrable. Therefore, for each $p\in S_{\frac{1}{n}}$ , the correspondence,

$A\ni aarrow d_{w}(p,a)\subset \mathrm{R}^{\ell}$

is integrably bounded. Then, the mean weak demand $\int d_{w}(p,a)$ is non-empty.
Therefore, the mean weak demand correspondence,

$S_{\frac{1}{n}} \ni parrow\int d_{w}(p, a)\subset \mathrm{R}^{\ell}$

is upper hemi-continuous, non-empty, compact and convex valued.
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On the other hand, it is relatively easy to show that the mean supply $\infty \mathrm{r}\mathrm{r}\triangleright$

spondence

$S_{\frac{1}{n}} \ni parrow\int s(p,a)\subset \mathrm{R}^{\ell}$

is upper hemi-continuous, non-empty, compact and convex valued.
For each $p\in \mathrm{S}|\cdot$ , define,

$\eta^{n}(p)=\int d_{w}(p,a)-\int s(p,a)-\int e$ .
$\eta^{n}$ is upper hemi-continuous, compact and convex valued and has acompact
range. For any $z^{n}\in\eta^{n}(p)$ , $p\cdot$ $z^{n}=0$ by the local non-satiation. Then, by
the fixed point theorem of Gale and Nikaido, we have asequence $\{p^{n}\}$ of prices
and sequences $\{r\}$ and $\{g^{n}\}$ of selections ffom the individual weak demand
$d_{w}(p^{n},a)$ and the individual supply $s(p^{n},a)$ respectively satisfying,

$\int fl^{*}-\int g^{n}-\int e\in S_{1,n}^{\mathrm{o}}$
,

for all $n$, where $S_{\frac{\mathrm{o}_{1}}{n}}=$ {$x\in \mathrm{R}^{\ell}|p\cdot x\leqq 0$ for aU $p\in S_{\frac{1}{\mathrm{n}}}$ }. Then, it is not $\mathrm{d}\cdot \mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{t}$

to show that there exist aprice vector $p^{*}\in S$ and integrable functions $f$ and $g$

such that $p^{n}arrow p^{*}$ and

(1) $f(a)\in d_{w}(p^{*},a)\mathrm{a}.\mathrm{e}$. a $\in A$ ,

(2) $g(a)\in s(p^{*},a)\mathrm{a}.\mathrm{e}$. a $\in A$ ,

(3) $\int f-\int g-\int e\leq 0$ and $p^{*} \cdot(\int f-\int g-\int e)=0$ .
Since we assume that $\overline{x}\ll\int e+\overline{y}$ for some $\overline{x}\in\int X$ and $\overline{y}\in\int \mathrm{Y}$ , $p^{*} \cdot\overline{x}<\int p^{*}$ .
$e+p^{*} \cdot\overline{y}\leq\int p^{*}\cdot$ $e+ \int \mathrm{s}\mathrm{u}\mathrm{p}p^{*}\cdot \mathrm{Y}$ . Therefore, there exists asubset $\overline{A}$ with $\nu(\overline{A})>0$

such that for each $a\in\overline{A}$ , there exists $\tilde{x}\in X$ satisfying $p^{*}\cdot\tilde{x}<p^{*}\cdot e(a)+p^{*}$ -Ya.
By way of contradiction, let us suppose that $p_{\ell}^{*}=0$ . By overriding desirability,
for each $a\in\overline{A}$ , there exists $\tilde{z}\in X$ such that $\tilde{z}\succ_{a}f(a),\tilde{z}\ell>\tilde{x}\ell$ and $\tilde{Z}\mathrm{j}\leq\tilde{x}j$ for
all $j\neq\ell$. Since $pi$ $=0$, $p^{*}\cdot\tilde{z}\leq p$

. . $\tilde{x}<p^{*}\cdot e(a)+\mathrm{s}\mathrm{u}\mathrm{p}p^{*}\cdot \mathrm{Y}_{a}$ , this contradicts
the fact that $f(a)\in d_{w}(p.,a)\mathrm{a}.\mathrm{e}$. $a\in A$. Thus, it has been shown that $p_{\ell}^{*}>0$.

Because the endowment distribution is dispersed, by the analogous way as
in Yamazaki (1978a), $f(a)\mathrm{i}\mathrm{s}\succ_{a}$-maximal in the budget $B(p^{*},a)$ for almost
every $a\in A$ . Finaly, let us suppose that $p_{\mathrm{j}}$

. $=0$ for some $j\neq\ell$. By the weak
desirability, for all $a\in A$ , there exists $z\in X$ such that $z\succ_{a}f(a)$ , $z_{\mathrm{j}}>f_{j}(a)$

and $\sim$
. $\leq f.\cdot(a)$ for all $i\neq j$ . Sirsoe $p^{*}\cdot z\leq p^{*}\cdot f(a)=p^{*}\cdot e(a)+\mathrm{s}\mathrm{u}\mathrm{p}p$

. . $\mathrm{Y}_{a}$ , this is
acontradiction. Therefore, $p^{*}\gg \mathrm{O}$ and it follows ffom (3) that $\int f=\int g+\int e$ .
This completes the proof. 0

Theorem 4.2. For each economy 9*, $d\iota eft$ exists a sequence $\{\mathit{9}^{n}\}$ of economies
having an equilibrium which converges to $g*$ almost $eve\eta where$ .

Prvof. Let $\mathit{9}^{\cdot}(a)=(\succ_{a},e(a),\mathrm{Y}_{a})$ for $a\in A$ . At first, there exists asequence
$\{\tilde{e}^{n}\}$ of simple functions converging to $e\mathrm{a}.\mathrm{e}$. Since $\tilde{e}^{n}(A)\subset e(A)$ , en(a) $\in X$

for all $a\in A$ . For each $n$ , define,

$e^{n}(a)=e( \neg*a)+(0,\cdots,0, \frac{1}{n}f(a))$ ,
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where $f$ is the function given in Proposition 2.2. By the assumption on $X$,
en(a) $\in X$ for all $a\in A$ . Let $p\in S$ with $p\ell>0$ . For afinite partition $\{A_{k}\}$ of
$A,\tilde{e}_{n}(a)$ is constant over each $A_{k}$ . Because $p\cdot$ $e_{n}(a)=p\cdot$ $\tilde{e}_{n}(a)+(p\ell/n)f(a)$ ,
for any $w\in \mathrm{R}$ and for any $k$ ,

$\nu(\{a\in A_{k}|p\cdot e_{n}(a)=w\})=\nu(\{a\in A_{k}|f(a)=(n/p\ell)(w-\tilde{w})\})=0$

where $\tilde{w}\equiv p\cdot$ $\tilde{e}(a)$ for all $a\in A_{k}$ . Therefore, for any $p\in S$ with $p\ell>0$ and for
any $w\in R$ ,

$\nu(\{a\in A|p\cdot e_{n}(a)=w\})=0$.

It is easy to see that $e_{n}arrow e\mathrm{a}.\mathrm{e}$ . and hence $\int e_{n}arrow\int e$ . On the other hand, by
assumption, there exist $\overline{x}\in\int X$ and $\overline{y}\in\int \mathrm{Y}$ such that $x \ll\int e+y$ . Then, there
exists an integrable selection $y$ from $\mathrm{Y}$ such that $\overline{y}=\int y$ . Since $y(a)\in \mathrm{Y}_{a}\mathrm{a}.\mathrm{e}.$ ,
there exists aset $A0$ of $\nu$-measure zero such that $y(a)\in \mathrm{Y}_{a}$ for all $a\in A\backslash A0$ .
Define afunction,

$Z$ : $Aarrow \mathscr{T}^{*}\mathrm{x}\mathrm{R}^{\ell}$

by $Z(a)=(\mathrm{Y}_{a},y(a))$ for all $a\in A\backslash A_{0}$ and $Z(a)=(\mathrm{Y}_{a},0)$ for $a\in A0$ . Here,
we remark that $y(a)\in \mathrm{Y}_{a}$ for all $a\in A$ . Then, $Z$ is measurable and hence by
Proposition 2.1, there exists asequence $\{Z^{n}\}$ of simple functions converging to
$Z\mathrm{a}.\mathrm{e}$. For each $n$ , there is apartition $\{A_{kn}\}$ of $A$ such that $Z^{n}$ is constant over
each $A_{kn}$ . That is, $Z^{n}(a)\equiv(\mathrm{Y}^{k},y^{k})$ for all $a\in A_{kn}$ . &cause $Z^{\mathfrak{n}}(A)\in Z(A)$ ,
$y^{k}\in \mathrm{Y}^{k}$ for all $k$ . Define simple functions $\tilde{\mathrm{Y}}^{n}$ and $y^{n}$ by $\tilde{\mathrm{Y}}_{a}^{n}=\mathrm{Y}^{k}$ for $a\in A_{kn}$

and $y^{n}(a)=y^{k}$ for $a\in A_{kn}$ . Then, it is easy to see that $\tilde{\mathrm{Y}}^{n}arrow \mathrm{Y}$ and
$y^{n}arrow y\mathrm{a}.\mathrm{e}$. and $y^{n}(a)\in\tilde{\mathrm{Y}}_{a}^{n}\mathrm{a}.\mathrm{e}$. For each $n$ , there $\propto \mathrm{i}\mathrm{s}\mathrm{t}\mathrm{s}$ apositive integer
$m_{n}$ such that $y^{n}(A)\subset D_{m_{n}}$ , where $Dmn$ is the disk with radius $m_{n}$ . Let
$\mathrm{Y}_{a}^{n}=\tilde{\mathrm{Y}}_{a}\cap D_{m_{\mathfrak{n}}}$ . Then, because we may choose $\{m_{n}\}$ to satisfy $D_{m_{n}}arrow \mathrm{R}^{\ell}$

as $narrow\infty$ , $\mathrm{Y}^{n}arrow \mathrm{Y}\mathrm{a}.\mathrm{e}$ . It is obvious that $y^{n}(a)\in \mathrm{Y}_{a}^{n}\mathrm{a}.\mathrm{e}$. Therefore, since
$\int e_{n}arrow\int e$ and $\int y_{n}arrow\int y$ , for sufficiently large $n$ , we have $\overline{x}\ll\int e^{n}+\int y^{n}$ .
Now let us define $\mathit{9}^{n}(a)=(\succ_{a},e^{n}(a),\mathrm{Y}_{a}^{n})$ for all $a\in A$ . Then, $\mathit{9}^{n}$ satisfies the
conditions in previous theorem for sufficiently large $n$ and has an equilibrium.
Hence, we may assume that each $\mathit{9}_{n}^{*}$ has amarket equilibrium. By construction,
$\mathit{9}^{n}arrow \mathit{9}^{*}$ almost everywhere. This completes the proof. $\square$

5The Core Equivalence.
In this section, we discuss about the equivalence between the core and the set of
competitive equilibrium allocations. In large economies with convex consump-
tion set, the equivalence has been established by Aumann (1964). Hildenbrand
(1968) shows that the non-convexity of each individual production set $\mathrm{Y}_{a}$ is
not an obstacle for the equivalence. Under some additional assumptions, the
equivalence theorem is extended to the case of non-convex consumption set by
Yamazaki (1978b). Since our model can be viewed as acoalition production
economy with aRadon-Nykodym derivative and non-convex consumption set,
these observations suggest that the equivalence is very likely also in our set-
ting. Indeed, while the general equivalence fails due to the non-convexity of the
consumption set, we can prove that the core equivalence is adense property.

Let $X$ be the consumption set, anon-empty closed subset of $\mathrm{R}^{\ell}$ bounded from
below and $\hat{\mathscr{B}}$ the set of irreflexive, transitive and continuous preference relation$\mathrm{s}$
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on $X$ satisfying local non-satiation. An economy is ameasurable function,
$\hat{\mathit{9}}$ : $(A,d,\nu)$ $arrow\hat{\mathscr{T}}\mathrm{x}\mathrm{R}^{\ell}\mathrm{x}\mathscr{T}^{*}$ .

In this section, we define an allocation $(f,g)$ feasible in an economy $\hat{\mathit{9}}$ if $f(a)\in$
$X$ , $g(a)\in \mathrm{Y}_{a}$ for $\mathrm{a}.\mathrm{e}$. $a\in A$ and $\int f=\int e+\int g$.
Definition 7. Afeasible allocation $(f,g)$ is blocked by acoalition $S\in d$ if
$\nu(S)>0$ and if there exist integrable functions

$f’$ ; $Sarrow \mathrm{R}^{\ell}$ and $g’$ ; $Sarrow \mathrm{R}^{\ell}$

satisfying the following conditions.

(1) $f’(a)\succ_{a}f(a)$ for $\mathrm{a}.\mathrm{e}$. $a\in S$.
(2) $\oint(a)\in \mathrm{Y}_{a}$ for $\mathrm{a}.\mathrm{e}$. $a\in S$.
(3) $\int_{S}f’=\int_{S}e+\int_{S}J$ .
The core is the set of feasible allocations that have no blodcing coaltion.

The following two lemmas are easy consequences of Theorems 1and 2in
Hildenbrand (1968).

Lemma 5.1. Let $\hat{\mathit{9}}\mathrm{k}$ an economy whose production set correspondence is
simple. Then, the set of market equilibrium allocations is contained in the core
of the economy.

Lemma 5.2. Let $\mathit{9}\wedge \mathrm{k}$ an economy whose production set correspondence is sim-
ple. Then, the core of the economy is contained in the set of quasi-equilibrium
allocations.

The next result can be proved in the same way as in the proof of Theorem
4.1.

Lemma 5.3. Let $9\wedge$ be an economy whose endowment distribution is dispersed
and production set correspondence is simple. Then, aquasi-equilibrium alloca-
tion is amarket equilibrium allocation.

Then, the main result of this section is as follows.

Theorem 5.1. For any economy $\hat{\mathit{9}}$ , there this a sequence $\{\hat{\mathit{9}}^{n}\}$ of economies
$conve\dot{\varphi n}g$ to $\hat{\mathit{9}}$ almost $ev\eta where$ such that for each $n$ , the core of the economy

$\hat{\mathit{9}}^{n}$

is equal to the set of market equilibrium allocations.

Proof By the same argument as in the proof of Theorem 4.2, there exists a
sequence $\{\hat{\mathit{9}}^{n}\}$ of economies converging to $\hat{\mathit{9}}$ almost everywhere such that for
each $n$ , the endowment distribution is dispersed and the production set $\infty \mathrm{r}\mathrm{r}\mathrm{e}-$

spondenoe is simple. Then, by lemmas 5.1, 5.2 and 5.3, for each $n$, the core
of $\mathit{9}\wedge \mathfrak{n}_{\wedge}$ is equal to the set of market equilibrium alocations. This completes the
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