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1 Asurvey on combinatorial models
Consider apossibly incomplete and branched holomorphic covering $\pi:R$ $arrow$

$\mathbb{C}$ of $\mathbb{C}$ by asimply connected Riemann surface $R$. Then we can represent the
projection $\pi$ in acombinatorial manner. Nevanlinna ([2]) and others used
s0-called “line complexes”. The origin of such combinatorial graphs would
be aKlein diagram. But in the case of entire functions, we can use asimpler
model (cf. [3]). First we recall the definition of such acombinatorial model.

Definition 1(Configuration tree) Aconfiguration tree is aplanar tree
with countably many vertices, one of which is marked as the initial vertex
(and hence every edge has an orientation towards the initial vertex). A
configuration tree is colored as follows:

1. There are two kind of vertices; white ones and black ones.
2. There are three kind of edges; white ones, black ones, and red ones.
3. Every connected component of the set of all white vertices and white

edges can be identified with the tree $\mathrm{R}$ with vertices $\mathbb{Z}$ , and hence is called a
$\mathbb{Z}$-unit.

4. Every edge not in any -unit is colored black or red, according as it
starts from ablack vertex or from awhite vertex.

To recover the holomorphic covering, we associate aconfiguration tree with
the configuration data.

1. the singularity data; acenter locus is attached to every -unit and a
decoration locus is attached to every black edge, and

2. a spider at $\infty$ , which assigns every distinct singularity datum amutu-
ally disjoint path from $\infty$ to it.
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Figure 1: Aconfiguration tree

Figure 2: Another equivalent tree

The configuration data determine uniquely the holomorphic covering rep-
resented by the configuration tree. On the other hand, there are some ambi-
guity to determine atree from aholomorphic covering. One of them is the
choice of the initial vertex.

Definition 2We call apair of ared edge and its ending black vertex a
reduction pair. And when we change the initial vertex to another one, we
delete all reduction pairs whose red edges have the opposite orientation in the
new tree, and attach anew pair to every white vertex such that ablack edge
now starts from it. We say that such anew configuration tree is obtained
from the old one by achange of the initial vertex. Further, if awhite vertex
is the initial one, then we may attach areduction pair and regard that the
new black vertex is the initial one.

We say that two configuration trees are equivalent, if, after suitable changes
of the initial vertices of both, they are identical including colors.

Atypical example of achange of the initial vertex is the following

Example 3The configuration trees in Figures 1 and 2are equivalent. Ac-
tually, in Figure 1, change the initial vertex of the tree to the right white
vertex. Then we should delete the right reduction pair. And we can add a
new reduction pair to make the initial vertex black. This is the tree in Figure
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2 Covering models and realizablility
To construct acovering model from aconfiguration tree, we impose some
restriction on the singularity data.

Definition 4The projection $\pi$ is called afunction with a finite number of
clusters of singularity if the set of all singular values of $\pi$ has only afinite
number of accumulation points in C. Further if the set of all singular values
is bounded in $\mathbb{C}$ , then we call such a $\pi$ an approximate Speiser function.
Finally, $\pi$ is called aSpieser function as usual if it has only afinite number
of singular values.

The following example shows the difference between these concepts.

Example 51. $z\sin z$ is afunction with afinite number of (actually no)
clusters of singurarity,

2. $\frac{\sin z}{z}$ is an approximate Speiser function,
3. $\sin z$ is aSpeiser function.

Now the issue is whether the given tree (with some configuration data)
can represent an entire function or not. This is avariant of the classical type
problem of Riemann surfaces.

Definition 6We say that configuration tree $T$ is realizable (with respect to
some configuration data) if there is an entire function $f$ which is represented
by atree equivalent to $T$ under the following injunctions;

1. ablack edge and its starting black vertex represent aMaskit surgery
attaching aquadratic block

2. ared edge and its starting $\mathbb{Z}-$-unit represent aMaskit surgery attaching
an exp-block,
where corresponding cross-cuts intersect no legs of the spider. We call $T$ a
configuration tree of $f$ . And in the case 1., we also say that ablack edge and
its starting black vertex represent a $\mathbb{C}$-decoration and the decorated C-block
(used in [1]), respectively.

Here, quadratic blocks are holomorphic covering given by

$az^{2}+bz+c:\mathbb{C}arrow \mathbb{C}$ $(a\neq 0)$ ,

exponential blocks ($\exp$-blocks) are those by

a $\exp bz+c$ : $\mathbb{C}arrow \mathbb{C}$ (ab 70),
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and $\mathbb{C}$ -blocks are trivial coverings by

$az+b:\mathbb{C}arrow \mathbb{C}$ $(a\neq 0)$ .

And Maskit surgeries are defined as follows.

Definition 7(Maskit surgery by connecting functions) Let $\pi_{j}$ : $R_{j}arrow$

$\mathbb{C}(j=1,2)$ be apossibly incomplete and branched holomorphic covering of
$\mathbb{C}$ by asimply connected Riemann surface $R_{j}$ and $A_{j}$ be the set of all singu-
lar values of $\pi_{j}$ for each $j$ . Assume that there is across-cut $L$ in $\mathbb{C}$ , i.e. the
image of aproper continuous injection of the real line into $\mathbb{C}$ , such that

1. $L\cap A_{1}$ equals to $L\cap A_{2}$ , and is either empty or consists of asingle
point $z_{0}$ , which is an isolated point of each $A_{j}$ ,

2. $\mathbb{C}-L$ consists of two connected components $D_{1}$ and $D_{2}$ , where $D_{j}$

contains $A_{j}-\{z_{0}\}$ for each $j$ , and
3. if $L\cap A_{1}=L\cap A_{2}=\{z_{0}\}$ , then $z_{0}$ is acritical value of each $\pi_{j}$ , i.e for a

small disk $U$ with center $z_{0}$ such that $U\cap A_{j}=\{z_{0}\}$ , $\pi_{j}^{-1}(U)$ has arelatively
compact component $W_{j}$ which contains acritical point of $\pi_{j}$ for each $j$ .

Under the same circumstance as above, suppose that the projection $\pi$ of
a(possibly incomplete and branched) holomorphic covering $\pi$ : $Rarrow \mathbb{C}$ by a
simply connected Riemann surface $R$ satisfies the following condition; there
exist

1. acomponent $\tilde{D}_{1}$ of $\pi_{1}^{-1}(D_{2})$ and acomponent $\tilde{D}_{2}$ of $\pi_{2}^{-1}(D_{1})$ such that
$\pi_{j}$ : $\tilde{D}_{j}arrow D_{3-j}$ is biholomorphic and $\tilde{D}_{j}\cap W_{j}\neq\emptyset$ if $L\cap A_{j}$ are non-empty,

2. across-cut $\tilde{L}$ in $\mathbb{C}$ such that $\pi$ gives ahomeomorphism of $\tilde{L}$ onto $L$ ,
and

3. conformal maps $\phi_{j}$ of $\mathbb{C}-\tilde{D}_{j}$ onto $U_{j}$ such that $\pi_{j}=\pi\circ\phi_{j}$ on $\mathbb{C}-\tilde{D}_{j}$

for each $j$ , where $U_{1}$ and $U_{2}$ are components of $\mathbb{C}-\tilde{L}$ .
Then we say that the projection $\pi$ or the holomorphic covering $\pi$ : $Rarrow \mathbb{C}$

is constructed from the coverings $\pi_{j}$ : $R_{j}arrow \mathbb{C}$ by the Maskit surgery with
respect to $L$ . We also say that $\pi$ : $Rarrow \mathbb{C}$ is constructed from $\pi_{k}$ : $R_{k}arrow \mathbb{C}$

by the Maskit surgery attaching $\pi_{3-k}$ : $R_{3-k}arrow \mathbb{C}$ with respect to $L$ for each
$k=1,2$ .

Example 81. The configuration trees in Figures 1and 2with two singu-
larity data is realizable by afunction

Cerf(z) $=a \int_{0}^{z}e^{t^{2}}dt+b$ .

2. The black $\mathbb{Z}$-unit with alternating singular data is realizable by a
function $a$ $\sin z+b$
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Figure 3: Aconfiguration tree of $\exp z^{2}$

3. The black $\mathrm{Z}^{+}$-unit(the tree {x $\geq 1\}$ with vertices $\mathrm{Z}^{+}$ ) with alternating
singular data is realizable by afunction

$\sum^{+}(Z)=a$ $\int_{0}^{Z}\prod_{k=1}^{\infty}(1$ $- \frac{t}{k^{2}})dt$ $+b$.

Note that in each case, if the set of all singularity data consists of asingle
value, then the tree is not realizable.

Another typical example of non-realizable configuration tree with singu-
larity data of Speiser type is the following

Example 9Let $T$ be aconfiguration tree such that every vertex is black
and is an end point of exactly three black edges, and that every triple of
edges connected at the same vertex is attached by the same triple of three
distinct complex numbers. Then the second main theorem of Nevenlinna (cf.
[2] $)$ implies that $T$ with this singularity data is not realizable.

Now we consider another entire Speiser function

$f(z)=e^{z^{2}}$

Then from the covering structure, we can see that aconfiguration tree of $f$

is
$\exp+\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}+\mathrm{e}\mathrm{x}\mathrm{p}$ .

On the other hand, attaching aquadratic block to the covering induced by
Cerf(z), we have aconfiguration tree

$(\exp+\exp)+\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}$.

These two configuration trees are non-equivalent and also represent dif-
ferent functions. (If the center loci are the same, the latter is not realizable.)
But the relation between these trees are similar to that between those in
Figures 1and 2. Thus as abasic deformation of trees, we can consider the
following moves of edges
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Figure 4: Aconfiguration tree of adecorated Cerf(z)

Definition 10 (Simple move) Let $T$ be aconfiguration tree. Fix anon-
white edge $L$ , and let $v$ and $v’$ be the ending and the starting vertex of $L$ .
Further Let $L_{1}$ be an edge starting from $v$ , and $w$ be the ending vertex of
$L_{1}$ . Then the simple move of the edge $L$ along $L_{1}$ is sliding the edge $L$ along
$L_{1}$ to anew edge $L’$ from $v’$ ending at $w$ . We write as $T’=T(L;L_{1})$ the
new configuration tree obtained from $T$ by this move. Also we call $T$ the
configuration tree obtained from $T’$ by the the inverse simple move of $L’$

along $L_{1}$ , and denote $T$ by $T’(L’;L_{1}^{-1})$ . Here we assume that $L$ and $L’$ are
attached the same singularity datum if they are black.

Example 11 (formal simple move) We call asimple move along an edge
$L_{1}$ aformal simple move if $L_{1}$ is red. Figures 1and 2gives such amove.

Aformal simple move induces no change of the realizing entire function.

In partucular, we can apply formal simple moves freely.

Proposition 12 The projection $\pi$ of a covering as above (with a finite num-
$ber$ of clusters of singularity) can be represented by a configuration tree such
that, for every starting white vertex $w_{0}$ of a red edge, there are no non-white
edges ending at $w_{0}$ .

We say that such atree as in the above proposition is completely reduced.
In the sequel, we consider only completely reduced trees.

3Geometirc deformation
Now to clearify the relation between realizing functions of the trees in Figures
3and 4, for instance, with the same configuration data, we need to find
ageometric representation of simple moves, which can be achieved by the
following geometric deformation of the realizing function.

Here, we consider the projection $\pi$ of acovering by asimply connected
Riemann surface $R$ with mutually distinct real and positive singurality data
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and we attach to every tree of $\pi$ the canonical spider at $\infty$ , which is aspider
whose legs are parallel to the imaginary axis and come from $\infty$ to the data.

Then afundamental geometric deformation of such afunction is the fol-
lowing one.

Definition 13 (Transposition of the spider’s legs) Let $T$ be aconfigu-
ration tree which represents $\pi$ : $Rarrow \mathbb{C}$ as above. Let $\{\alpha, \beta\}$ be the pair of
distinct singularity data. Assume that $\alpha<\beta$ and that there are no singular-
ity data in the open interval $(\alpha, \beta)$ .

We say that $g$ is obtained from $\pi$ by atransposition of the spider’s legs
for the pair $\{\alpha, \beta\}$ if $g=\phi_{1}\circ\pi\circ\phi_{2}$ with quasiconformal self-maps $\phi_{1}$ of $\mathbb{C}$

and $\phi_{2}$ of $R$ such that
1. $\phi_{1}$ restricted on the set of all singularity data gives the transposition

of the singularity data $\alpha$ and $\beta$ ,
2. the leg $\ell_{\gamma}$ of the canonical spider ending at 7is mapped by $\phi_{1}$ to the

leg ending at $\phi_{1}(\gamma)$ for every singularity datum 7, except for the leg $\ell_{\beta}$ , and
3. the image $\phi_{1}(\ell_{\beta})$ and the leg $\ell_{\alpha}$ ending at $\alpha=\phi_{1}(\beta)$ in the canonical

spider form across-cut which separates $\beta$ from all singularity data other than
$\{\alpha, \beta\}$ .

Proposition 14 (Transposition lemma) Let $T$ be a completely reduced
configuration tree which represents $\pi$ : $Rarrow \mathbb{C}$ as in Definition 13, and $\alpha_{1}$

and $\alpha_{2}$ be two singularity data of $T$ such that $\alpha_{1}<\alpha_{2}$ and there are no
singularity data in the open interval $(\alpha_{1}, \alpha_{2})$ . Let $\alpha_{j}$ be attached to $\hat{L}_{\alpha_{j}}$ for
each $j$ , where $\hat{L}_{\alpha_{j}}$ is either a black edge or $a\mathbb{Z}$-unit of $T$ .

Now suppose that the shortest simple path connecting $\hat{L}_{\alpha_{1}}$ and $\hat{L}_{\alpha_{2}}$ in $T$

contains a non-red edge. Then we can find a holomorphic function $g$ which is
quasiconfomally equivalent to $\pi$ , is represented by the same configuration tree
$T$ (with respect to the canonical spider), and gives the same set of singularity
data as that of $\pi$ , but the singularity data $\alpha_{j}$ is now attached to $\hat{L}_{\alpha_{3-\mathrm{j}}}$ for
each $j=1,2$ .

Next, we consider the case that either $\hat{L}_{\alpha_{1}}\cup\hat{L}_{\alpha_{2}}$ is connected or the
shortest simple path $\Gamma$ connecting $\hat{L}_{\alpha_{1}}$ and $\hat{L}_{\alpha_{2}}$ contains no non-red edges. In
the sequel, we consider the case that the upper white edge, i.e. the orientation
of awhite edge corresponds to the counter-clockwise rotation around the
corresponding singularity datum. The case of the lower white edge can be
treated similarly, and hence omitted. (Actually, this assumption depends on
the choice of a covering model, and hence is not essential.)

Here, if $\hat{L}_{\alpha_{\mathrm{j}}}$ is ablack edge, then we set $L_{j}=\hat{L}_{\alpha_{\mathrm{j}}}$ , and if $\hat{L}_{\alpha_{j}}$ is a $\mathbb{Z}$-unit,
then we take as $L_{j}$ the white edge ending at or starting from $\hat{L}_{\alpha_{1}}\cap\hat{L}_{\alpha_{2}}$ , or
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$\hat{L}_{\alpha_{j}}\cap\Gamma$ if $\Gamma$ is non-degenerate, for each $j$ . Also let $L_{j}^{*}$ be the red edge in $\Gamma$

starting from $\hat{L}_{\alpha_{\mathrm{j}}}$ if exists. Further, we assume that white $L_{j}$ are upper. And
we change the intial vertex to the common vertex of $\{L_{j}\cup L_{j}^{*}\}_{j=1}^{2}$ . (Also we
attach areduction pair and apply aformal simple move if necessary to make
the initial vertex black). Then we obtain the following

Proposition 15 Under the same circumstances as in Proposition 14, $\sup-$

pose that either $\wedge\alpha_{1}\cup\hat{L}_{\alpha_{2}}$ is connected or the shortest simple path $\Gamma$ connecting
$\hat{L}_{\alpha_{1}}$ and $\hat{L}_{\alpha_{2}}$ contains no non-red edges.

Then the transposition of the spider’s legs for $\{\alpha_{1}, \alpha_{2}\}$ gives a holomorphic
function $g$ quasiconformally equivalent to $\pi$ whose configuration tree $T_{g}$ is as
follows:

1. Suppose that both of $L_{j}$ end at the same (initial) vertex. (Since the
initial vertex is black, both of $L_{j}$ are black.) Then the configuration
tree $T_{g}$ is obtained from $T$ by the inverse simple move of $L_{1}$ along $L_{2}$ ,
$i.e$ .

$T_{g}=T(L_{1;}L_{2}^{-1})$ .

2. Suppose that $L_{1}$ is white and that $L_{1}^{*}$ exists and ends at the ending black
vertex of $L_{2}$ . Then the configuration tree $T_{g}$ is obtained from $T$ by the
inverse simple move of $L_{1}^{*}$ along $L_{2},$ $i.e$ .

$T_{g}=T(L_{1}^{*}; L_{2}^{-1})$ .

3. Suppose that $L_{2}$ is white and that $L_{2}^{*}$ exsits and ends at the ending black
vertex of $L_{1}$ . Then the configuration tree $T_{g}$ is obtained from $T$ by the
inverse simple move of $L_{1}$ along $L_{2}$ in the tree obtained by the inverse
simple move of $L_{1}$ along L2, $i.e$ .

$T_{g}=T^{*}(L_{1}; L_{2}^{-1})$ ,

where $T^{*}=T(L_{1}; (L_{2}^{*})^{-1})$ .

4. Suppose that both of $L_{j}$ are white and that $L_{j}^{*}$ exist and end at the
same (initial) vertex. Then the configuration tree $T_{g}$ is obtained from
$T$ by the inverse simple move of $L_{1}^{*}$ along $L_{2}$ in the tree obtained by the
inverse simple move of $L_{1}^{*}$ along L2, $i.e$ .

$T_{g}=T^{*}(L_{1}^{*};L_{2}^{-1})$

where $T^{*}=T(L_{1}^{*};(L_{2}^{*})^{-1})$ .
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In every case, $\alpha_{j}$ is attached to $\hat{L}_{\alpha_{3-j}}$ in $T_{g}$ for each j.

Remark 16 General cases can be treated by changing the initial vertex to
the original one. As an example, we consider here the case that $L_{1}$ is white
and $L_{1}^{*}$ ends at the starting black vertex $w$ of a black edge $L_{2}$ . First change
the initial vertex to $w$ , the orientation of $L_{2}$ is reversed, which we denote
by $L_{2}^{r}$ . And by Proposition 15, we have the tree $T(L_{1}^{*};(L_{2}^{r})^{-1})$ . Next change
the initial vertex to the original one. Then the orientation of $L_{2}$ is again
reversed, and hence we have the tree $T(L_{1}^{*};L_{2})$ with respect to the original
initial vertex.

4Structurally finite entire functions
Now we cosider the simplest case.

Definition 17 We say that an entire function is structurally finite if it is
constructed from afinite number of quadratic blocks $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ ex blocks by
Maskit surgeries. Astructurally finite function is, by definition, of type $(p, q)$

if it is constructed from $p$ quadratic blocks and $q$ exp-blocks.

In this case, we can find the “simplest” tree.

Definition 18 Let $R$ be a $\mathbb{C}$-block attached $p$ quadratic blocks with dec0-
ration loci $\{1, \cdots,p\}$ and $q\exp$-blocks with center loci $\{p+1, \cdots,p+q\}$ .
We call the projection $\pi$ the standard simple function $f_{p,q}$ of type $(p, q)$ . The
corresponding tree $T_{p,q}$ is called the standard tree of type $(p, q)$ .

Now, take astructurally finite entire function $f$ of type $(p, q)$ which has
$p+q$ singularity data. Then by using geometric deformations as above, we
can show the following

Proposition 19 The standard simple function $f_{p,q}$ of type $(p, q)$ is quasi-
conformally equivalent to $f$ . In particular, the tree $T_{p,q}$ is actually realizable.

More generaly, we have the following

Theorem 20 Let $\pi$ be the projection of a covering by a Riemann surface
$R$, which is constructed from $p$ quadratic blocks and $qe\varphi$-blocks by Maskit
surgeries with respect to mutually distinct singularity loci. Then $\pi$ is quasi-
conformally equivalent to $f$ .
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For proofs, see [5].
Also structurally finite entire functions of type $(p, q)$ admits explicit rep-

resentations of the form
$\int^{z}P(t)e^{Q(t)}dt$

with polynomials $P(z)$ and $Q(z)$ of degree exactly $p$ and $q([4])$ . We denote
by $F_{p,q}$ the totality of such indefinite integrals.

Proposition 21 (cf. [1] Theorem 3.3.1) The family $F_{p,q}$ is topologically
complete.

References
[1] S. Morosawa, Y. Nishimura, M. Taniguchi, and T. Ueda, Holomorphic

Dynamics, Cambridge Univ. Press, 1999.

[2] R. Nevanlinna, Analytic Functions, Springer, 1970.

[3] M. Taniguchi, Maskit surgery of entire functions, RIMS kokyuroku
2001, (2001) 7-16.

[4] M. Taniguchi, Explicit representation of structurally finite entire func-
tions, Proc. Japan Acad. 77, (2001), 68-70.

[5] M. Taniguchi, Synthetic deformation spaces of an entire function, to
appear

33


