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1 $\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}^{\backslash }$

This note is an abstract of my recent papers [1], [2] and [3], which will be
published elsewhere.

For ahyperbolic Riemann surface $R$ , the reduced Teichmiiller modular
group $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is agroup of automorphisms on the reduced Teichmiiller
space $T\#(R)$ . The action of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is isometric with respect to the Te-
ichmiiller distance $d_{T}$ . We focus our attention on the proper discontinuity of
$\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , which is defined as follows.

Definition 1We say that asubgroup $G\subset \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is properly discontin-
uous at apoint $p\in T\#(R)$ if there exists aneighborhood $U$ of $p$ such that
the set $\{\chi\in G|\chi(U)\cap U\neq\emptyset\}$ consists of only finitely many elements.

If $R$ is of analytically finite type, $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ and $T\#(R)$ are nothing but the
ordinary Teichmiiller modular group Mod(# ) and the ordinary Teichmiiller
space $T(R)$ respectively, and $T\#(R)$ is finite dimensional. In this case, the
definition of proper discontinuity is well known and $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is properly
discontinuous at any point in $T\#(R)$ .

On the other hand, if $R$ is of topologically infinite type, $T\#(R)$ is infinite
dimensional and is not locally compact. However the above definition is
suitable also in infinite dimensional cases. It is different from the case of
finite type that $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is not necessarily properly discontinuous: On the
basis of this fact, in [3], we have given asufficient condition for $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ to
be properly discontinuous at any point in $T\#(R)$ . Further, in [1], we divide
the Teichmiiller space into the limit set and the region of discontinuity for the
Teichmiiller modular group as an analogy to the theory of Kleinian groups
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2 Limit,sets and regions of discontinuity
Definition 2For asubgroup ($;\subset \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , we define $\Omega(G)$ as the set of
points $p\in T\#(R)$ such that $G$ is properly discontinuous at $p$ , and $\Lambda(G)$ as
the set of points $p\in T\#(R)$ such that there exists asequence $\{\chi_{\iota},\}$ of distinct
elements of $G$ such that $\lim_{narrow\infty}d_{T}(\chi_{n}(p),p)=0$ . We call $\Omega(G)$ the region
of discontinuity of $G$, and $\Lambda(G)$ the limit set of $G$ .
Remark 1For Riemann surface $R$ of analytically finite type, $\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}(R))=$

$\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))=\emptyset$. On the other hand, for aRiemann surface $R$ whose Fuch-
sian model is of the second kind, we always have $\Omega(\mathrm{M}\mathrm{o}\mathrm{d}(R))=\emptyset$. This is
the reason why we consider the reduced modular group $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}$

. (R), not the
ordinary modular group Mod(jR), for Riemann surfaces $R$ of iffinite type.
Lemma 1 $\Lambda(G)$ is $G$-invariant and closed.

We classify the points in $\Lambda(G)$ into three types Ao(G), $\Lambda_{\infty}^{1}(G)$ and $\Lambda_{\infty}^{2}(G)$

according to their stabilizer.

Definition 3In asubgroup $G$ of $\mathrm{M}\mathrm{o}\mathrm{d}^{*}(R)$ , the stabilizer of apoint $p\in$

$T\#(R)$ is defined by $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{G}(p)=\{\chi\in G|\chi(p)=p\}$.
We define C1(G) as the set of points $p\in\Lambda(G)$ such that there exists a

sequence $\{\chi_{n}\}$ of distinct elements of ($?$ that satisfies $\mathrm{h}.\mathrm{m}_{arrow\infty}..d_{T}(\chi_{n}(p),p)=0$

and that Xn(p) $\neq p$ for all $n$ , and $\Lambda_{\infty}(G)$ as the set of points $p\in\Lambda(G)$ such
that $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{G}(p)$ consists of infinitely many elements. Furthermore we divide
Aoo(G) into two disjoint subsets $\Lambda_{\infty}^{1}(G)$ and $\Lambda_{\infty}^{2}(G)$ . The $\Lambda_{\infty}^{1}(G)$ is the set
of points $p\in \mathrm{A}\mathrm{o}\mathrm{o}(\mathrm{G})$ such that there exists an element in $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{G}(p)$ that is of
infinite order, and the $\Lambda_{\infty}^{2}(G)$ is the set of points $p\in\Lambda_{\infty}(G)$ such that aU
elements in $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{G}(p)$ are of finite order.
Proposition 1Let $G$ be a subgroup of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ . For any point $p$ in $T\#(R)-$
$\Lambda_{0}(G)$ , there exists a constant $r>0$ such that $\chi(B(p,r))\cap B(p,r)=\emptyset$ for
any $\chi\in G-\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{G}(p)$ .
Corollary 1 $T\#(R)-\Lambda(G)=\Omega(G)$ for any subgrvup G $\subset \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ .

Hence $T\#(R)$ is divided into two disjoint subset, the limit set and the
region of discontinuity, as an analogy to the theory of Kleinian groups acting
on the Riemann sphere. It seems that the essential natures of limit sets and
regions of discontinuity for Teichmiiller modular groups are different from the
case of Kleinian groups. However we expect that they satisfy similar prop-
erties to that of limit sets and regions of discontinuity for Kleinian groups.
We see that if the limit set has an isolated point, the isolated point belongs
to $\Lambda_{\infty}^{2}(G)$ . However, we do not know whether the limit set has an isolated
point or not
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Theorem 1([1]) For a subgroup G $\subset \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , $\Lambda(G)-\Lambda_{\infty}^{2}(G)$ does not
have an isolated point.

Corollary 2For a subgroup $G\subset \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ such that $\Lambda(G)$ -X4(G) is not
empty, the limit set $\Lambda(G)$ is an uncountable set.

3Teichmiiller modular group of the second
kind

We consider sufficient conditions for $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ to have anon-empty region
of discontinuity. The conditions are given in terms of hyperbolic geometry
on $R$.

Definition 4For asubgroup $G$ of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , we say that $G$ is of the first
kind if $\Omega(G)=\emptyset$ , and otherwise of the second kind.

Definition 5For agiven $M>0$ , we say that apoint $p$ of $R$ belongs to a
subset $R_{M}$ of $R$ if there exists anon-trivial simple closed curve $\mathrm{q}$ containing
$p$ such that the hyperbolic length of $c_{\mathrm{p}}$ is less than $M$ .

The condition mentioned above are given as follows.

Definition 6We say that $R$ satisfies the lower bound condition if there
exists an $\epsilon>0$ such that $R_{\epsilon}$ consists only of cusp neighborhoods. Further
we say that $R$ satisfies the upper bound condition if there exist aconstant
$M>0$ and aconnected component $R_{M}^{*}$ of $R_{M}$ such that ahomeomorphism
of $\pi_{1}(R_{M}^{*})$ to $\pi_{1}(R)$ that is induced by the inclusion map of $R_{M}^{*}$ into $R$ is
surjective.

Remark 2The lower and upper bound conditions are invariant under qua-
siconformal deformations.

Theorem 2([1]) Let $R$ be a Riemann surface which does not satisfy the
lower bound condition (That is, $R$ has a sequence of disjoint simple closed
geodesies that are not peripheral ($i.e$ . that are not freely homotopic to $a$

boundary component) and that these hyperbolic lengths tend to 0). Then
$\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is of the first kind.

Theorem 3([1]) If R satisfies the lower and upper bound conditions, then
$\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is of the second kind.
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The following proposition gives examples of Riemann surfaces that satisfy
the lower and upper bound conditions.

Proposition 2Let $\hat{R}$ be an analytically finite Riemann surface, and $Ra$
normal covering surface of $\hat{R}$ which is not a universal cover. Then $R$ satisfies
the lower and upper bound conditions.

By Theorem 3and Proposition 2, the following corollary is obtained.

Corollary 3Let $\hat{R}$ be an analytically finite Riemann surface, and $R$ $a$ nor
$mal$ covering surface of $\hat{R}$ which is not a universal cover. Then $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is
of the second kind.

Example 1Let $\hat{R}$ be acompact Riemann surface of genus $g\geq 2$ , and
$R$ anormal covering surface of $\hat{R}$ whose covering transformation group is
acyclic group ($\phi\rangle$ generated by aconformal automorphism $\phi$ of $R$. Then
$p0=[R,id]\in T^{*}(R)$ and $[\phi]\in \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ satisfy $[\phi](p_{0})=p_{0}$ . Hence $p_{0}$

belongs to $\Lambda_{\infty}^{1}(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$. On the other hand, $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is of the second
kind by Corollary 3. Thus both $\Omega(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))\neq\emptyset$ and $\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))\neq\emptyset$ are
satisfied. Asimple example of such Riemann surface is $R=\mathrm{C}-\{n |n\in \mathrm{Z}\}$ .

We have asufficient condition for $\Omega(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ to coincide with $T\#(R)$ ,
as aspecial case of Theorem 3.

Theorem 4([3]) Let $R$ be a Riemann surface satisfying the lower and upper
bound conditions. $Fb\hslash her$ suppose that either the genus of $R$, the number of
cusps or the number of holes of $R$ is positive finite. Then $\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))=\emptyset$ .

Weakening the assumption and the conclusion in Theorem 4, we have the
following.

Theorem 5Suppose that $R$ satisfies the lower and upper bound conditions.
Let $G$ be a subgroup of $\mathrm{M}\mathrm{o}\mathrm{d}^{*}(R)$ satisfying the folloerying: there exist teuo
compact subsets $C_{1}$ and $C_{2}$ on $R$ such that, for every $g\in G$, there is $a$

conform $al$ self-map $f$ of $R$ satisfying $f\circ g(C_{1})\cap C_{2}\neq\emptyset$ . Then $p_{0}=[R, id]$ $($

$\Lambda_{0}(G)$ .

Let $\hat{R}$ be an analytically finite Riemann surface. For anormal.covering
surface $R$ of $\hat{R}$ which is not auniversal covering and for $G=\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , the
assumptions of Theorem 5are satisfied.

Indeed, by Proposition 2, $R$ satisfies the lower and upper bound condi-
tions. Let $g$ be an arbitrary element in $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ . Since $\hat{R}$ is an analytically
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finite Riemann.surface, $\hat{R}_{\geq\epsilon}=\hat{R}-\hat{R}_{\epsilon}$ is compact. Here $\hat{R}_{\epsilon}$ is the $\epsilon$-thin part of
$\hat{R}$ . Let $\Gamma$ be the covering transformation group for anormal covering surface
$R$ of $\hat{R}$ , and $C$ acompact subset of $R$ that satisfies $C/\Gamma\supset\hat{R}_{\geq\epsilon}$ . Then there
exists an element $7\in\Gamma$ such that $g(C)\cap\gamma(C)\neq\emptyset$ . Thus $\gamma^{-1}\circ g(C)\cap C\neq\emptyset$ ,
and the assumptions of Theorem 5are satisfied.

Hence, by Proposition 1and Theorem 5, there exists aneighborhood $U$

of $p_{0}=[R, id]$ which is precisely invariant under StabG(po). Therefore, in $U$ ,
we have only to consider the action of Stabo(po) as the action of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ .

4Aconjecture and apartial solution
In connection with Theorems 2and 3, we have the following conjecture.
Conjecture If 7? satisfies the lower bound condition, then $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is of the
second kind. That is, considering Theorem 2, we conjecture that $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$

is of the second kind if and only if $R$ satisfies the lower bound condition.

We show apartial solution of this conjecture, giving aweaker condition
than the upper bound condition.
Theorem 6([2]) Let R be a Riemann surface with the non-a elian funda-
mental group. Suppose that R satisfies the following two conditions:

1. R satisfies the lower bound condition.

2. There eists a constant $M>0$ such that, for any connected component
$V$ of the complement of $Rm$ , $V$ is either simply or doubly connected
and $R-\overline{V}$ consists offinitely many connected components.

Then $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is of the second kind.
Example 2Set

R $= \mathrm{C}-\cup\backslash \cup n=1m\in \mathrm{Z}\infty\{\frac{m}{n}+(2n+1)\sqrt{-1}\}$ .

This Riemann surface $R$ satisfies the assumptions of Theorem 6(but does
not satisfy the upper bound condition). Then $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is of the second
kind. On the other hand, $p_{0}.=[R,id]$ belongs to $\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ . Indeed, set

$f_{n}(z)=\{$

$x-(y-2n-2)/n+y\sqrt{-1}(2n+1\leq y<2n+2)$
$x+(y-2n)/n+y\sqrt{-1}$ $(2n\leq y<2n+1)$
$x+y\sqrt{-1}$ elsewhere.

Then $f_{n}$ are quasiconformal self-maps of $R$ and the maximal dilatations of
$\{f_{n}\}$ tend to 1. Then we conclude that $R$ satisfies both $\Omega(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))\neq\emptyset$

and $\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))\neq\emptyset$ .
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