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Abstract. Aregular omega language is the omega language which
is recognised by aBuchi automaton. Anormal open set is an open
set which is equal to the internal kernel of its closure. This paper
shows that for each regular language, there exists anormal open set
which is equal to the regular language except for the area of anull
set as the error, and that the measure of the boundary of the normal
open set is zero.
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1 Introduction
A regular omega language is the omega language which is recognised by aBuchi
automaton. After one of the earliest studies was made by Biichi as in the
literature [B], there have been many studies on regular omega languages, which
appear in the literatures [S97, $\mathrm{T}$].

A normal open set is an open set which is equal to the internal kernel of its
closure. This property is natural for the shapes of real material objects.

The main result of this paper is the following: for each regular language,
there exists anormal open set which is equal to the regular language except for
the area of anull set, and that the measure of the boundary is 0.

This paper shows two ways of the proofs of the main theorem. One proves
the theorem directly, and the other proves alittle extended theorem, which is
the theorem for finite-state omega languages. All the regular omega languages
are finite-state, although not all finite-state omega languages are regular.

In both proofs, we will use decomposition lemmata. One is Lemma 5.2 for
regular omega languages, and it appears in the literature [S98]. The other is
Lemma 6.8 for finite-state languages, and it is proved for the first time in this
paper.

2Regular omega languages
Notation 2.1 Let $\Sigma$ be afinite set of characters
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The empty word is written as $e$ . For $w\in\Sigma^{*}$ and $x\in\Sigma^{*}\cup\Sigma^{\omega}$ , $w\subset x$ iff
$w\neq x$ and $x=w\cdot$ $y$ for some $y\in\Sigma^{*}\cup\Sigma^{\omega}$ . For $W\subset\Sigma^{*}$ , the set $\mathrm{T}/V^{\omega}$ is the set
of all the $\omega$-words which have the form $w_{1}w_{2}\ldots$ where $w_{i}\in W-\{e\}$ for each $i$ .

We use the notations $U$ and $U(w)$ such as $U=\Sigma^{\omega}$ and $U(w)=w\cdot$ $\Sigma^{\omega}\subset\Sigma$’

for $w\in\Sigma^{*}$ .

Definition 2.2 (Regular omega languages) Aset $X\subset U$ is regular iff it is
recognised by some Buchi automaton.

Notation 2.3 Asubset of $U=\Sigma^{\omega}$ is usually called an omega language, and
aregular subset of $\Sigma^{\omega}$ is called an regular omega language. We call an omega
language aset in this paper. Thus, aregular omega language is called aregular
set.

Notation 2.4 We call asubset of $\Sigma^{*}$ a language. We use the word of regu-
lar languages as the ordinary definition, which is defined with ordinary finite
automata.

Proposition 2.5 (Biichi ’60) Let $X$ , $\mathrm{Y}\subset U$ be regular sets. Then $X\cup \mathrm{Y}$ ,
$X\cap \mathrm{Y}$ and $X-\mathrm{Y}$ are also regular.

Definition 2.6 (Measure) Let $n$ be the number of symbols in $\Sigma$ . Then for a
set $X\subset U$ , the measure $\mu(X)$ is defined as:

$\mu(X)=\inf\{\sum_{i\in I}n^{-1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}11(w_{i})}|X\subset\bigcup_{i\in I}U(w_{i})\}$ .

Remark 2.7 This $\mu(X)$ is usually called the outer measure.

Definition 2.8 (Measurability) Aset X is measurable iff $\mu(X)+\mu(U-X)=$
1.

Remark 2.9 If $X\subset U$ is a $F\sigma\delta$-set, then $X$ is measurable. All the regular
sets are $F\sigma\delta$-sets. Therefore, aregular set is measurable.

3Normal sets
Notation 3.1 Let $X$ be asubset of $U$ . The notation $\mathcal{G}X$ is written for the
internal kernel of $X$ , that is, $\mathcal{G}X=\cup\{U(w)|w\in\Sigma^{*}, U(w)\subset X\}$ . The
notation $\mathcal{F}X$ is written for the closure of $X$ , that is, $\mathcal{F}X=U-\mathcal{G}(U-X)$ . The
notation $\partial X$ is written for $\mathcal{F}X-\mathcal{G}X$ , which is the boundary of $X$ .

Remark 3.2 For $X\subset U$ and $x\in U$ , $x\in \mathcal{F}X$ iff for each $w\subset x$ , there is $y\in U$

such that $w\subset y\in X$ .
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Proposition 3.3 For a regular set X $\subset U$ , the intermal kernel $\mathcal{G}X$ and the
closure $\mathcal{F}X$ are also regular.

Definition 3.4 (Normality) Aset $X\subset U$ is an normal open set iff $X=\mathcal{G}\mathcal{F}X$ .
A set $X\subset U$ is anormal closed set iff $X=\mathcal{F}\mathcal{G}X$ .

Remark 3.5 For each set X $\subset U$ , the set $\mathcal{G}\mathcal{F}X$ is anormal open set and the
set $\mathcal{F}\mathcal{G}X$ is anormal closed set.

Definition 3.6 (Almost equality) For sets $X$ , $\mathrm{Y}\subset U$ , the set $\mathrm{Y}$ is almost
equal to $X$ iff $\mu(X-\mathrm{Y})=\mu(\mathrm{Y}-X)=0$ .

Remark 3.7 The almost equality is aequivalence relation. Thus, ifX is almost
equal to Y, and Y is almost equal to Z, then X is almost equal to Z.

Proposition 3.8 Let $X$ , $\mathrm{Y}$ be subsets of U. If $X$ is open and almost equal to
$\mathrm{Y}$ , then $X\subset \mathcal{F}\mathrm{Y}$ .

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}\emptyset$

. X $-\mathcal{F}\mathrm{Y}$ is open and $\mu(X-\mathcal{F}\mathrm{Y})\leq\mu(X-\mathrm{Y})=0$ . Therefore X
$-\mathcal{F}\mathrm{Y}=|$

Lemma 3.9 (Uniqueness) Let $X$ , $\mathrm{Y}$ , and $Z$ be subsets of U. Suppose that
both $\mathrm{Y}$ and $Z$ are normal open sets both of which are almost equal to X. Then
$\mathrm{Y}=Z$ .

Proof. By Proposition 3.8, we have Y $\subset \mathrm{Q}\mathrm{T}\mathrm{X}$ . thus Y $=\mathcal{G}\mathrm{Y}\subset \mathcal{G}\mathcal{F}Z=Z$ , and
vice visa. $\mathrm{I}$

Proposition 3.10 Let $X\subset U$ be a closed set such that $\mu(\partial X)>0$ . Then there
are no normal open set $\mathrm{Y}\subset U$ which is almost equal to $X$ .

Proof. Suppose that anormal open set $\mathrm{Y}$ is almost equal to $X$ . Then, by
Proposition 3.8, we have $\mathrm{Y}\subset \mathcal{F}X=X$ , Hence $\mathrm{Y}=\mathcal{G}R\mathrm{Y}$ $\subset \mathcal{G}X=X-\partial X$ ,
therefore $\mu(X-\mathrm{Y})\geq\mu(\partial X)>0$ . I

Example 3.11 There is anormal closed set $X$ such that $\mu(\partial X)>0$ .
Let $\Sigma$ consist of two symbols $a$ and $b$ . Put $A_{1}\subset U$ as $A_{1}=\Sigma\cdot$ $a\cdot$ $U$ , and

$B_{1}\subset U$ as $B_{1}=\Sigma^{4}\cdot$ $b^{2}\cdot$ $U-A_{1}$ . The sets $A_{i}$ and $B_{i}$ are defined as the following
for $i\geq 2$ .

$A_{i}= \Sigma^{(2:-1)^{2}}\cdot a^{2i-1}\cdot U-(\bigcup_{j\leq\dot{l}-1}A_{j})-(\bigcup_{j\leq i-1}B_{j})$

B: $= \Sigma^{(2:)^{2}}\cdot b^{2i}\cdot U-(\bigcup_{j\leq i}A_{j})-(\bigcup_{j\leq i-1}B_{j})$
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The sets $A$ , $B$ , $C$ and $X$ is defined as: 14 $:=\cup A_{i}$ , $B:=\cup B_{i}$ , $C:=U-A-B$ ,
$X:=A\cup C=U$ – $B$ . Then $\mathcal{G}X=A$ and $\mathcal{F}A=X$ , thus $X$ is anormal closed
set. It holds that $\partial X=C$ and $\mu(C)=\prod_{i}(1-1/2^{i})>1/8$ .

Therefore, it does not hold for each measurable set $X\subset U$ that there is a
normal open set $\mathrm{Y}$ which is almost equal to $X$ .

Remark 3.12 Let X $\subset U$ be a measurable set. Put F and G as:

$F=\cap$ { $\mathrm{Y}\subset U|\mathrm{Y}$ is closed, $\mu(X-\mathrm{Y})=0$ },

$G=\cup$ { $\mathrm{Y}\subset U|\mathrm{Y}$ is open, $\mu(\mathrm{Y}-X)=0$ }.

Then, the set $F$ is the least closed set such that $\mu(X-F)=0$ , and the set $G$ is
the greatest open set such that $\mu(G-X)=0$ . It holds that $\mathcal{G}X\subset G\subset F\subset \mathcal{F}X$ .

If there are open sets which are almost equal to $X$ , then $G$ is the greatest of
them, and it holds that $F=\mathcal{F}G$ and $G=\mathcal{G}F$ , thus $G$ is anormal open set.

If $\mu(\partial X)=0$ , then $G=\mathcal{G}\mathcal{F}X$ and $G$ is almost equal to $X$ .

4Finite-state sets and strongly connected sets
Definition 4.1 (States) For $X\subset U$ and $w\in\Sigma^{*}$ , we write $X/w$ for $\{x\in U|$

$w\cdot x\in X\}$ , and $\mathrm{S}(\mathrm{X})$ for $\{\mathrm{Y}\subset U|w\in\Sigma^{*}, \mathrm{Y}=X/w\}$ . We call aset in $S(X)$

States of $X$ .

Definition 4.2 (Finite-state sets) Aset $X\subset U$ is finite-state iff $S(X)$ is
finite.

Proposition 4.3 Each regular set is finite-state.
Proposition 4.4 Let X $\subset U$ be finite-state and Y $\in S(X)$ . Then {w $\in\Sigma^{*}|$

Y $=X/w\}$ is d regular language.

Definition 4.5 (Nowhere-denseness) Aset $X$ is nowhere dense iff $\emptyset$ $\in S(\mathrm{Y})$

for each $\mathrm{Y}\in S(X)$

Remark 4.6 Aset X $\subset U$ is nowhere dense iff $\mathcal{G}\mathcal{F}X=\emptyset$ .

Definition 4.7 (Strong connectedness) Aset X $\in U$ is strongly connected
iff either X $\in S(\mathrm{Y})$ or Y $=\emptyset$ for each Y $\in S(X)$

Remark 4.8 This notion appears in the literature [S83].

Proposition 4.9 If a set $X$ is strongly connected and $\emptyset\not\in S(X)$ , then $X$ is
dense in U. If a set $X$ is strongly connected and $\emptyset\in S(X)$ , then $X$ is nowhere-
dense. Thus, a strongly connected set is either dense in $U$ or nowhere dense
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Proof. First we suppose that $X$ is strongly connected and $\emptyset\not\in S(X)$ . For each
$w\in\Sigma^{*}$ , we have $X/w\neq\emptyset$ , therefore $X\cap U(w)\neq\emptyset$ . Thus $X$ is dense. Next
we suppose that $X$ is strongly connected and $\emptyset\in S(X)$ . For each $\mathrm{Y}\in S(X)$ , it
holds either $\mathrm{Y}=\emptyset$ or $\mathrm{Y}\neq\emptyset$ . If $\mathrm{Y}\neq\emptyset$ , then $X\in S(\mathrm{Y})$ . And also $\emptyset\in S(X)$ .
Therefore $\emptyset\in S(\mathrm{Y})$ . Thus $X$ is nowhere dense. 1

Proposition 4.10 Let $X$ be a subset of U. If $\mu(X)=0$ then $\mu(\mathrm{Y})=0$ for
each $\mathrm{Y}\in S(X)$ . If $\mu(X)=1$ then $\mu(\mathrm{Y})=1$ for each $\mathrm{Y}\in S(X)$ .

Lemma 4.11 For each finite-state set $X\subset U$ , either $\mu(X)=0$ or there is $a$

$\mathrm{Y}\in S(X)$ such that $\mu(\mathrm{Y})=1$ .

Proof. Corollary 13 in [MS]. I

Proposition 4.12 For each strongly connected finite-state set $X$ , $\mu(X)=1$ or
$\mu(X)=0$ .

Proof. By Proposition 4.10 and Lemma 4.11. I

Proposition 4.13 The measure of a nowhere dense finite-state set is 0.

Proof. By Proposition 4.10 and Lemma 4.11. I

5 Main theorem
Proposition 5.1 If a set X is regular and open, then $\mu(\partial X)=0$ .

Proof. By Propositions 3.3 and 2.5, the $\partial X=\mathcal{F}X-\mathcal{G}X$ is regular. As the
definition, $\mathcal{F}\partial X=\partial X$ . Because $X$ is open, $\partial X=\mathcal{F}X-\mathcal{G}X=\mathcal{F}X-X$ . Hence
$\mathcal{G}\mathcal{F}\partial X=\mathcal{G}(\mathcal{F}X-X)=\mathcal{G}\mathcal{F}X-\mathcal{F}X=\emptyset$. By Remark 4.6, $\partial X$ is nowhere
dense. Thus we have $\mu(\partial X)=0$ by Proposition 4.13 I

Lemma 5.2 (Staiger ’98) Let $X$ be a regular set Then there is a finite index
set I and regular languages $V_{i}$ and prefix-free regular languages $W_{i}$ for each $i\in I$

such that the following hold.
$-X= \bigcup_{i\in I}V_{i}\cdot W_{i}^{\omega}$

$-V_{i}\cdot W_{i}^{\omega}\cap V_{j}\cdot W_{j}^{\omega}=\emptyset$ for $i\neq j$

$-v\cdot$ $W_{i}^{\omega}\cap v’\cdot$ $W_{i}^{\omega}=\emptyset$ for $v$ , $v’\in V_{i}$ such that $v\neq v’$

Proof. In [S98]. I

Proposition 5.3 Let $V\subset\Sigma^{\mathrm{r}}$ be prefi-ffee and regular. Then, $\mu(\mathcal{F}V^{\omega})=$

$\mu(V^{\omega})$ .

Proof. Theorem 6in [MS]. II
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Lernrna 5.4 Let X be a regular set. Then there is a regular language $VS’uch$

that X is almost equal to V. U.

Proof. Put $I$ , $V_{i}’ \mathrm{s}$ and $W_{i}’ \mathrm{s}$ as in Lemma 5.2 for $X$ . Put $J\subset I$ and $\mathrm{Y}\subset U$

as $J=\{i\in I|\mu(W_{i}\cdot U)=1\}$ and $\mathrm{Y}=i\bigcup_{\in J}V_{i}\cdot \mathrm{T}/V_{i}^{\omega}$
. It is obvious that

$\mu(W_{i}^{\omega})=1$ if $i\in J$ and $\mu(W_{i}^{\omega})=0$ if $i\not\in J$ . Then, $\mathrm{Y}\subset X$ and $\mu(X-\mathrm{Y})=$

$i \in\sum_{-J}\mu(V_{i}\cdot W_{i}^{\omega})=0$ . Therefore, $\mathrm{Y}$ is almost equal to $X$ .

Next, put $V\subset\Sigma^{*}$ as $V=i \bigcup_{\in J}V_{\mathrm{i}}$ . The language $V$ is regular. Then,

$V\cdot U\supset \mathrm{Y}$ , and $\mu(\mathrm{Y})=i\sum_{J}\mu(V_{i}\cdot U)=\mu(V\cdot U)$ . Therefore, $V\cdot U$ is almost

equal to Y. 1

Theorem 5.5 (Main theorem for regular sets) Let $X\subset U$ be a regular
set Then, there is a normal open set $\mathrm{Y}$ such that $\mathrm{Y}$ is almost equal to $X$ and
$\mu(\partial \mathrm{Y})=0$ .

Proof. Put $V\subset\Sigma^{*}$ as in Lemma 5.4 for $X$ . Then, $X$ is almost equal to $V\cdot$ $U$ .
By Proposition 5.1, $\mu(\partial V\cdot U)=0$ . We have $V\cdot$ $U\subset \mathcal{G}\mathcal{F}(V\cdot U)\subset \mathcal{F}(V\cdot U)$ ,
hence $\mu(V\cdot U)=\mu(\partial \mathcal{G}\mathcal{F}(V\cdot U))=0$ . Therefore, $V\cdot$ $U$ is almost equal to a
normal open regular set $\mathcal{G}\mathcal{F}(V\cdot U)$ . 1

6Main theorem for finite-state sets

Definition 6.1 (Connected part) For $X\subset U$ , the connected part $C(X)$ is
defined as: $C(X)=\{x\in X|\forall w\subset x.X\in S(X/w)\}$ .

Remark 6.2 This notion appears in the literature [S83]. The definition here
is equivalent to that in [S83] as the next proposition.

Proposition 6.3 Let $X$ be a subet in U. Put $W\subset\Sigma^{*}$ such as $w\in W$ iff
$w\neq e$ and $X=X/w$ and for each $v\subset w$ , either $v=e$ or $X\neq X/v$ .

Then $C(X)=X\cap \mathcal{F}(W^{\omega})$ .

Proof. As Remark 3.2, we point out that $x\in \mathcal{F}(\mathrm{L}V^{\omega})$ iff for each $v\subset x$ , there is
$y\in U$ such that $v\cdot y\in W^{\omega}$ , which is equivalent to $v\cdot$ $w\in W^{*}$ for some $w\in\Sigma^{*}$ .
Moreover, $v\cdot$ $w\in W^{*}$ is equivalent to $X=X/vw=(X/v)/w$ . Hence $v\cdot$ $w\in W^{*}$

for some $w$ iff $X\in S(X/v)$ . Therefore we have that $x\in \mathcal{F}(W^{\omega})$ iffff $X\in S(X/v)$

for each $v\subset x$ . Thus, the asserted equation is obtained immediately from the
definition of $C(X)$ . 1

Proposition 6.4 If $X\subset U$ is measurable, then so is $C(X)$ .

Proof. Put $W\subset\Sigma^{*}$ as in Proposition 6.3. Then both $X$ and $\mathcal{F}(W^{\omega})$ are
measurable, then so is $C(X)=X\cap \mathcal{F}(W^{\omega})$ . 1
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Proposition 6.5 (Linearity) If $C(X)/w$ $\neq\emptyset$ then $C(X/w)=C(X)/w$ .

Proof. First we will show $C(X/w)\subset C(X)/w$ . Put $y\in C(X)/w$ , because
$C(X)/w$ $\neq\emptyset$ . Then $w\cdot$ $y\in C(X)$ . Therefore $X\in S(X/w)$ . Let $x$ be an
arbitrary element of $C(X/w)$ . Then $X/w\in S(X/wv)$ for each $v$ [: $x$ . Thus
$X\in S(X/w)\subset S(X/wv)$ for each $v\subset x$ . On the other hand, we have that for
each $u\subset w\cdot$ $x$ , there is $v$ such that $u\subset w\cdot$ $v$ . It implies $X\in S(X/u)$ for each
$u\subset w\cdot x$ . Thus $w\cdot x\in C(X)$ , that is $x\in C(X)/w$ . Therefore $C(X/w)\subset C(X)/w$ .

Next we will show $C(X)/w\subset C(X/w)$ . Let $x$ be an arbitrary element of
$C(X)/w$ . Then $w\cdot$ $x\in C(X)$ . Thus $X\in S(X/wv)$ for each $v\subset x$ . Hence
$X/w\in S(X)\subset S(X/wv)$ for each $v\subset x$ . Therefore $C(X/w)\subset C(X)/w$ . 1

Proposition 6.6 (Staiger ’83) For $X\subset U$ , the connective part $C(X)$ is
strongly connected.

Proof. Lemma 16 in [S83] 1

Lemma 6.7 (Staiger ’83) Let $X$ be a finite-state set. Then for each $x\in X$ ,
there is $w\in\Sigma^{*}$ and $y\in X/w$ such that $x=w\cdot$ $y$ and $y\in C(X/w)$ .

Proof. The equation (23) in [S83]. I

Lemma 6.8 (Decomposition lemma) For each measurable finite-state set
$X$ , there are a nowhere dense set $Z$ , a finite index set I and indexed families
$\{W_{i}\}:\in I$ and { $\mathrm{Y}_{\dot{l}}1:\in I$ such that

$X= \bigcup_{i\in I}W_{i}\cdot \mathrm{Y}_{i}$

where each $W_{\dot{l}}$ is a prefix-flee regular language, each $\mathrm{Y}_{i}$ is a measurable strongly
connected finite-state set, and $W_{i}\cdot \mathrm{Y}_{i}\cap \mathrm{V}V_{j}\cdot \mathrm{Y}_{j}=\emptyset$ for any $i\neq j$ .

Proof. Put $I=\{1,2, \ldots, k\}$ and $Z_{1}$ , $Z_{2}$ , $\ldots$ , $Z_{k}$ such as $\{Z_{1}, Z\cdot)\sim’\ldots, Z_{k}\}=\{Z\in$

$S(X)|C(Z)\neq\emptyset\}$ and $Z_{i}\neq Z_{j}$ for $i\neq j$ . Put $\mathrm{Y}_{i}$ as $\mathrm{Y}_{i}=C(Z_{i})$ for each $i\in I$ .
For each $i\in I$ , let $W_{i}\subset\Sigma^{\mathrm{r}}$ be the language such that $w\in W_{i}$ iff

$X/w=Z_{\dot{l}}$ and there are no v $\subset w$ such that $X/v\in S(Z_{i})$ .

We have that $W_{\dot{l}}$ is regular. Moreover it is obvious that $bV_{i}$ is prefix-free.
First we show that $W_{i}\cdot \mathrm{Y}_{i}\subset X$ . It holds because for each $w\in W_{i}$ , we have

$X/w=Z_{\dot{l}}$ , thus $w\cdot$ $Z_{\dot{l}}\subset X$ , and $\mathrm{Y}_{i}\subset Z_{i}$ .
Next we show that $X\subset W_{i}\cdot$ $\mathrm{Y}_{\dot{l}}$ . Put $x$ as $x\in X$ . As Lemma 6.7, there are

some pairs of $(w,y)’ \mathrm{s}$ such that $x=w\cdot$ $y$ and $y\in C(X/w)$ . Put $(w, y)$ as $w$ is
the shortest, that is, there are no $v\in\Sigma^{*}$ and $z\in U$ such that $v\subset w$ , $x=v\cdot z$

and $z\in C(X/z)$ . Put $i$ as $\mathrm{Y}_{i}=X/w$ . Then $w\in W_{i}$ and $y\in \mathrm{Y}_{i}$ , thus $x\in W_{i}\cdot \mathrm{Y}_{i}$ .
Lastly we show that $W_{i}\cdot$ $\mathrm{Y}_{\dot{l}}\cap Wj$ . $\mathrm{Y}_{\mathrm{j}}=\emptyset$ for any $i\neq j$ . Suppose that

$x\in W_{i}\cdot$ $\mathrm{Y}_{i}\cap W\mathrm{j}$ . $\mathrm{Y}_{j}$ for some $x\in U$ and $i\neq j$ . Then there are $v\in W_{i}$ , $w\in$

$W_{j}$ , $y\in \mathrm{Y}_{i}$ and $z\in \mathrm{Y}_{j}$ such that $x=wy=vz$. We have $v\neq w$ because
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$X/v=Z_{i}\neq Z_{j}=X/w$ . Without loss of generousity, we assume that $vu=u2$

for some $u\in\Sigma^{*}$ . Then $y=uz\in \mathrm{Y}_{i}=C(X/v)$ , thus $X/vuu’=X/v$ for
some $u’\in\Sigma^{\mathrm{x}}$ . Hence $(X/u))/u’=X/v$ , which implies $X/v\in S(X/w)$ . This
contradicts to $w\in W_{j}$ , because $v\subset w$ and $X/v\in S(Z_{j})$ , although $w\in W_{j}$

implies there is no such $v$ . 1

Proposition 6.9 Put $X$ , $W_{i}$ ’s and $\mathrm{Y}_{i}$ as in the previous lemma. If $i\neq j$ and
both $\mathrm{Y}_{i}$ and $\mathrm{Y}_{j}$ are dense, then $W_{i}\cdot$ $U\cap Wj$ . $U=\emptyset$ .

Proof. We will modify the last part of the proof of the previous lemma a little
bit. Suppose $x\in W_{i}\cdot$ $U\cap VV_{j}$ $\cdot$ $U$ . Then there are $v\in W_{i}$ and $w\in W_{j}$ such
that $v\subset x$ and $w\subset x$ . We have $v\neq w$ because $X/v=Z_{i}\neq Z_{j}=X/w$ .
Without loss of generousity, we assume that $vu=w$ for some $u\in\Sigma^{*}$ . We have
$V_{i}\cdot U\subset \mathcal{F}(V_{i}\cdot \mathrm{Y}_{i})$ because $\mathrm{Y}_{i}$ is dense $\mathrm{i}$ $U$ . Therefore $vu=w\subset x\in \mathcal{F}(V_{i}\cdot \mathrm{Y}_{i})$ .
Then $uz\in \mathrm{Y}_{i}=C(X/v)$ for some $z$ , thus $X/vuu’=X/v$ for some $u’\in\Sigma^{*}$ .
Hence $(X/w)/u’=X/v$ , which implies $X/v\in S(X/w)$ . This contradicts to
$w\in W_{j}$ , because $v\subset w$ and $X/v\in S(Z_{j})$ , although $w\in W_{j}$ implies there is no
such $v$ . 1

Lemma 6.10 Let $X\subset U$ be a measurable finite-state set Then there is $a$

regular language $V$ such that $X$ is almost equal to $V\cdot$ $U$ .

Proof. Put $I$ , $W_{i}’ \mathrm{s}$ and $\mathrm{Y}_{i}’ \mathrm{s}$ as in Lemma 6.8 for $X$ . By Proposition 6.4, each
$\mathrm{Y}_{i}$ is measurable. Put $J\subset I$ and $\mathrm{Y}\subset U$ as $J=\{i\in I|\mu(\mathrm{Y}_{i})=1\}$ and
$\mathrm{Y}=i\bigcup_{\in J}W_{i}\cdot \mathrm{Y}_{i}$ . Then, $\mathrm{Y}\subset X$ and $\mu(X-\mathrm{Y})=\sum_{-J}i\in l^{l}(\mathrm{I}/V_{i}\cdot \mathrm{Y}_{i})=0$. Hence

$\mathrm{Y}$ is almost equal to $X$ .
Next, put $V\subset\Sigma^{*}$ as $V=i \bigcup_{\in J}\mathrm{V}V_{i}$ . The language $V$ is regular. Then, $V\supset \mathrm{Y}$ ,

and $\mu(\mathrm{Y})=\sum_{J}i\mu(V_{i}\cdot U)=\mu(V\cdot U)$ . Therefore, $V\cdot U$ is almost equal to Y. 1

Theorem 6.11 (Main theorem for finite-state sets) Let $X\subset U$ be mea-
surable and finite-state. Then, there is a normal open set $\mathrm{Y}$ such that $\mathrm{Y}$ is
almost equal to $X$ and $\mu(\partial \mathrm{Y})=0$ .

Proof. Similar to Theorem 5.5 with referring Lemma 6.10 instead of Lemma
5.4. 1
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