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Abstract. A regular omega language is the omega language which
is recognised by a Buchi automaton. A normal open set is an open
set which is equal to the internal kernel of its closure. This paper
shows that for each regular language, there exists a normal open set
which is equal to the regular language except for the area of a null
set as the error, and that the measure of the boundary of the normal
open set is zero.
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1 Introduction

A regular omega language is the omega language which is recognised by a Buchi
automaton. After one of the earliest studies was made by Biichi as in the
literature [B], there have been many studies on regular omega languages, which
appear in the literatures [S97, T).

A normal open set is an open set which is equal to the internal kernel of its
closure. This property is natural for the shapes of real material objects.

The main result of this paper is the following: for each regular language,
there exists a normal open set which is equal to the regular language except for
the area of a null set, and that the measure of the boundary is 0.

This paper shows two ways of the proofs of the main theorem. One proves
the theorem directly, and the other proves a little extended theorem, which is
the theorem for finite-state omega languages. All the regular omega languages
are finite-state, although not all finite-state omega languages are regular.

In both proofs, we will use decomposition lemmata. One is Lemma 5.2 for
regular omega languages, and it appears in the literature [S98]. The other is
Lemma 6.8 for finite-state languages, and it is proved for the first time in this

paper.

2 Regular omega languages

Notation 2.1 Let X be a finite set of characters.
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The empty word is written as e. Forw € XY* and z € Z*U X%, w C z iff
w# xand z =w-y for some y € X*U XY, For W C X*, the set W% is the set
of all the w-words which have the form w;ws... where w; € W — {e} for each 3.

We use the notations U and U(w) suchas U = X¥ and U(w) = w-X¥ C I¥
for w € X*.

Definition 2.2 (Regular omega languages) A set X C U is regular iff it is
recognised by some Buchi automaton.

Notation 2.3 A subset of U = X“ is usually called an omega language, and
a regular subset of X% is called an regular omega language. We call an omega
language a set in this paper. Thus, a regular omega language is called a regular
set.

Notation 2.4 We call a subset of X* a language. We use the word of regu-
lar languages as the ordinary definition, which is defined with ordinary finite
automata.

Proposition 2.5 (Biichi ’60) Let X,Y C U be regular sets. Then X UY,
XNY and X —Y are also regular.

Definition 2.6 (Measure) Let n be the number of symbols in X'. Then for a
set X C U, the measure p(X) is defined as:

w(X) =inf{ 3 p—length(ws)
iel

Remark 2.7 This pu(X) is usually called the outer measure.

Definition 2.8 (Measurability) A set X is measurableiff (X)) +u(U—-X) =
1. ‘

Remark 2.9 If X C U is a Foé-set, then X is measurable. All the regular
sets are Fod-sets. Therefore, a regular set is measurable.

3 Normal sets

Notation 3.1 Let X be a subset of U. The notation GX is written for the
internal kernel of X, that is, X = J{U(w) | w € Z*,U(w) C X}. The
notation FX is written for the closure of X, that is, FX = U — G(U — X). The
notation X is written for FX — GX, which is the boundary of X.

Remark 3.2 For X CU and z € U, z € FX iff for each w C z, thereisy € U
such that w C y € X.
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Proposition 3.3 For a regular set X C U, the internal kernel GX and the
closure FX are also regular.

Definition 3.4 (Normality) A set X C U is an normal open set iff X = GF X .
A set X C U is a normal closed set iff X = FGX.

Remark 3.5 For each set X C U, the set GFX is a normal open set and the
set FGX is a normal closed set.

Definition 3.6 (Almost equality) For sets X,Y C U, the set Y is almost
equalto X ff u(X - Y)=pu(Y - X)=0.

Remark 3.7 The almost equality is a equivalence relation. Thus, if X is almost
equal to Y, and Y is almost equal to Z, then X is almost equal to Z.

Proposition 3.8 Let X,Y be subsets of U. If X is open and almost equal to
Y, then X C FY.

Proof. X —FY isopen and u(X —FY) < u(X —Y) = 0. Therefore X —FY =
A. ]

Lemma 3.9 (Uniqueness) Let X,Y, and Z be subsets of U. Suppose that
bothY and Z are normal open sets both of which are almost equal to X. Then
Y =2Z.

Proof. By Proposition 3.8, we have Y C ¥Z,thus Y = GY C GFZ = Z, and
vice visa. 1

Proposition 3.10 Let X C U be a closed set such that u(8X) > 0. Then there
are no normal open set Y C U which is almost equal to X .

Proof. Suppose that a normal open set Y is almost equal to X. Then, by
Proposition 3.8, we have Y C X = X, Hence Y = GY C GX = X - 0X,
therefore u(X —Y) > u(0X) > 0. |

Example 3.11 There is a normal closed set X such that u(6X) > 0.

Let X consist of two symbols @ and b. Put A, CU as Ay = ¥ -a-U, and
B, CcUasB; = X4-b2-U — A,. The sets A; and B; are defined as the following
for i > 2.
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The sets 4, B,C and X is defined as: A :=UA;, B:=UB;, C:=U - 4- B,
X:=AUC =U - B. Then GX = A and FA = X, thus X is a normal closed
set. It holds that 8X = C and u(C) = (1 — 1/2*) > 1/8.

Therefore, it does not hold for each measurable set X C U that there is a
normal open set Y which is almost equal to X.

Remark 3.12 Let X C U be a measurable set. Put F and G as:

F=({Y CU|Y is closed, u(X — Y) = 0},

G = U{Y C U |Y is open,u(Y — X) = 0}.

Then, the set F is the least closed set such that u(X — F) = 0, and the set G is
the greatest open set such that u(G—X) = 0. It holds that X C G C F C 7 X.
If there are open sets which are almost equal to X, then G is the greatest of
them, and it holds that F = FG and G = GF, thus G is a normal open set.
If 4(6X) =0, then G = GFX and G is almost equal to X.

4 Finite-state sets and strongly connected sets

Definition 4.1 (States) For X C U and w € £*, we write X /w for {z € U |
w-z € X},and S(X) for {Y CU |w e Z*,Y = X/w}. We call a set in S(X)
States of X.

Definition 4.2 (Finite-state sets) A set X C U is finite-state iff S(X) is
finite.

Proposition 4.3 Each regular set is finite-state.

Proposition 4.4 Let X C U be finite-state and Y € S(X). Then {w € L |
Y = X/w} is ¢ regular language.

Definition 4.5 (Nowhere-denseness) A set X is nowhere denseiff @ € S(Y)
for each Y € S(X)

Remark 4.6 A set X C U is nowhere dense iff GF X = 0.

Definition 4.7 (Strong connectedness) A set X € U is strongly connected
iff either X € S(Y) or Y = @ for each Y € S(X) :

Remark 4.8 This notion appears in the literature [S83].

Proposition 4.9 If a set X is strongly connected and © ¢ S(X), then X is
dense in U. If a set X is strongly connected and @ € S(X), then X is nowhere-
dense. Thus, a strongly connected set is either dense in U or nowhere dense.
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Proof. First we suppose that X is strongly connected and @ ¢ S(X). For each
w € X", we have X/w # @, therefore X N U(w) # @. Thus X is dense. Next
we suppose that X is strongly connected and @ € §(X). For each Y € §(X), it
holds either Y =@ or Y # @. f Y # 0, then X € S(Y). And also @ € S(X).
Therefore @ € S(Y'). Thus X is nowhere dense. |

Proposition 4.10 Let X be a subset of U. If u(X) = 0 then u(Y) = 0 for
each Y € S(X). If n(X) =1 then u(Y) =1 for each Y € S(X).

Lemma 4.11 For each finite-state set X C U, either u(X) = 0 or there is a
Y € §(X) such that u(Y) = 1.

Proof. Corollary 13 in [MS]. 1

Proposition 4.12 For each strongly connected finite-state set X, u(X) =1 or
u(X)=0.

Proof. By Proposition 4.10 and Lemma 4.11. |
Proposition 4.13 The measure of a nowhere dense finite-state set is 0.

Proof. By Proposition 4.10 and Lemma 4.11. 1

5 Main theorem
Proposition 5.1 If a set X is regular and open, then u(0X) = 0.

Proof. By Propositions 3.3 and 2.5, the 8X = FX — GX is regular. As the
definition, 70X = 0X. Because X isopen, X = FX —GX = FX — X. Hence
GFOX = G(FX - X) =GFX — FX = @. By Remark 4.6, X is nowhere
dense. Thus we have u(8X) = 0 by Proposition 4.13 ]

Lemma 5.2 (Staiger '98) Let X be a regular set. Then there is a finite indez
set I and regular languages V; and prefiz-free regular languages W; for eachi € I
such that the following hold.

-X= U Vi-wp
iel

~Vi WEOV; - WE =0 fori#j
—v-WeNV - W¢ =0 for v,v' €V, such that v # v'

Proof. In [S98]. 1

Proposition 5.3 Let V C X* be prefiz-free and regular. Then, u(FVY) =
w(vVe).

Proof. Theorem 6 in [MS]. 1
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Lemma 5.4 Let X be a reqular set. Then there is a regular language V' such
that X is almost equal to V - U.

Proof. Put I, V;’s and W;’s as in Lemma 5.2 for X. Put J C I and Y C U
asJ ={i el |puW; -U)=1}and Y = |J Vi- Wg. It is obvious that
i€J
p(We) =1ifie Jand p(W¢) =0ifi ¢ J. Then, ¥ C X and p(X - Y) =
Z Ju(Vi - W#) = 0. Therefore, Y is almost equal to X.
ieT-
Next, put V. C Z* as V = |J V;. The language V is regular. Then,
i€J
V.UDY, and u(Y) = ’;Ju(Vi -U) = w(V - U). Therefore, V - U is almost
1

equal to Y. ]

Theorem 5.5 (Main theorem for regular sets) Let X C U be a regular
set. Then, there is a normal open set Y such that Y is almost equal to X and
u(@Y) = 0.

Proof. Put V C X* as in Lemma 5.4 for X. Then, X is almost equal to V - U.
By Proposition 5.1, u(8V -U) = 0. We have V -U C GF(V -U) C F(V -U),
hence u(V - U) = u(8GF(V -U)) = 0. Therefore, V - U is almost equal to a
normal open regular set GF(V - U). |

6 Main theorem for finite-state sets

Definition 6.1 (Connected part) For X C U, the connected part C(X) is
defined as: C(X) ={z € X |Vw C z.X € S(X/w)}.

Remark 6.2 This notion appears in the literature [S83]. The definition here
is equivalent to that in [S83] as the next proposition.

Proposition 6.3 Let X be a subet in U. Put W C Z* such as w € W iff
w# e and X = X/w and for eachv C w, either v = e or X # X/v.
Then C(X) = X N F(WY).

Proof. As Remark 3.2, we point out that z € F (W) iff for each v C z, there is
y € U such that v-y € WY, which is equivalent to v-w € W™ for some w € L*.
Moreover, v-w € W* is equivalent to X = X/vw = (X/v)/w. Hencev-w € W*
for some w iff X € S(X/v). Therefore we have that € F(W*) iff X € S(X/v)
for each v C z. Thus, the asserted equation is obtained immediately from the
definition of C(X). ]

Proposition 6.4 If X C U is measurable, then so is C(X).

Proof. Put W C X* as in Proposition 6.3. Then both X and F(W%) are
measurable, then so is C(X) = X N F(W¥). 1

i



Proposition 6.5 (Linearity) If C(X)/w # O then C(X/w) = C(X)/w.

Proof. First we will show C(X/w) C C(X)/w. Put y € C(X)/w, because
C(X)/w # @. Then w-y € C(X). Therefore X € S(X/w). Let z be an
arbitrary element of C(X/w). Then X/w € S(X/wv) for each v C z. Thus
X € S(X/w) C S(X/wv) for each v C z. On the other hand, we have that for
each u C w - z, there is v such that u C w - v. It implies X € S(X/u) for each
u C w-z. Thusw-z € C(X), that is z € C(X)/w. Therefore C(X/w) C C(X)/w.

Next we will show C(X)/w C C(X/w). Let 2 be an arbitrary element of
C(X)/w. Then w-z € C(X). Thus X € S(X/wv) for each v C 2. Hence
X/w € §(X) C S(X/wv) for each v C . Therefore C(X/w) C C(X)/w. ]

Proposition 6.6 (Staiger ’83) For X C U, the connective part C(X) is
strongly connected.

Proof. Lemma 16 in [S83]. 1

Lemma 6.7 (Staiger ’83) Let X be a finite-state set. Then for each z € X,
there is w € X* andy € X/w such that z = w -y and y € C(X/w).

Proof. The equation (23) in [S83]. ]

Lemma 6.8 (Decomposition lemma) For each measurable finite-state set
X, there are a nowhere dense set Z, a finite index set I and indezed families
{Wilier and {Y;}ier such that

X= WY
iel

where each W; is a prefiz-free regular language, each Y; is a measurable strongly
connected finite-state set, and W; - Y;NW; - Y; = @ for any i # j.

Proof. Put I = {1,2,...,k} and Z, Z,, ..., Zy, such as {Z,,2s,..,2Z} = {Z €
S(X)|C(Z2)# @} and Z; # Zj for i # j. Put Y; as Y; = C(Z;) for each i € I.
For each i € I, let W; C £* be the language such that w € W; iff

X/w = Z; and there are no v C w such that X/v € §(Z;).

We have that W; is regular. Moreover it is obvious that W; is prefix-free.

First we show that W; - Y; C X. It holds because for each w € W;, we have
X/'w= Zi,thusw-Z; C X,and Y; C Z;.

Next we show that X C W;-Y;. Put z as x € X. As Lemma 6.7, there are
some pairs of (w,y)’s such that £ = w -y and y € C(X/w). Put (w,y) as w is
the shortest, that is, there arenov € £* and z € U suchthat v Cw,z =v - z
and z € C(X/z). PutiasY; = X/w. Thenw € W; and y € Y;, thus z € W; - Y..

Lastly we show that W; - Y; N W, -Y; = O for any i # j. Suppose that
zeW, - Y;nW;.Y; for some z € U and i # j. Then there are v € W;,w €
Wi,y € Y; and z € Y; such that £ = wy = vz. We have v # w because
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X/v = Z; # Z; = X/w. Without loss of generousity, we assume that vu = w
for some u € X*. Then y = uz € Y; = C(X/v), thus X/vuu' = X/v for
some u' € X*. Hence (X/w)/u' = X/v, which implies X/v € S(X/w). This
contradicts to w € W;, because v C w and X/v € §(Z;), although w € W
implies there is no such v. 1

Proposition 6.9 Put X, W;’s and Y; as in the previous lemma. If i # 7 and
both Y; and Y; are dense, then W; - UNW; - U=0.

Proof. We will modify the last part of the proof of the previous lemma a little
bit. Suppose z € W; - U NW; - U. Then there are v € W; and w € W; such
that v C z and w C z. We have v # w because X/v = Z; # Z; = X/w.
Without loss of generousity, we assume that vu = w for some u € L. We have
Vi -U c F(V; - Y;) because Y; is dense i U. Thereforevu =w C z € F(V; - Y;).
Then uz € Y; = C(X/v) for some z, thus X/vuu' = X/v for some v’ € I*.
Hence (X/w)/u' = X/v, which implies X/v € S(X/w). This contradicts to
w € W;, because v C w and X/v € §(Z;), although w € W; implies there is no
such v. ]

Lemma 6.10 Let X C U be a measurable finite-state set. Then there is a
reqular language V such that X is almost equal to V - U.

Proof. Put I, W;’s and Y;’s as in Lemma 6.8 for X. By Proposition 6.4, each
Y; is measurable. Put J ¢ T and Y c U as J = {i € T | u(Y;) = 1} and

Y= W Y. Then,Y C X and p(X - Y) = }; w(W; - Y;) = 0. Hence
i€J i€T—-J
Y is almost equal to X.
Next,put V C Z* asV = |J W;. The language V is regular. Then,V DY,
i€J
and pu(Y) = .;Ju(Vi -U) = w(V - U). Therefore, V - U is almost equal to Y. §
1

Theorem 6.11 (Main theorem for finite-state sets) Let X C U be mea-
surable and finite-state. Then, there is a normal open set Y such that Y is
almost equal to X and u(0Y) =0.

Proof. Similar to Theorem 5.5 with referring Lemma 6.10 instead of Lemma
5.4. ]
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