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Let u,v € X* be words over an alphabet X. Then the set {ujviusvs ... upv,
| v = wug... Up, ¥ = V1Vg...Vpn, Uy, V1, Uz, Vs .., Upn, Uy € X*,n > 1} is
called the shuffle product of u and v, and denoted by u ¢ v. For languages
A,B C X*, the set Ao B = Uyeaepu ©v is called the shuffle product of
A and B. In this paper, we consider the following problem: Let A, B C
X* be regular languages. Then can we obtain a solution C C X* of the
language equation A = B ¢ C? Obviously, this problem is equivalent to the
shuffle decomposition problem for regular languages. Regarding definitions
and notations concerning formal languages and automata, not defined in this
paper, refer, for instance, to [1].

Now let A = (5, X, 6, 0, F) be a finite automaton with 7(A) = A and
let B =(T,X,~,t0,G) be a finite automaton with 7(B) = B. We will look
for a regular language C over X such that A = BoC. By X, we denote the
language {@ | a € X} with XN X = 0. Let B = (T, X UX U {#},7,t,G)
where 7 is defined as follows:

For t € T and a € X, F(t,a) = t, 7(t,a) = v(t,a). Moreover, F(t,#) =t

ifted.

Then the following can be easily shown.

Fact 1 Let a;a,...a, € X* wherea; € X,1=1,2,...,n. Then a1ay...a, €
T (B) if and only if uy@us@; . .. UnGnUnt1#F € T(B) where uy,uy,...,u, €
X*.

Let A; = (5, X UX U {#},9,50,{a,w}) and let A, = (S, X UX U
{#},6, 50, {a}) where § = (Uzexu(eyS@) U {a,w}. Here S is regarded as
S where € is the empty word. For s € S;t € S\ F,t' € Fa€ XU {e},be X
and {#}, 6 is defined as follows:



8(s', b) = 6(s, b)), 8(s(*),B) = &(s,b)®), (), #) = {a} and 3(+'®, #)
= {w}.

We consider the following two automata:

C] = (? X T,X U—X—U {#},3 X%, (So,to), {a,w} X G), 02 = (-g X T,XU
X U {#},8 x 7, (30, o), {a} x G) where § x 7((3,1),a) = (3(3, a),¥(t,a))
for (5,t) € S x T and a € X.

Now consider the following homomorphism p of (X UX U {#})* into X*:
p(a) =afora € X, p(@) =cfora € X and p(#) =«

Lemma 1 Automata accepting the languages p(T(C,)) and p(T(C;)) can be
effectively constructed.

Proof Let ¢ = 1,2. From C;, we can construct a regular grammar G; such
that £(G;) = T(C;) with the production rules of the form A — aB (A, B are
variables and @ € X UX U {#}). Replacing every rule of the form A — aB
in G; by A — p(a)B, we can obtain a new grammar G!. Then it is clear that
p(L(C;)) = L(G!). Using this grammar G!, we can construct an automaton
D; such that T(D;) = T(G!) i.e. p(T(C;)) = T(D;). Notice that all the above

procedures are effectively done. This completes the proof of the lemma.

Let B,C C X*. By B o C we denote the shuffie product of B and C, i.e.
{urv1ugvs . . UV, | ¥ = ujup .. uy € Byv = vyvy...v, € A}

Proposition 1 Let u € X*. Then {u}oB C A if and only if u € p(T(C;)) \
p(T(Cz)).

Proof (=) Let u = wju;...upu,y; € X* and let aya;...a, € B where
UL, U2,y ...y Un,Uny1 € X* and ay,a,,...,a, € X. Then 3)(7((30, to), U1 @1 U@,
N unaﬂunﬂ#) = (3(30, U1A1U2G7 . . . unﬁnun+1#),7(to, UG U203 . . . un'dnunﬂ
#)) = (3(5(30,11101“202 .. -Unanun+1)(°"),#),7(’7(30, aaz... an)(a“), #)) =
(w,7(to, @102 ... a,)) € {w}xG. Therefore, u @ us@; . . . UnBpUnp1F# € T(C)\
T (Cz). Hence u = ujuz ... Uptns1 = p(u1@1Us@s . . . UnBrlin 1 #) € p(T(C1))\
p(T(Cs)).

(<) Suppose that uo B C A does not hold though u € p(T(Cy)) \ p(7(C,)).
Then there exist u = wjuy...uzupy; € X* and aya;...a, € B such that
U181U203 . . . UnGrlnyy § A. Hence F(to, u1G1u2@; . . . UnBpUns1#) = F(7(to, a1
as...a,),#) =7(to,a1a;...a,) € G. On the other hand, since u;a;,uqa, . . . u,
Antnyy & A, we have §(so, 1@ UsT; . . . UpBptin 1 F#) = 6(6(s0,ura 20, ... ua,



Uny1)®), #) = {a}. Hence & x7((s0,%0), U1@1U2@2 . . - UnbnUnt1F#) € {a} X G,
l.e. U A ULA; . . . UpTrUns1FF € T(Cy). Therefore, u = p(u1G1u@; . . . UpTpUnyy
#) € p(T(Cz)). On the other hand, it is obvious that u1@ us@s . . . UnBnUnp1 F#
€ T(Cy). Thus u ¢ p(T(C1)) \ p(T(C2)), a contradiction. Consequently, the
proposition must hold true.

Corollary In the above, B o (p(T(C1)) \ p(T(C2))) C A.

Let L C X* be a regular language over X. By #L, we denote the number
min{|S| | 3A = (5, X, 6,0, F),L = T(A)} where |S| denotes the cardinality
of S. Moreover, Z(n, X) denotes the class of languages {L C X* | #L < n}.

Theorem 1 Let A C X* and let n be a positive integer. Then it is decidable
whether there ezist nontrivial reqular languages B € I(n,X) and C C X*
such that A = Bo C. Here a language D C X* is said to be nontrivial if
D # {e}.

Proof Let A C X* be a regular language. Assume that there exist nontrivial
regular languages B € I(n,X) and C C X* such that A= Bo C. Then, by
Proposition 1 and its corollary, C C p(7T(C1)) \ p(T(C2)) and B o (p(7 (C1)) \
p(T(C2))) € A. Hence A = Bo (p(T(C1)) \ p(7(Cz))). Thus we have the
following algorithm: (1) Choose a nontrivial regular language B C X* from
I(n, X) and construct the language p(7(C;)) \ p(7 (C2)) (see Lemma 1). (2)
Let C = p(T(C1)) \ p(T(C2)). (3) Compute BoC. (4) If A= BoC, then
the output is "YES” and "NO”, otherwise. (4) If the output is "NO”, then
choose another element in Z(n,X) as B and continue the procedures (1) -
(3). (5) Since I(n,X) is a finite set, the above process terminates after a
finite-step trial. Once one gets the output ”YES”, then there exist nontrivial
regular languages B € Z(n, X) and C C X* such that A = BoC. Otherwise,
there are no such languages.

Let n be a positive integer. By F(n, X ), we denote the class of finite
languages {L C X* | maz{|u| | v € L} < n} where |u] is the length of w.
Then the following result by C. Campeanu et al. ([2]) can be obtained as a
corollary of the above theorem.

Corollary For a given positive integer n and a regular language A C X*,
the problem whether A = B o C for a nontrivial language B € F(n, X) and
a nontrivial regular language C C X* is decidable.
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Proof Obvious from the fact that F(n, X) C I(|X|"*}, X).
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