LEXICOGRAPHIC GRÖBNER BASES OF TORIC IDEALS ARISING FROM ROOT SYSTEMS

大杉英史 HIDEFUMI OHSUGI

立教大学理学部数学科 Department of Mathematics, Rikkyo University

ABSTRACT. The present paper is a brief draft based on a joint work with Takayuki Hibi. Gröbner bases of toric ideals arising from root systems are studied.

Introduction

Let $\mathcal{A} \subset \mathbb{Z}^n$ be a finite set and let $K[\mathbf{t}, \mathbf{t}^{-1}, s] = K[t_1, t_1^{-1}, \dots, t_n, t_n^{-1}, s]$ denote the Laurent polynomial ring over a field K. We associate each $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}^n$ with the monomial $\mathbf{t}^{\alpha}s = t_1^{\alpha_1} \cdots t_n^{\alpha_n}s \in K[\mathbf{t}, \mathbf{t}^{-1}, s]$ and write $\mathcal{R}_K[\mathcal{A}]$ for the subalgebra of $K[\mathbf{t}, \mathbf{t}^{-1}, s]$ generated by all monomials $\mathbf{t}^{\alpha}s$ with $\alpha \in \mathcal{A}$. Let $K[\mathbf{x}] = K[\{x_{\alpha}; \alpha \in \mathcal{A}\}]$ denote the polynomial ring in $\sharp(\mathcal{A})$ variables over K and $I_{\mathcal{A}} \subset K[\mathbf{x}]$ the kernel of the surjective homomorphism $\pi : K[\mathbf{x}] \to \mathcal{R}_K[\mathcal{A}]$ defined by setting $\pi(x_{\alpha}) = \mathbf{t}^{\alpha}s$ for all $\alpha \in \mathcal{A}$. The ideal $I_{\mathcal{A}}$ is called the toric ideal of the configuration \mathcal{A} . It is known [9] that if $I_{\mathcal{A}}$ possesses a squarefree initial ideal, then the convex hull of \mathcal{A} possesses a unimodular triangulation.

Fix $n \geq 2$. Let \mathbf{e}_i denote the *i*-th unit coordinate vector of \mathbb{R}^n . We write \mathbf{A}_{n-1}^+ , \mathbf{B}_n^+ , \mathbf{C}_n^+ , \mathbf{D}_n^+ and $\mathbf{B}\mathbf{C}_n^+$ for the set of positive roots of root systems \mathbf{A}_{n-1} , \mathbf{B}_n , \mathbf{C}_n , \mathbf{D}_n and $\mathbf{B}\mathbf{C}_n$, respectively ([3, pp. 64 – 65]):

$$\begin{aligned} \mathbf{A}_{n-1}^{+} &= \{ \mathbf{e}_{i} - \mathbf{e}_{j} \, ; \, 1 \leq i < j \leq n \}; \\ \mathbf{B}_{n}^{+} &= \{ \mathbf{e}_{i} \, ; \, 1 \leq i \leq n \} \cup \{ \mathbf{e}_{i} + \mathbf{e}_{j} \, ; \, 1 \leq i < j \leq n \} \cup \{ \mathbf{e}_{i} - \mathbf{e}_{j} \, ; \, 1 \leq i < j \leq n \}; \\ \mathbf{C}_{n}^{+} &= \{ 2\mathbf{e}_{i} \, ; \, 1 \leq i \leq n \} \cup \{ \mathbf{e}_{i} + \mathbf{e}_{j} \, ; \, 1 \leq i < j \leq n \} \cup \{ \mathbf{e}_{i} - \mathbf{e}_{j} \, ; \, 1 \leq i < j \leq n \}; \\ \mathbf{D}_{n}^{+} &= \{ \mathbf{e}_{i} + \mathbf{e}_{j} \, ; \, 1 \leq i < j \leq n \} \cup \{ \mathbf{e}_{i} - \mathbf{e}_{j} \, ; \, 1 \leq i < j \leq n \}; \\ \mathbf{BC}_{n}^{+} &= \mathbf{B}_{n}^{+} \cup \mathbf{C}_{n}^{+}. \end{aligned}$$

Let, in addition, $\tilde{\Phi}^+ = \Phi^+ \cup \{(0,0,\ldots,0)\}$, where $\Phi = \mathbf{A}_{n-1}, \mathbf{B}_n, \mathbf{C}_n, \mathbf{D}_n$ or \mathbf{BC}_n and where $(0,0,\ldots,0)$ is the origin of \mathbb{R}^n .

In their combinatorial study of hypergeometric functions associated with root systems, Gelfand, Graev and Postnikov [2, Theorem 6.3] discovered a squarefree quadratic initial ideal of the toric ideal $I_{\widetilde{\mathbf{A}}_{n-1}^+}$ of $\widetilde{\mathbf{A}}_{n-1}^+$. Moreover, for any subconfiguration \mathcal{A} of \mathbf{A}_{n-1}^+ , the configuration $\widetilde{\mathcal{A}} = \mathcal{A} \cup (0,0,\ldots,0)$ possesses a regular unimodular triangulation ([7, Example 2.4 (a)]). Stanley [8, Exercise 6.31 (b), p. 234] computed the Ehrhart polynomial of the convex polytope $\mathrm{conv}(\widetilde{\mathbf{A}}_{n-1}^+)$. Fong [1] constructed certain triangulations of the configurations $\widetilde{\mathbf{B}}_n^+$ (= $\mathrm{conv}(\widetilde{\mathbf{D}}_n^+) \cap \mathbb{Z}^n$)

and $\operatorname{conv}(\widetilde{\mathbf{C}}_n^+) \cap \mathbb{Z}^n$ (= $\widetilde{\mathbf{BC}}_n^+$), and computes the Ehrhart polynomials of $\operatorname{conv}(\widetilde{\mathbf{B}}_n^+)$ and $\operatorname{conv}(\widetilde{\mathbf{C}}_n^+)$. The triangulations studied in [1] are, however, non-unimodular. Motivated by their results, Ohsugi-Hibi [6] showed that

Proposition 0.1. Let $\Phi \subset \mathbb{Z}^n$ be one of the root systems A_{n-1} , B_n , C_n , D_n and BC_n . Then, there exists a reverse lexicographic order such that the initial ideal of $I_{\widetilde{\Phi}^+}$ is generated by squarefree quadratic monomials.

Moreover, Ohsugi-Hibi [5] discussed subconfigurations $\widetilde{\mathcal{A}} = \mathcal{A} \cup \{(0,0,\ldots,0)\}$ of $\widetilde{\mathbf{B}}_n^+ \cup \widetilde{\mathbf{C}}_n^+$ which possesses a (regular) unimodular triangulation (i.e., $I_{\widetilde{\mathcal{A}}}$ which possesses a squarefree initial ideal).

Hence, it is natural to study the same problem as above for I_{Φ^+} where $\Phi \subset \mathbb{Z}^n$ is one of the root systems A_{n-1} , B_n , C_n , D_n and BC_n . (Then, I_{Φ^+} is not generated by quadratic binomials if $n \geq 6$.)

1. SQUAREFREE LEXICOGRAPHIC INITIAL IDEALS

Let $\Phi^+ \subset \mathbb{Z}^n$ denote one of the configurations \mathbf{A}_{n-1}^+ , \mathbf{B}_n^+ , \mathbf{C}_n^+ , \mathbf{D}_n^+ and $\mathbf{B}\mathbf{C}_n^+$. Let $K[\mathbf{A}_{n-1}^+]$, $K[\mathbf{B}_n^+]$, $K[\mathbf{C}_n^+]$, $K[\mathbf{D}_n^+]$ and $K[\mathbf{B}\mathbf{C}_n^+]$ denote the polynomial rings

$$\begin{array}{lcl} K[\mathbf{A}_{n-1}^{+}] & = & K[\{f_{i,j}\}_{1 \leq i < j \leq n}], \\ K[\mathbf{B}_{n}^{+}] & = & K[\{y_{i}\}_{1 \leq i \leq n} \cup \{e_{i,j}\}_{1 \leq i < j \leq n} \cup \{f_{i,j}\}_{1 \leq i < j \leq n}], \\ K[\mathbf{C}_{n}^{+}] & = & K[\{a_{i}\}_{1 \leq i \leq n} \cup \{e_{i,j}\}_{1 \leq i < j \leq n} \cup \{f_{i,j}\}_{1 \leq i < j \leq n}], \\ K[\mathbf{D}_{n}^{+}] & = & K[\{e_{i,j}\}_{1 \leq i < j \leq n} \cup \{f_{i,j}\}_{1 \leq i < j \leq n}], \\ K[\mathbf{BC}_{n}^{+}] & = & K[\{a_{i}\}_{1 \leq i \leq n} \cup \{y_{i}\}_{1 \leq i \leq n} \cup \{e_{i,j}\}_{1 \leq i < j \leq n} \cup \{f_{i,j}\}_{1 \leq i < j \leq n}] \end{array}$$

over K. Write $\pi: K[\Phi^+] \to K[\mathbf{t}, \mathbf{t}^{-1}, s]$ for the homomorphism defined by setting $\pi(a_i) = t_i^2 s$, $\pi(y_i) = t_i s$, $\pi(e_{i,j}) = t_i t_j s$, $\pi(f_{i,j}) = t_i t_j^{-1} s$.

Thus the kernel of π is the toric ideal I_{Φ^+} .

First, an explicit initial ideals of $I_{\mathbf{A}_{n-1}^+}$ generated by squarefree monomials of degree ≤ 3 will be constructed. Let $<_{lex}$ be the lexicographic order induced by the ordering of variables

$$f_{n-1,n} > f_{n-2,n-1} > f_{n-2,n} > \cdots > f_{1,2} > f_{1,3} > \cdots > f_{1,n}$$

and let $<_{rev}$ be the reverse lexicographic order induced by the ordering of variables

$$f_{n-1,n} > f_{n-2,n} > f_{n-2,n-1} > \cdots > f_{2,3} > f_{1,n} > \cdots > f_{1,3} > f_{1,2}.$$

Then, the reduced Gröbner basis with respect to $<_{lex}$ (and $<_{rev}$) is as follows.

Theorem 1.1 ([4]). The set of the binomials

$$\begin{array}{ccc} f_{i,\ell}f_{j,k} - f_{i,k}f_{j,\ell}, & i < j < k < \ell, \\ f_{i,j}f_{j,k} - f_{i,i+1}f_{i+1,k}, & i+1 < j < k, \\ f_{i,j}f_{k,k+1}f_{k+1,\ell} - f_{i,i+1}f_{i+1,j}f_{k,\ell}, & i+1 < j < k < \ell-1, \end{array}$$

is the reduced Gröbner basis of the toric ideal $I_{\mathbf{A}_{n-1}^+}$ with respect to both $<_{lex}$ and $<_{rev}$, where the initial monomial of each binomial is the first monomial.

Then, we can associate the initial ideal of $I_{\mathbf{A}_{n-1}^+}$ with respect to $<_{lex}$ with the regular unimodular triangulation $\Delta_{<_{lex}}$. A graph-theoretical characterization of the maximal faces of the triangulation $\Delta_{<_{lex}}$ is given in [4].

Second, we discuss the existence of squarefree initial ideals of the toric ideal I_{Φ^+} where $\Phi \subset \mathbb{Z}^n$ is one of the root systems \mathbf{B}_n , \mathbf{C}_n , \mathbf{D}_n and \mathbf{BC}_n . The similar argument as in [5] plays an important role in the proof of Theorems 1.2 and 1.4.

Let $<_{lex}^c$ be the lexicographic order induced by the ordering of variables

$$a_1 > a_2 > \dots > a_n$$

$$> f_{n-1,n} > f_{n-2,n-1} > f_{n-2,n} > \dots > f_{1,2} > f_{1,3} > \dots > f_{1,n}$$

$$> e_{n-1,n} > e_{n-2,n-1} > e_{n-2,n} > \dots > e_{1,2} > e_{1,3} > \dots > e_{1,n}.$$

Theorem 1.2. The initial ideal of the toric ideal $I_{\mathbf{C}_n^+}$ with respect to $<_{lex}^c$ is generated by squarefree monomials.

Let $<_{lex}^d$ denote the lexicographic order obtained by restricting $<_{lex}^c$ to $K[\mathbf{D}_n^+]$. By the elimination property of the lexicographic order $<_{lex}^c$, we have the following corollary from Theorem 1.2.

Corollary 1.3. The initial ideal of the toric ideal $I_{\mathbf{D}_n^+}$ with respect to $<_{lex}^d$ is generated by squarefree monomials.

We now consider the root systems \mathbf{B}_n and \mathbf{BC}_n . Let $<_{lex}^{bc}$ be the lexicographic order induced by the ordering of variables

$$\begin{array}{l} a_1 > a_2 > \cdots > a_n \\ > e_{n-1,n} > e_{n-2,n-1} > e_{n-2,n-1} > \cdots > e_{1,2} > e_{1,3} > \cdots > e_{1,n} \\ > y_1 > y_2 > \cdots > y_n \\ > f_{n-1,n} > f_{n-2,n-1} > f_{n-2,n-1} > \cdots > f_{1,2} > f_{1,3} > \cdots > f_{1,n}. \end{array}$$

Theorem 1.4. The initial ideal of the toric ideal $I_{\mathbf{BC}_n^+}$ with respect to $<_{lex}^{bc}$ is generated by squarefree monomials.

Let $<_{lex}^b$ denote the lexicographic order obtained by restricting $<_{lex}^{bc}$ to $K[\mathbf{B}_n^+]$. By the elimination property of the lexicographic order $<_{lex}^{bc}$, we have the following corollary from Theorem 1.4.

Corollary 1.5. The initial ideal of the toric ideal $I_{\mathbf{B}_n^+}$ with respect to $<_{lex}^b$ is generated by squarefree monomials.

Remark 1.6. Let $n \geq 6$ and let Φ^+ denote one of the configurations \mathbf{A}_{n-1}^+ , \mathbf{B}_n^+ , \mathbf{C}_n^+ , \mathbf{D}_n^+ and \mathbf{BC}_n^+ . Then I_{Φ^+} is not generated by quadratic binomials. Hence, in particular, I_{Φ^+} does not possess a quadratic Gröbner basis.

REFERENCES

- [1] W. Fong, Triangulations and Combinatorial Properties of Convex Polytopes, Dissertation, M. I. T., June, 2000.
- [2] I. M. Gelfand, M. I. Graev and A. Postnikov, Combinatorics of hypergeometric functions associated with positive roots, in "Arnold-Gelfand Mathematics Seminars, Geometry and Singularity Theory" (V. I. Arnold, I. M. Gelfand, M. Smirnov and V. S. Retakh, Eds.), Birkhäuser, Boston, 1997, pp. 205 221.
- [3] J. E. Humphreys, "Introduction to Lie Algebras and Representation Theory," Second Printing, Revised, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
- [4] T. Kitamura, H. Ohsugi and T. Hibi, Gröbner bases associated with positive roots and Catalan numbers, preprint.
- [5] H. Ohsugi and T. Hibi, Unimodular triangulations and coverings of configurations arising from root systems, J. Algebraic Combinatorics, 14 (2001), 199 219.
- [6] H. Ohsugi and T. Hibi, Quadratic initial ideals of root systems, *Proc. Amer. Math. Soc.*, 130 (2002), 1913 1922.
- [7] R. P. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333 342.
- [8] R. P. Stanley, "Enumerative Combinatorics, Volume II," Cambridge University Press, Cambridge, New York, Sydney, 1999.
- [9] B. Sturmfels, "Gröbner Bases and Convex Polytopes," Amer. Math. Soc., Providence, RI, 1995.

Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, Tokyo 171–8501, Japan E-mail: ohsugi@rkmath.rikkyo.ac.jp