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n-Insertion on Languages
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Abstract
In this paper, we define the n-insertion A B[ B of a language A
into a language B and provide some properties of n-insertions. For
instance, the n-insertion of a regular language into a regular language
is regular but the n-insertion of a context-free language into a context-
free language is not always context-free. However, it can be shown that
the n-insertion of a regular (context-free) language into a context-free
(regular) language is context-free. We also consider the decomposition
of regular languages under n-insertion.

1 Introduction

Let u,v € X™ and let n be a positive integer. Then the n-insertion of u into v,
i.e. u DM, is defined as {v,u1vaU; . . . VULV | U = UsUg . . . Up, Uy, Ug, . ey Uy €
X*,v = v1V2...VpVn41,01,V2,...,Un,Unp1 € X*}. For languages A, B C X*,
the n-insertion A >M™ B of A into B is defined as Uuea,veB U >y, The
shuffle product Ao B of A and B is defined as U,>; A > B. In Section 2,
we provide some properties of n-insertions. For instance, the n-insertion of
a regular language into a regular language is regular but the n-insertion of a
context-free language into a context-free language is not always context-free.
However, it can be shown that the n-insertion of a regular (context-free)
language into a context-free (regular) language is context-free. In Section 3,
we prove that, for a given regular language L C X™* and a positive integr n,
it is decidable whether L = A " B for some nontrivial regular languages
A,B C X*. Here a language C C X* is said to be nontrivial if C # {e€}
where € is the empty word. Regarding definitions and notations concerning
formal languages and automata, not defined in this paper, refer, for instance,



2 Shuffle Product and n-Insertion

First, we consider the shuffle product of languages.
Lemma 1 Let A,B C X* be regular languages. Then A o B is a regular
language.

Proof By X we denote the new alphabet {@ | a € X}. Let A = (S5, X, 4, so, F)
be a finite deterministic automaton with £(A) = A and let B = (T, X, 0,0, G)
be a finite deterministic automaton with £(B) = B. Define the automaton
B = (T,X,0,t,G) as 0(t,a) = 0(t,a) for any t € T and a € X. Let p be
the homomorphism of (X U X)* onto X* defined as p(a) = p(@) = a for
any a € X. Moreover, let £L(B) = B. Then p(B) = {p(w) | w € B} = B
and p(A o B) = Ao B. Hence, to prove the lemma, it is enough to show
that A o B is a regular language over X U X. Consider the automaton
AoB = (SxT,XUX,600,(so,to0), F x G) where §06((s,t),a) = (6(s, a), 1)
and §00((s,t),@) = (s,0(t,a)) for any (s,t) € S x T and @ € X. Then it is
easy to see that w € L(AoB) if and only if w € Ao B, i.e. Ao B is regular.
This completes the proof of the lemma.

Proposition 2 Let A,B C X* be regular languages and let n be a positive
integer. Then A b™ B is a regular language.

Proof Let the notations of X, B and p be the same as above. Notice that
AP B =(AeB)n (X X*)"X". Since (X" X*)"X" is regular, A >’ B is
regular. Consequently, A b" B = p(A > B) is regular.

Remark 3 The n-insertion of a context-free language into a context-free
language is not always context-free. For instance, it is well known that A =
{a"b" | n > 1} and B = {c*d" | n > 1} are context-free languages over {a, b}
and {c, d}, respectively. However, since (A >3 B)Na*tctbtdt = {a"c™b"d™
| n,m > 1} is not context-free, A >/ B is not context-free.

Now consider the n-insertion of a regular (context-free) language into a
context-free (regular) language.

Lemma 4 Let A C X* be a regular language and let B C X™* be a context-free
language. Then Ao B is a context-free language.

Proof The notations which we will use for the proof are assumed to be
the same as above. Let A = (S,X,4,s0,F) be a finite deterministic au-
tomaton with £(A) = A and let B = (T, X,T,0,1,¢) be a pushdown au-



tomaton with N(B) = B. Let B = (T,X,I,0,t0,70,¢) be a pushdown
automaton such that 8(¢,@,7) = 0(t,a,7) for any t € T,a € X U {¢}
and v € I. Then p(NM(B)) = B. Now define the pushdown automa-
ton AoB = (S x T,X UX,T'U{#},608,(s0,%0),70,€) as follows: (1)
Va € X,60 8((s010),0:70) = {((6(50,0),to), #10)}, 60 W(s0,0),, %) =
(s ). #7) | (#,7) € Blto,@70)}. (2) Va € X,¥(s,1) € S x T,Vy €
LU {#),6 0 0((s,8),a,7) = {((5(5,a),8),m)}. (3) Ya € X,¥(s,t) € S x
T,Yy € T,800((s,1),a,7) = {((s,t'),7) | (t,7) € 6(t,3,7)}. (4) V(s,1) €
FxT,600((s,t),¢e,#) = {((s, 1), €)}.

Let w = Tyu1DaUs . . . UnlnUnyy Where up,ug,...,u, € X* and v1,7,,...,
Tny1 € X . Assume 6 0 0((so,t0),w,7) # 0. Then we have the following
configuration: ((o,%0),w,Y0) F%.5 ((6(s0,wattz ... un),t'), €, # ... #7') Where
(t',7') € O(t0, 71Tz . . - Tpy1,7%0)- If w € N(ASB), then (8(so, urtz . .. un),t'), €
#...#7) Fg (8(s0,uruz .. . us), '), €, €). Therefore, (6(so,u1u2...un),t’)_€
F x T and 4" = ¢. This means that uju;...u, € A and 7;,73,...,0,41 € B.
Hence w € A x B. Now let w € A X B Then, by the above conﬁgu—
ration, we have ((so,%0),w,70) %z ((6(s0, uruz .. un ), t'), 6, # ... #) Pz
((6(s0,urus ... uy),t'), €,€) and w E N(AOB) Thus A<>B N (Ao B) and
A o B is context-free. Since p(Ao B) = Ao B, Ao B is context-free.

Proposition 5 Let A C X* be a regular (context-free) language and let
B C X* be a context-free (regular) language. Then A B[ B is a context-free
language.

Proof We consider the case that A C X* is regular and B C X* is context-
free. Since A BN B = (Ao B) N (X' X*)"X" and (X X*)"X  is regular,
A [ B is context-free. Consequently, A > B = p(A > B) is context-free.

3 Decompositibn

Let L C X* be a regular language and let A = (5, X, 6,30, F') be a finite
deterministic automaton accepting the language L, i.e. L(A) = L. For
u,v € X*, by u ~ v we denote the equivalence relation of finite index on X*
such that 8(s,u) = é(s,v) for any s € S. Then it is well known that for any
r,y € X*,zuy € L & zvy € Lif u ~v. Let [u] = {v € X* | u ~ v} for
u € X*. It is easy to see that [u] can be effectively constructed using A for



any u € X*. Now let n be a positive integer. We consider the decomposition
L=AplB. Let K, = {([wi, [u3],---, [un]) | #1,uz,...,u, € X*}. Notice
that K, is a finite set.

Lemma 6 There is an algorithm to construct K,.

Proof Obvious from the fact that [u] can be effectively constructed for any
u € X* and {[u] | v € X*} = {[u] | u € X*,|u| < |S|¥1}. Here |u| and |S)|
denote the length of u and the cardinality of S, respectively.
For u € X*, we define p,(u) by {([u1], [uz],. - -, [un]) | u = viuz . . . upn, uy, ua,

yUn € X7}, Let p = ([wa], [uz),...,[us])) € K, and let B, = {v € X* |
Vo = 010y ... 0pVp 41,1, V25 o« Vny Vg1 € X*, {01 }Huwa){va}uz] . . - {v, }Hun)
{vna} €L}
Lemma 7 B, C X* is a regular language and it can be effectively constructed.
Proof Let S® = {s() | s € §},0<i<n,andlet § = Uo<i<n S, We define
the following nondeterministic automaton A’ = (S5, X, 4, {3(0)} S\ F ("))

with e-move where F™) = {s(™) | s € F}. The state transition relation & is
defined as follows:

8(s®,a) = {6(s,a)®), 8(s, au;y,)+V} for any a € XU{e} andi = 0,1, ..
n — 1 and §(s™, a) = {6(s,a)™} for any a € X.

Letv € E(.A’). ‘Then 8(so, v1u1V2u3 . . . VpUnVpyy )™ € 6(30 V103 . . . UpUpg1 )N

(S™ \ F®) for some v = vyv,.. UnUn41,V1,V2y .., UpyUnyy € X*. Hence
VUV U . . VpUnVnyy & L, ie. v € X*\ B,. Now let v € X*\ B,.
Then there exists v = v1v2...V,Vn41,V1,02,...,V0.Un41 € X* such that

MU VUL .. . UplUnUpn4a

¢ L. Therefore, 5(3((,0),1)11)2 . UpUp41) € S(")\F(") le. v =v1V;y... 0,V 4 €
L(A"). Consequently, B, = X* \ L(A") and B, is regular. Notice that
X*\ L(A’) can be eﬂ'ectlvely constructed.

Symmetrically, consider v = ([v1],[v2),...,[vs], [Vn41]) € Kny1 and A, =
{ue X* | Vu=ujuy.. uguy,ug,...,uy € X*, [v1]{us }Huva]{uz} ... [va]{un}
[vn41] € L}

Lemma 8 A, C X~ is a reqular language and it can be effectively constructed.

Proof Let S®) = {s) | s€ §},1<i<n+1,andlet S = Urcicnsr S®. We
define the following nondeterministic automaton B' = (5, X, 8, {6(so, v1)®},



St \ F(+1)) with e-move where F("t1) = {s"*1) | s € F}. The state
transition relation § is defined as follows:

(.s(‘) a) = {6(3 a)®,8(s,auiy)*V} for any @ € X U {e} and ¢ =
1,2,.

By the same way as in the proof of Lemma 6, we can prove that A, =
X*\L(B’). Therefore, A, is regular. Notice that X*\ L(B’) can be effectively
constructed.

Proposition 9 Let A,B C X* and let L C X* be a regular language. If
L = A bl B, then there exist regular languages A', B’ C X* such that
ACA,BCB and L=A pM B,

Proof Put B' = ,¢,,(a) By Let v € B and let u € pp(A). Since p €
pn(A), there exists u € A such that p = ([u1],[us),...,[us]) and u =
UrUz .. . Up, U, U2,

.. Uun € X*. By u bMo C L, we have {v; }ua]{v2}{uz] - - - {vn}un]{vnt1} C
L for any v = v1v3...0nVn41,V1,V2,...,Un,Unp1 € X*. This means that
v € B,. Thus B C ﬂuep (A)B = B Now assume that u € A and v € B'.
Let u = uqUz...Un, U1, Ug,..., U, € X* and let p = ([ui], [u2],-..,[us]) €
pr(u) C pn(A). By vE B Q B,L, VIUIVRUS . . . VpUpUpsy € {Ul}[U1]{1)2}[UQ]
{vo HunJ{vns1} € L for any v = v103...0nUnt1,V1,V25++Vn, Uny1 € X*.
Hence u My C L and A M B’ C L. On the other hand, since B C B’ and
AbMB = L, wehave A bMB' = L. Symmetrically, put A’ =N, ¢,,.,, B Av-
By the same way as the above, we can prove that A C A’ and L = A’ >R B,

Theorem 10 For any regular language L C X* and a positive integer n,
it is decidable whether L = A B B for some nontrivial regular languages
A,BC X"~

Proof Let A ={A, |v € K,;;} and B={B, | p € K,}. By the preceding
lemmata, A, B are finite sets of regular languages which can be effectively
constructed. Assume that L = A t>[ B for some nontrivial regular languages
A,B C X*. In this case, by Proposition 8, there exist regular languages
A C A’ and B C B’ which are an intersection of languages in A and an
intersection of languages in B, respectively. It is obvious that A’, B’ are
nontrivial languages. Thus we have the following algorithm: (1) Take any
languages from A and let A’ be their intersection. (2) Take any languages
from B and let B’ be their intersection. (3) Calculate A’ " B, (4) If



A’ Ml B = L, then the output is "YES”. (5) If the output is "NO”,
search another pair of {A’, B’} until obtaining the output ”YES”. (6) This
procedure terminates after a finite-step trial. (7) Once we get the output
"YES”, then L = A b[" B for some nontrivial regular languages A, B C X*.
(8) Otherwise, there are no such decompositions.

Let n be a positive integer. By F(n,X), we denote the class of finite
languages {L C X* | maz{|u| | v € L} < n}. Then the following result by
C. Campeanu et al. ([1]) can be obtained as a corollary of Theorem 10.

Corollary For a given positive integer n and a reqular language A C X*,
the problem whether A = B o C for a nontrivial language B € F(n,X) and
a nontrivial regular language C C X* is decidable.

Proof Obvious from the following fact: If u,v € X* and |u| < n, then
uov=u pMlo,

The proof of the above corollary was given by the different way in ([3])
using the following result: Let A,L C X* be regular languages. Then it is
decidable whether there ezists a reqular languages B C X* such that L =
Ao B.
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