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The purpose of this contribution is to give abrief survey of some recent results of

the author on the finiteness of certain $\mathrm{m}\mathrm{o}\mathrm{d} p$ Galois representaions.

Let $G_{K}$ be the absolute Galois group Gal(K/K) of an algebraic number field
$K$ of finite degree over $\mathbb{Q}$ and $\overline{\mathrm{F}}_{p}$ an algebraic closure of the finite field $\mathrm{F}_{p}$ of $p$

elements. We consider the following problem:

Problem, Fix an integer $d\geq 1$ and a nonzero integral ideal $N$ of K. Then do

there exist only finitely many isomorphism classes of continuous semisimple rep-

resentations $\rho$ : $G_{K}arrow \mathrm{G}\mathrm{L}_{d}(\overline{\mathrm{F}}_{p})$ with Artin conductor $N(\rho)$ outside $p$ dividing
$N$ ?

(See [M1] for the definition of $N(\rho).$ )

In the case $d=1$ , the finiteness in our Problem follows from class field theory.

Also, the above Problem is reduced to the case $K=\mathbb{Q}$ by means of induction of

representations.

This problem has been motivated by the celebrated conjecture of Serre ([Se])

which states that every odd and irreducible $\mathrm{m}\mathrm{o}\mathrm{d} p$ representation $\rho:G_{\mathbb{Q}}arrow \mathrm{G}\mathrm{L}_{2}(\overline{\mathrm{F}}_{p})$

should arise from amodular eigenform $f$ with conjectured level, weight and charac-

ter. This implies that the set of isomorphism classes of such representations $\rho$ with

bounded conductor is finite because the space of modular forms of abounded level

and weight has abounded dimension. Arecent work of Ash and Sinnott ([A-S]),

which generalize the conjecture of Serre, is also in favor of an affirmative answer to

our Problem in certain cases.

This problem may be also regarded as a $\mathrm{m}\mathrm{o}\mathrm{d} p$ version of the Finiteness con-
jecture of Fontaine-Mazur ([F-M]). Also, Khare ([Kh]) considers the same problem

independently.

Now we give some remarks to explain why the conditions in the Problem are
necessary
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Remarks. (1) Without any restriction on ramification outside $p$ , we cannot expect

the finiteness. For example, the set of isomorphism classes of $\rho$ : $G\mathbb{Q}arrow \mathrm{G}\mathrm{L}_{1}(\overline{\mathrm{F}}_{p})$

unramified outside $\ell(\neq p)$ is infinite, since we have, for each $n\geq 1$ , the representa-

tion $\rho_{n}$ : $G_{\mathbb{Q}}arrow \mathbb{Z}/\ell^{n}\mathbb{Z}\mapsto\overline{\mathrm{F}}_{p}^{\mathrm{X}}$ corresponding to the $n$-th layer of the cyclotomic

$\mathbb{Z}_{\ell}$-extension of Q.

(2) If we replace $\overline{\mathrm{F}}_{p}$ by afinite field $\mathrm{F}_{p^{m}}$ , the finiteness follows from the Hermite-

Minkowski Theorem saying that there exist only finitely many algebraic number

fields which are of agiven degree and unramified outside agiven set of primes.

(3) The assumption of semisimplicity is necessary. In fact, there may be infinitely

many (mutually unisomorphic) non-semisimple representations of afinite group $G$ .

Now we consider the representations $\rho$ : $G_{\mathbb{Q}}arrow \mathrm{G}\mathrm{L}_{d}(\overline{\mathrm{F}}_{p})$ unramified outside $p$ ,

i.e., the case $K=\mathbb{Q}$ and $N(\rho)=1$ of our Problem. For example, we obtain:

Theorem A([M1]). There exist only finitely many isomorphism classes of con-

tinuous semisimple Galois representations $\rho$ : $G_{\mathbb{Q}}arrow \mathrm{G}\mathrm{L}_{4}$ (F2) unramified outside

2such that the field $K/\mathbb{Q}$ corresponding to the kemel of $\rho$ is totally real (in other

words, $\rho$ is unramified also at $\infty$).

(For other cases, see [M1].)

The proof of this Theorem is based on comparing two estimates for discrimi-

nants of opposite directions. Using class field theory, we estimate from above the

discriminant of afield $K$ as in the Theorem in terms of the invariant $” p$-length”of

its Galois group. For the other direction, we use the estimate of OdlyzkO-Poitou-

Serre which gives an asymptotic lower bound of discriminants. Then the finiteness

follows from the contradiction of the two inequalities when the degree of $K$ goes to

infinity. This result extends apart of Tate’s results for $d=2$ and $p=2$ ([Ta]).

Second, we obtained the finiteness in the solvable image case of our Problem:

Theorem $\mathrm{B}$ ([M-T]). Given an integer $d\geq 1$ and a nonzero integral ideal $N$

of $K$ , there exist only finitely many isomorphism classes of continuous semisimple

representations $\rho$ : $G_{K}arrow \mathrm{G}\mathrm{L}_{d}(\overline{\mathrm{F}}_{p})$ with solvable image and with $N(\rho)$ dividin
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The finiteness statement holds true also for classical Artin representations, i.e.,
if we replace $\overline{\mathrm{F}}_{p}$ by the complex number field $\mathbb{C}$ and $N(\rho)$ by the usual Artin
conductor. This can be proved by using the finiteness of ideal class groups (or

global class field theory) and the Hermite-Minkowski theorem. This suggests us to
view our Problem, if answered affirmatively, as ageneralization of these two. Also,

the Problem can be reduced to aspecial case in which the image of $\rho$ is afinite
simple group of Lie type in characteristic $p$ . This is based on atheorem of Larsen
and Pink ([L-P]) on the structure of finite subgroups of $\mathrm{G}\mathrm{L}_{d}(\overline{\mathrm{F}}_{p})$ . Furthermore,
these results hold also for function fields $K$ under areasonable condition that there
are no constant field extensions.

Third, we consider the set of $n$-dimensional monomial $\mathrm{m}\mathrm{o}\mathrm{d} p$ representations of
$G\mathbb{Q}$ with bounded conductor. We say that arepresentation $\rho$ : $G_{\mathbb{Q}}arrow \mathrm{G}\mathrm{L}_{n}(\overline{\mathrm{F}}_{p})$

is monomial if it is of the form $\rho=\mathrm{I}\mathrm{n}\mathrm{d}_{K}^{\mathrm{Q}}\chi$ , i.e. if it is induced from acharacter
$\chi$ : $G_{K}arrow\overline{\mathrm{F}}_{p}^{\mathrm{x}}$ of the absolute Galois group $G_{K}$ of an algebraic number field $K$

of degree $n$ over Q. Prom the construction together with the Hermite-Minkowski
theorem and the finiteness of ray class groups, it follows easily that this set is finite.
We shall give an explicit upper bounds for (i) the number of elements of this set

and (ii) the order of the image of a $\rho=\mathrm{I}\mathrm{n}\mathrm{d}_{K}^{\mathrm{Q}}\chi$ as above in terms of $n$ , $p$ and the

conductor:

Theorem $\mathrm{C}$ ([M2]). Fix positive integers $n$ and M. Consider n-dimensional
monomial mod $p$ Galois representations $\rho$ : $G_{\mathbb{Q}}arrow \mathrm{G}\mathrm{L}\mathrm{n}$ (Fp) with $N(\rho)|M$ .
(i) The number of isomorphism classes of such $\rho’ s$ is bounded by

$\frac{2^{n^{2}+n+1}\cdot(11.1)}{\pi^{n}}(2+\frac{1}{2}n^{n}p^{n-1}M)^{n}p^{2n-1}M^{n}$ .

(ii) The order of the image of such a $\rho$ is bounded by

$\frac{2^{n(n+1)}(11.1)^{n}}{\pi^{n^{2}}}n!n^{n^{2}}p^{n(2n-1)}M^{n^{2}}$

(A sharper estimate is given in [M2].)

The outline of the proof is:
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First, we bound the discriminant of $K$ and the conductor of $\chi$ when the conductor

of $\rho=\mathrm{I}\mathrm{n}\mathrm{d}_{K}^{\mathbb{Q}}\chi$ is given. We give an upper bound of the number of algebraic number

fields $K$ of degree $n$ and discriminant (outside $p$) dividing $D$ in terms of $n$ , $p$ and $D$ .

For agiven $K$ , we give an upper bound for the number of characters $\chi$ of $G_{K}$ with

agiven Artin conductor $M$ . Combining these results together, we obtain the above

Theorem (i). This is aquantitative result on our Problem. Finally, we deduce the

estimate of the order of the image of $\mathrm{I}\mathrm{n}\mathrm{d}_{K}^{\mathbb{Q}}\chi$ from that of the image of $\chi$ by means

of agroup theoretic lemma. Such astatement (estimate of the order of the image

of $\rho$) may be thought of as an effective result on our Problem.
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