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Abstract

In this notes, we show that some Fatou mapping has an indeterminate point
with homoclinic points. In particular, using the structure of horseshoe mappings,
we show that if the homoclinic point satisfies the transversality condition, then
periodic points of Fatou mapping accumulate at its indeterminate point.

1Introduction

In this notes, we focus our study on amapping as follows:

$F$ : $[t : x : y]\mapsto t[aty +xy-by^{2} : atx +x^{2}-bxy+cy^{2} : y^{2}]$ , $a\neq 0$

which is abirational mapping of the 2-dimensional complex projective space $\mathrm{P}^{2}$ . A
rational mapping $F$ of $\mathrm{P}^{2}$ is said to be abirational mapping if there exists another
rational map $G$ of $\mathrm{P}^{2}$ such that $F\circ G=id$, $G\circ F=id$, the identity mapping, on $\mathrm{P}^{2}$

except some algebraic sets, and $G$ is called the inverse mapping. For our $F$ , the inverse
mapping $G$ has the following form:

$G$ : $[t : x : y]|arrow[t^{2}+bty+\varphi^{2}-xy : axy-acy^{2} : aty]$, $a\neq 0$ .

Here, we remark that $F$ is conjugate to the mapping originally used by P. Fatou to
exhibit aFatou-Bierbach domain (see [1]). Therefore, we call it aFatou mapping in
this paper.

In order to state our Main Theorem, we introduce some notation and terminology.
Let $f_{\dot{l}}(t, x, y)(i=0, 1,2)$ be homogeneous polynomials with degree $d$ , $F:[t:x:y]\vdasharrow$

$[f_{0} : f1 : f_{2}]$ arational mapping on $\mathrm{P}^{2}$ and $\tilde{F}$ : $(t, x, y)\mathrm{F}arrow(f_{0}, f_{1}, f_{2})$ apolynomial
mapping on $\mathrm{C}^{3}$ . Then, we have $\pi\circ\tilde{F}=F\circ\pi$ on $\mathrm{C}^{3}$ except some analytic sets, where
$\pi$ : $\mathrm{C}^{3}\backslash \{(0,0,0)\}arrow \mathrm{P}^{2}$ is the canonical projection. Apoint $p\in \mathrm{P}^{2}$ is said to be
an indeterminate point of $F$ if $\tilde{F}(\tilde{p})=(0,0,0)$ for some point $\tilde{p}\in\pi^{-1}(p)$ . In general
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if $p$ is an indeterminate point, then $\bigcap_{N_{p}}F(N_{p}\backslash \{p\})$ is not asingle point, where the

intersection is taken over all open neighborhoods $N_{p}$ of $p$ . Hence, $F$ is not continuous

and the dynamical structure is quite complicated at such apoint $p$ . In our case, by

adirect calculation, one can check that indeterminate points of the Fatou mapping $F$

above are $I_{1}=[1$ : 0:0$]$ and $I_{2}=[1:-a : 0]$ and $G$ is continuous at $I_{1}$ and $I_{2}$ . In

particular, $I_{1}$ is afixed point of $G$ and eigenvalues of Jacobian matrix of $G$ at $I_{1}$ are 0

and $a$ . So, to see the dynamical structure near the indeterminate point $I_{1}$ , it suffices

to consider the behavior of $G^{n}$ near the fixed point $I_{1}$ . We assume that $|a|>1$ . Then
$I_{1}$ is asaddle fixed point of $G$ . By [4, Theorem 6.4.3] and adirect calculation, there

exists some injective holomorphic mapping $H$ : $\Delta_{\rho}=\{z\in \mathrm{C}||z|<\rho\}arrow \mathrm{C}^{2}(x, y)$

such that

$H(0)=I_{1}$ , $W^{u}(I_{1})\supset H(\Delta_{\rho})$ and $W^{s}(I_{1})\supset\{(x, y)\in \mathrm{C}^{2}|y=0\}$ ,

where

$W_{loc}^{s}(I_{1})=\{q\in U|G^{n}(q)arrow I_{1}\}$ , $W_{loc}^{u}(I_{1})=\{q\in U|F^{n}(q)arrow I_{1}\}\cup\{I_{1}\}$ ,

$W^{s}(I_{1})=\cup G^{-n}(W_{loc}^{s}(I_{1}))n\geq 0\infty$ and $W^{u}(I_{1})=\cup G^{n}(W_{loc}^{u}(I_{1}))n\geq 0\infty$

are called alocal stable set, a local unstable set, the stable set and the unstable set of
$I_{1}$ for some open neighborhood $U$ of $I_{1}$ , respectively. If $W^{s}(I_{1})$ and $W^{u}(I_{1})$ intersect

at some point other than $I_{1}$ , the point is said to be ahomoclinic point. Moreover,
$q\in W^{s}(I_{1})\cap W^{u}(I_{1})\backslash \{I_{1}\}$ is said to be atransverse homoclinic point if $T_{q}(\mathrm{C}^{2})$ is the

direct sum of $T_{q}W^{s}(I_{1})$ and $T_{q}W^{u}(I_{1}):T_{q}(\mathrm{C}^{2})=T_{q}W^{s}(I_{1})\oplus T_{q}W^{u}(I_{1})$ . In general, if
$G$ is adiffeomorphism of class $C^{r}$ on adifferentiate manifold which has asaddle fixed

point $p$ with atransverse homoclinic point, then $G^{k}$ satisfies the horseshoe condition

for some positive integer $k$ , and the dynamical structure near $p$ is described by symbol

dynamics (see [7]). We remark that our $G$ is not alocal diffeomorphism at $I_{1}$ . However,

observing the orbits of critical points of $G$ , we have the following results:

Main Theorem. Suppose that $|a|>1$ , $b\neq c$ and $[0: c:1]\not\in W^{u}(I_{1})$ . Then, we have

the following:
(1) $I_{2}$ is a homoclinic point of $I_{1}$ .

(2) Moreover, suppose that $I_{2}$ is a transverse homoclinic point. Then there exist an

integer $k>0$ , a set $X\subset \mathrm{P}^{2}$ and some homeomorphism $\Psi$ : $Xarrow\{0,1\}^{\mathrm{Z}}\backslash E$ such that
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$X$ is invariant by $G$ and a $\circ\Psi=\Psi$ $\circ G^{k}$ on $X$ , where

$E=\{(\cdots, s_{-1}, s_{0}, s_{1}, \cdots)\in\{0,1\}^{\mathrm{Z}}|(\cdots, s_{n_{0}-1}, s_{n_{0}},0,0, \cdots)\}$

and $\sigma$ is the shift map on $\{0, 1\}^{\mathrm{Z}}\backslash E$ .
In particular, periodic points of Fatou mapping accumulate at its indeterminate point
$I_{1}$ .

2Fundamental Properties of Fatou mappings

In this section, we state some properties about Fatou mappings F for later use. First,

we denote their derivatives by $f’(x)=df(x)/dx$, $F_{x}(x,y)=\partial F(x, y)/\partial x$ and write the
Jacobian matrix of $F$ at point $p$ by $JF(p)$ . The iteration $F^{n}$ of $F$ is defined by setting
$F^{1}=F$ , $F^{n}=F\mathrm{o}F^{n-1}$ for $n\geq 2$ . Also, we put $F^{0}=id$ . Moreover, we denote the
usual projection mappings $\pi$: : $\mathrm{C}^{2}arrow \mathrm{C}(i=1,2)$ by $\pi_{1}(x, y)=x$ and $\pi_{2}(x, y)=y$ .
Let us set $\Delta(p, r)=\{z\in \mathrm{C}||z-p|<r\}$ , A $(p, r)^{*}=\Delta(p, r)\backslash \{p\}$ , $\Delta_{r}=\Delta(0, r)$ ,
$\Delta^{2}(p, r)=\Delta(p, r)\cross\Delta(p, r)$ and $\Delta_{f}^{2}=\Delta^{2}(0, r)$ . Let $S$ be subset of given set $X$ . Then
we denote by $\overline{S}$ the closure of the set in $X$ . We define the set of indeterminate points of
$F$ by $I_{F}$ and set $\Im_{F}=\overline{\bigcup_{j=0}^{\infty}F^{-j}(I_{F})}$ . We denote the corresponding sets for the inverse
mapping $G$ of $F$ by $I_{G}$ and $\Im_{G}$ . Set $I_{1}=[1$ : 0:0$]$ , $I_{2}=[1 : -a : 0]$ , $J_{1}=[0$ : 1 : 0$]$

and $J_{2}=[0:c:1]$ . Then one can see that

$I_{F}=\{I_{1}$ , $I_{2}\}$ , $I_{F}=\Im_{F}$ , $I_{G}=\{J_{1}$ , $J_{2}\}$ and $\Im_{G}=\overline{\{J_{1},\{F^{n}(\mathcal{J}_{2})\}_{n=0}^{\infty}\}}$ .

Moreover, setting

$C_{1}=\{[t:x : y]\in \mathrm{P}^{2}|y=0\}$ , $C_{2}=\{[t:x : y]\in \mathrm{P}^{2}|at+x-by=0\}$ and

$D=\{[t:x : y]\in \mathrm{P}^{2}|t=0\}$ ,

we have the following proposition:

Proposition 2.1.
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(1) $F(C_{1}\backslash \{I_{1}, I2\})=J_{1},$ $F(C_{2}\backslash \{I_{2}\})=J_{2},$ $G(C_{1}\backslash \{J_{1}\})=I_{1},$ $G(D\backslash \{J_{1}, J_{2}\})=I_{2}$ .
(2) $F$ : $\mathrm{P}^{2}\backslash \{C_{1}\cup C_{2}\}arrow \mathrm{P}^{2}\backslash \{C_{1}\cup D\}$ and $G$ : $\mathrm{P}^{2}\backslash \{C_{1}\cup D\}arrow \mathrm{P}^{2}\backslash \{C_{1}\cup C_{2}\}$ are

biholomorphic mappings.

3Proof of (1) of Main Theorem

In the reminder of this paper, toe always assume the conditions of Main theorem.

In this section, we show that, under some conditions, $I_{1}$ has ahomoclinic point J2.

The proof is preceded by several steps. For asaddle fixed point, the following result is

known:

Theorem 3.1 ([4, Theorem 6.4.3]). Let $G$ be a holomorphic mapping with a fixed point

$p$ . Suppose that the eigenvalues $\alpha$ and $\beta$ of $JG(p)$ satisfy the inequality $|\beta|<1<|\alpha|$ .
Then there exists a holomorphic mapping $H$ from $\Delta_{\rho}$ into $U$ such that $H(0)=p$ and

$G\mathrm{o}H(z)=\mathrm{H}(\mathrm{a}\mathrm{z})$ for $z$ , $\alpha z\in\Delta_{\rho}$, where $U$ is an open neighborhood of $p$ . In particular,
$H(\Delta_{\rho})\subset W^{u}(p)$ .

We apply Theorem 3.1 for our $G$ and $I_{1}$ . Then it follows from the proof of [4,

Theorem 6.4.3] that $JH(0)={}^{t}(0,1)$ and $H$ is injective on $\triangle_{\rho}$ . Set $G^{-n}(D)=D_{-n}$ for

all positive integers $n\geq 1$ . In particular, $D_{-1}$ has the following form:

$D_{-1}=\{(x, y)\in \mathrm{C}^{2}|1+by+cy^{2}-xy=0\}$ .

We rechoose $\rho$ so small that $H(\triangle_{\rho})\cap D_{-1}=\emptyset$ . On the other hand, it is clear from the

definition that $W^{s}(I_{1})\supset C_{1}\backslash \{J_{1}\}$ . Define the mapping

$H_{n}$ : $\triangle_{a^{n}\rho}arrow \mathrm{C}^{2}$ by $z\vdash\Rightarrow H_{n}(z)=G^{n}\circ H(z/a^{n})$ .

Then, from the definitions of $G$ and $H_{n}$ , we have the following proposition.

Proposition 3.2. If $G^{n}$ is a holomorphic and injective mapping on $H(\Delta_{\rho})$ , then $H_{n}$ is

a well-defined holomorphic injective mapping on $\triangle_{a^{n}\rho}$ and has the following properties:

(1) $G\circ H_{n}(z)=H_{n}(az)$ for $z$ , $az\in\triangle_{a^{n}\rho}$ ,

(2) $Hn(z)=H_{n-1}(z)$ for $z\in\triangle_{a^{n-1}\rho}$ , and $H(\triangle_{\rho})\subset H_{1}(\triangle_{a\rho})\subset\cdots\subset H(\triangle_{a^{n}\rho})$ ,

(3) $H_{n}(\triangle_{a^{n}\rho})\subset W^{u}(I_{1})$ .

We have now two cases to consider.

Casel . There exists some positive integer $n_{0}$ with $D_{-n_{0}}\cap H(\triangle_{\rho})\neq\emptyset$ .
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Let $n_{0}$ be the minimum satisfying this condition. By Proposition 2.1, one knows
that $G^{n}$ is aholomorphic and injective mapping on $\mathrm{C}^{2}\backslash \bigcup_{k\geq 0}^{n_{0}-1}G^{-k}(D_{-1}\cup C_{1})$. Here,
we claim the following:

(3.1) $G^{n}$ is aholomorphic and injective mapping on $H(\Delta_{\rho})$ for $1\leq n<n_{0}$ .

To this end, it is enough to show that $\bigcup_{k\geq 0}^{n0-2}G^{-k}(D_{-1}\cup C_{1})\cap H(\Delta_{\rho})=\{(0,0)\}$ . Since
$G^{-1}(C_{1})\subset D\cup C_{1}\backslash \{J_{1}, J_{2}\}$ , we have $\bigcup_{k\geq 0}^{n0-2}G^{-k}(D_{-1}\cup C_{1})=\bigcup_{k\geq 0}^{n_{0}-2}G^{-k}(D_{-1})$ UCX.
Prom this and the facts $D_{-n_{0}}\cap H(\Delta_{\rho})\neq\emptyset$ and $D_{-n}\cap H(\Delta_{\rho})=\emptyset$ for $1\leq n<n_{0}$ ,
we have the assertion (3.1). Thus, by Proposition 3.2, one can define the mapping
$H_{n_{0}-1}$ on $\Delta_{a^{n}0^{-1}\rho}$ . We take apoint $p_{0}\in D_{-n_{0}}\cap H(\Delta_{\rho})\backslash \{(0,0)\}$ and set $p_{n}=\mathrm{G}\mathrm{n}(\mathrm{p}0)$

for all positive integers $n$ . Then, it follows from Proposition 3.2 that $p_{n_{0}-1}\in D_{-1}\cap$

$G^{n0-1}\mathrm{o}H(\Delta_{\rho})=D_{-1}\cap H_{n0-1}(\Delta_{a^{n}0\rho})\subset W^{u}(I_{1})$. Moreover, taking into account the
fact $J_{2}\not\in W^{u}(I_{1})$ , we have $p_{n_{0}}=G(p_{n_{0}-1})\in D\backslash \{J_{1}, J_{2}\}$ and $p_{n_{0}+1}=G(p_{n_{0}})=I_{2}\in$

$W^{s}(I_{1})\backslash \{I_{1}\}$ . Therefore, we conclude that I2 is ahomoclinic point of $I_{1}$ in Case 1.

Case 2. $D_{-n}\cap H(\Delta_{\rho})=\emptyset$ for all $n$ .

In this case, using Proposition 3.2, we can define an injective holomorphic mapping
$H:\mathrm{C}arrow \mathrm{C}^{2}$ by $H(z)=H_{n}(z)$ for all $n$ . Set $H(z)=(h_{1}(z), h_{2}(z))$ . From Proposition
3.2, (3) and the fact $W^{s}(I_{1})\subset C_{1}\backslash \{I_{1}\}$ , one knows that $H(\mathrm{C})\subset W^{u}(I_{1})$ and $h_{2}(z)$

is non-constant. Set $D_{-n}=\{(x, y)\in \mathrm{C}^{2}|P_{n}(x,y)=0\}$ . It should be remarked that
$P_{n}(x, y)$ is apolynomial which is given by the denominator of $\pi_{1}\circ G^{n}(x, y)$ . Moreover,
from the assumption of Case 2, we see that $H(\mathrm{C})\cap D_{-:}=\emptyset$ for $i=1,2$ . So, we
have holomorphic functions $k_{:}(z)=P_{}\circ H(z)$ on $\mathrm{C}$ which are non-zero constants or
transcendental entire functions with the exceptional value 0. Suppose that both $k_{1}$ and
$k_{2}$ are constants, say, $k_{1}\equiv\alpha$ and $k_{2}\equiv\beta$ for some $\alpha$ , $\beta\in \mathrm{C}^{*}$ . Then, by using the
concrete forms of P.$\cdot$ for $i=1,2$ , we have the following equation:

$a^{2}(c-b)\{h_{2}(z)\}^{2}+a\{b\alpha+a(\alpha-1)\}h_{2}(z)+\alpha^{2}-\beta\equiv 0$.

Clearly, this contradicts the facts that $h_{2}(z)$ is anon-constant holomorphic function and
$b\neq c$ . Therefore, at least $k_{1}$ or $k_{2}$ is anon-constant transcendental entire function and
so, without loss of generality, we may assume that $h_{2}$ is anon-constant transcendental
holomorphic function. In the following part, we give aproof of (1) of Main theorem
which is based on an argument by Jin in [3].

Lemma 3.3. $H(\mathrm{C})$ is not contained in any algebraic curve
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Proof. Assume the contrary. Then, there exists some polynomial $Q(x, y)$ such that

$\Sigma=\{(x, y)\in \mathrm{C}^{2}|Q(x, y)=0\}\supset H(\mathrm{C})$ , that means $Q(h_{1}(z), h_{2}(z))\equiv 0$ for all $z\in \mathrm{C}$ .

Since $h_{2}$ is anon-constant transcendental entire function, there exist some constant $\gamma$

and infinitely many distinct points $\{z_{\nu}\}$ such that $h_{2}(z_{\nu})=\gamma$ . Set $\delta_{\nu}=h_{1}(z_{\nu})$ . Then,

$Q(\delta_{\nu}, \gamma)=0$ for all $\nu$ and, from the injectivity of $H$ , $\{\delta_{\nu}\}$ is aset of infinitely many

distinct points. This contradicts the fact $Q$ is apolynomial. $\square$

To complete the proof of (1) of Main Theorem, we here recall the following result:

Theorem 3.4 ([5, Theorem 5.6]). Let $H$ : $\mathrm{C}arrow \mathrm{C}^{2}$ be an entire mapping. Assume

that the set of exceptional values of $H$ contains algebraic curves $\Sigma_{i}=\{(x, y)\in \mathrm{C}^{2}|$

$P_{\dot{l}}(x, y)=0\}$ for $i=1,2,3$ , where $P_{i}(i=1,2,3)$ are non-constant, irreducible and

relatively prime polynomials. Then there exists some polynomial $Q(x, y)$ such that

$H(\mathrm{C})\subset\{(x, y)\in \mathrm{C}^{2}|Q(x, y)=0\}$ .

Let us return to the proof of (1) of Main Theorem. Here, we assert that the Poly-

nomials $P_{i}$ defining the algebraic curves $D_{-i}(i=1,2,3)$ are non-constant, irreducible

and relatively prime, by rechoosing, if necessary, some irreducible components in place

of Pi. To see this, it suffices to show that $D-iHD-j=\emptyset$ for $i=1,2,3$ . Assume the con-

trary that there exists some point $p\in D_{-i}\cap D_{-j}$ with $G^{i}(p)\in D\backslash \{J_{2}\}$ , $G^{:+1}(p)=I_{2}$

and $G^{i+2}(p)=I_{1}$ . Then, we have $G^{j}(p)\not\in D$ . Clearly, this is acontradiction. Now,

apply Theorem 3.5 for $H$ and $D_{-i}(i=1,2,3)$ . Then $H(\mathrm{C})$ is contained in some alge-

braic curve. This contradicts Lemma 3.4. Therefore, we conclude that the Case 2does

not occur; completing the proof of (1) of Main Theorem.

4Proof of (2) of Main Theorem

In this section, we construct ahorseshoe mapping at some neighborhood of $I_{1}$ and

give the proof of (2) of Main Theorem. In [4, \S 7.4], one can see the construction of a

horseshoe structure for Henon mapping. Our construction is basically parallel to that

in it. The proof is preceded by several lemmas.

First, for the proof of (2) of Main Theorem, we prove $\lambda$ Lemma for $G$ at $I_{1}$ . It

is known that similar results are very useful tools in smooth dynamical systems. In

order to state A-lemma, we need afew preparations. Prom now on, we fix an affine

coordinate in $\mathrm{C}^{2}(x, y)$ with respect to which $I_{1}=(0,0)$ . Recall that $h_{2}’(0)\neq 0$ . Then

we can define the inverse mapping of $h_{2}$ on $\Delta_{R}$ for some constant $R>0$ , and $H(\triangle_{\rho})$
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is locally described as follows:

$H(\triangle_{\rho})\supset\{(x, y)\in \mathrm{C}^{2}|x=h_{1}\circ h_{2}^{-1}(y)$ on $\Delta_{R}\}$ .

Define the maps $\phi_{u}$ : $\Delta_{f}arrow \mathrm{C}$ and $\Phi$ : $\Delta_{R}^{2}arrow \mathrm{C}^{2}$ by

$\phi_{u}(y)=h_{1}\circ h_{2}^{-1}(y)$ and $\Phi(x, y)=(x-\phi_{u}(y),$y).

It is clear from the definitions that $\Phi$ is abiholomorphic mapping and $\Phi^{-1}$ is well-
define on $\Delta_{R’}^{2}$ for some constant $R$ with $0<R’<R$ . Set $\tilde{G}=\Phi\circ G\mathrm{o}\Phi^{-1}$ on $\Delta_{R}^{2},$ .
Then, we can see that local stable and unstable sets of $(0, 0)$ for $\tilde{G}$ are $x$-axis and
$y$-axis, respectively. We consider an injective holomorphic mapping $\phi:\Delta_{r}arrow \mathrm{C}^{2}$ with
$\phi(z)=(\phi_{1}(z), \phi_{2}(z))$ , $\phi(0)=0$ and $D^{u}=\phi(\Delta_{r})$ . Then, we have the following:

Lemma 4.1 (A-Lemma for $G$ at $I_{1}$ ). Assume that $D^{u}\cap\{(x, y)\in \mathrm{C}^{2}|y=0\}=$

$\{(0,0)\}$ and $\phi_{2}’(0)\neq 0$ . Then, there exists a positive integer $n_{0}$ satisfying the following:
For any $n\geq n_{0}$ , there exist holomorphic functions $\phi_{n}$ : $\Delta_{R’}arrow \mathrm{C}$ such that $\phi_{n}(0)=0$

and $\tilde{G}^{n}(D^{u})\cap\Delta_{R’}^{2}\supset\{(x, y)\in\Delta_{R}^{2}$ , $|x=\phi_{n}(y)$ on $\Delta_{R’}\}$ . In particular, $\{\phi_{n}\}$ converges
locally unifomly to the $co$ nstant function $x\equiv 0$ on $\Delta_{R’}$ .

The lemma is proved by similar discussion in [7, Lemma 7.1] and we omit it.
In the following part of this section, we always assume that $\Delta_{R’}^{2}$ is given in Lemma

4.1. Prom adirect calculation, we see that $\Phi^{-1}$ has the form $\Phi^{-1}(x, y)=(x+\phi_{u}(y), y)$ .
Now, we define the set $\tilde{l}_{x_{0}}$ and the mapping $(\Phi^{-1})_{x\mathrm{o}}$ : $\Delta_{R’}arrow\Delta_{R}^{2}$ for all $x_{0}\in\Delta_{R’}$ by

$\tilde{l}_{x_{0}}=\{(x, y)\in\Delta_{R}^{2}$ , $|x=x_{0}\}$ and $(\Phi^{-1})_{x_{0}}$ : $y\vdash\Phi^{-1})_{x_{0}}(y)=\Phi^{-1}(x_{0}, y)$ .

It is clear that $(\Phi^{-1})_{x_{0}}$ is an injective holomorphic mapping on $\Delta_{R’}$ and $(\Phi^{-1})_{0}(\Delta_{R’})$

$\subset W^{u}(I_{1})$ . Set $l_{x_{0}}=\Phi^{-1}(\tilde{l}_{x_{0}})$ and $U=\Phi^{-1}(\Delta_{R’}^{2})$ . Then, one can see that $U$ is foliated
by the leaves $\{l_{x_{0}}\}_{x_{0}\in\Delta_{R}},$ . Here, we can take the point $\tilde{y}\in\Delta_{R’}$ such that $\Phi^{-1}(0,\tilde{y})=p_{0}$ ,
where $p_{0}$ is the point appearing in the proof of (1) of Main Theorem and it satisfies
the conditions $p_{0}\in H(\Delta_{\rho})$ and $p_{n_{0}-1}=G^{n0-1}(p_{0})\in W^{\mathrm{u}}(I_{1})\cap D_{-1}$ . By the identity
theorem, we have the following lemma:

Lemma 4.2. There exists some positive constant $r_{2}>0$ such that

$G^{n_{0}-1}\circ(\Phi^{-1})_{0}(\Delta(\tilde{y}, r_{2}))\cap D_{-1}=\{p_{n_{0}-1}\}$ .

Set $K(y)=G^{n_{0}-1}\mathrm{o}\Phi_{0}^{-1}(y)$ and $K(y)=(k_{1}(y), k_{2}(y))$ . It follows from the previous
lemma that $\tilde{y}$ is aunique zero for $P\circ K(y)$ on $\Delta(\tilde{y}, r_{2})$ . Therefore, there exist some
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holomorphic function $\tilde{K}(y)$ on $\triangle(\tilde{y}, r_{2})$ and apositive integer $m$ such that $\tilde{K}(\tilde{y})\neq 0$

and $P\circ K(y)=\tilde{K}(y)(y-\tilde{y})$ .

Lemma 4.3. If $m=1$ , then $I_{2}$ is a transverse homoclinic point.

Proof. From the condition $[0: c:1]\not\in W^{u}(I_{1})$ , there is some constant $x_{0}\neq c$ with
$p_{n_{0}}=[0:x_{0} : 1]$ and $p_{n_{0}+1}=[1:-a:0]$ . Here, we recall that $G$ has the following form
in the specific local charts:

(4.1) $G$ : $\mathrm{C}^{2}(x, y)arrow \mathrm{C}^{2}(t,x)$ , $(x, y)- \rangle(\frac{1+by+cy^{2}-xy}{ay},$ $x-cy)$ ,

(4.2) $G:\mathrm{C}^{2}(t, x)arrow \mathrm{C}^{2}(x, y)$ , $(t, x) \vdash+(\frac{ax-ac}{t^{2}+bt+c-x},$ $\frac{at}{t^{2}+bt+c-x})$ .

Write $G$ in (4.1) and (4.2) by $G_{1}$ and $G_{2}$ , respectively. Then, one obtains that

$G_{1} \circ K(y)=(\frac{P\circ K(y)}{ak_{2}(y)},$ $k_{1}(y)-ck_{2}(y))=( \frac{(y-\tilde{y})\tilde{K}(y)}{ak_{2}(y)}$ , $k_{1}(y)-ck_{2}(y))$ ,

$J(G_{1}\circ K)(\tilde{y})=t$ $(\tilde{K}(\tilde{y})/(ak_{2}(\tilde{y})),$ $k_{1}’(\tilde{y})-ck_{2}’(\tilde{y}))$ ,

$J(G^{2} \circ K)(\tilde{y})=JG_{2}(0, x_{0})J(G_{1}\circ K)(\tilde{y})=\frac{\tilde{K}(\tilde{y})}{k_{2}(\tilde{y})(c-x_{0})}$ $(\begin{array}{l}-b1\end{array})$ .

This implies the assertion of Lemma. 0

From now on, we only consider the case $m=1$ , that is, $I_{2}$ is a transverse homoclinic
point.

For some positive constant $r_{1}$ with $0<r_{1}<R’$ , we set $V_{0}=\Delta_{r_{1}}\cross\triangle_{r_{2}}$ and $V_{1}=$

$\Delta_{r_{1}}\cross\triangle(\tilde{y}, r_{2})$ . Then $V_{i}$ is foliated by the leaves $\{\tilde{l}_{x_{0}}\cap \mathrm{I}4\}_{x_{0}\in\Delta_{r_{1}}}$ for $i=0,1$ . Moreover,
set $(l_{x_{0}}^{i})_{n}=G^{n}\circ\Phi^{-1}(\tilde{l}_{x_{0}}\cap V_{i})$ . Since the family of mappings $\{P\circ G^{n_{0}-1_{\circ}}(\Phi^{-1})_{x_{0}}\}_{x_{0}\in\Delta_{r_{1}}}$

locally uniformly converge to the mapping $P\circ G^{n_{0}-1}\circ(\Phi^{-1})_{0}$ on $\triangle(\tilde{y}, r_{2})$ as $|x_{0}|arrow 0$ ,
Hurwitz’s theorem implies the following claim:

(4.3) $\{$

There is apositive constant $r_{1}>0$ such that for all $x_{0}\in\triangle_{r_{1}}$

$P\circ G^{n_{0}-1}\circ(\Phi^{-1})_{x0}(y)$ has aunique zero point $\tilde{y}_{x0}$ in $\Delta(\tilde{y}, r_{2})$ .

Similar calculation in the proof of Lemma 4.3 implies that $(l_{x_{0}}^{i})_{n\mathrm{o}+1}$ is al-dimensional
submanifold for each $x_{0}\in\triangle_{r_{1}}$ and $i=0,1$ . Set $(l_{x_{0}}^{\tilde{i}})_{n\mathrm{o}+1}=\Phi((l_{x_{0}}^{i})_{n\mathrm{o}+1})$ . From Lemma
4.1, we have the following lemma
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Lemma 4.4. There is an integer $m_{0}$ such that, for all $x_{0}\in\Delta_{\mathrm{r}_{1}}$ and $i=0,1$ ,

$\pi_{1}0\Phi \mathrm{o}G^{m_{0}}\circ\Phi^{-1}((\tilde{l}i_{0})_{n_{0}+2})\subset\Delta_{r_{1}/2}$ and $\pi_{2}$ $\circ\Phi\circ G^{m_{0}}\circ\Phi^{-1}((l_{x_{0}}^{\tilde{i}})_{n\mathrm{o}+2})\supset\Delta_{R’}$ .

In the following, unless specified otherwise, $i$ (and $i_{j}$ ) will usually denote $i=0$

or 1. To simplify the discussion, we write $\tilde{G}$ in place of $\Phi\circ G^{n_{0}+m_{0}}\circ\Phi^{-1}$ and set
$\tilde{G}^{n}(x, y)=(g_{1}^{n}(x,y),g_{2}^{n}(x, y)),\tilde{F}=\Phi\circ F^{n_{0}+m_{0}}\mathrm{o}\Phi^{-1},\tilde{F}^{n}(x, y)=(f_{1}^{n}(x, y),$ $f_{2}^{n}(x,y))$

and $l_{x_{0}}=\{(x, y)\in\Delta_{R’}^{2}|x=x_{0}\}$ for all $x_{0}\in\Delta_{r_{1}}$ . Let $U_{x_{0}}\dot{.}$ be the subset of $l_{x\mathrm{o}}\cap V_{\dot{1}}$ with
$\pi_{2}\circ\tilde{G}(U_{x0}^{\dot{1}})=\Delta_{R’}$ for all $x_{0}\in\Delta_{r_{1}}$ . Moreover, using $Ui_{0}$ , we reset $V_{}= \bigcup_{x_{0}\in\Delta_{r_{1}}}U_{x_{0}}^{}$ ,
$W_{\dot{l}}=\tilde{G}(V_{\dot{l}})$ and $l_{x_{0}}^{\dot{l}}=\tilde{G}(V_{\dot{1}} \cap l_{x0})$ for every $x_{0}\in\Delta_{r_{1}}$ . Prom the Lemma 4.1, there
exists some holomorphic function $\phi_{x_{0}}^{\dot{l}}(y)$ on $\Delta_{R’}$ such that $l_{x_{0}}^{\dot{1}}=\{(x, y)\in W_{\dot{l}}|x=$

$\phi_{x_{0}}^{\dot{l}}(y)$ on $\Delta_{R’}\}$ and
$\tilde{G}$ : $V_{0}\cup V_{1}\backslash \{\tilde{G}^{-1}(0,0)\}arrow W_{0}\cup W_{1}\backslash \{(0,0)\}$

is abiholomorphic mapping. $\mathrm{S}\mathrm{o},\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s}$ implies that $W_{\dot{1}}\backslash \{(0,0)\}$ is foliated by the leaves
$\{l_{x_{0}}\dot{.}\backslash \{(0,0)\}\}_{x\mathrm{o}\in\Delta_{r_{1}}}$ . Similarly, set $\tilde{l}_{y0}=\{(x,y)\in\Delta_{R’}^{2}|y=y\mathrm{o}\}$ for all $y_{0}\in\Delta_{R’}$ ,
$\tilde{l}_{y^{1}\mathrm{o}}.\cdot=\tilde{F}(\tilde{l}_{y0}\cap W_{1}.\cdot)$ for $y_{0}\in\Delta_{R}^{*}$ and $\tilde{l}_{0^{1}}^{}=\tilde{G}^{-1}(\tilde{l}_{0}\cap W_{1}.\cdot)\cap V_{1}\dot{.}$ . Then we have the following
lemma:

Lemma 4.5. For all $y0\in\Delta_{R’}$ there exist some holomorphic functions $\psi_{y0}^{_{1}}(x)$ on $\Delta_{f}1$

such that $\tilde{l}_{y_{0}^{1}}^{\dot{l}}=\{(x,y)\in\Delta_{R}^{2}|y=\psi_{y_{0}^{1}}^{\dot{l}}(x)$ on $\Delta_{r_{1}}\}$ .

Proof It should be remarked here that since $\tilde{F}(\tilde{l}_{y0}\cap W_{\dot{1}1})=\tilde{G}^{-1}(\tilde{l}_{y0}\cap W_{_{1}})$ for
$y_{0}\in\Delta_{R}^{*},,\tilde{l}_{y_{0}^{1}}.\cdot$ is given by the inverse image of $\tilde{G}$ of $\bigcup_{x\mathrm{o}\in\Delta_{r_{1}}}\tilde{l}_{y0}\cap li_{0}^{1}$ . Prom the previous
discussion, $\tilde{l}_{y0}\cap l_{x_{0}^{1}}^{\dot{l}}=\{(\phi i_{\mathrm{o}}^{1}(y_{0}), y_{0})\}$ for $(x_{0}, y_{0})\in\Delta_{r_{1}}\cross\Delta_{R}^{*},$ . Moreover, from the
injectivity of $\tilde{G},\tilde{G}^{-1}(\phi i_{0}^{1}(y_{0}), y_{0})$ is given by asingle point contained in $l_{x_{0}}\cap V_{\dot{1}1}$ . So, we
set $\tilde{G}^{-1}(\phi_{x_{0}^{1}}^{\dot{1}}(y_{0}),y_{0})=(x_{0}, \psi_{y\mathrm{o}}^{\dot{1}1}(x_{0}))$ . Repeating this process for all $x_{0}\in\Delta_{f}1$ ’we have

$l_{y^{1}0}^{\tilde{\dot{l}}}=\tilde{G}^{-1}(l_{y0}\cap W_{\dot{1}1})=\{(x, y)\in V_{\dot{1}1}|y=\psi_{y0}^{\dot{1}1}(x)$ on $\Delta_{f}\}1^{\cdot}$

On the other hand, $\tilde{G}^{-1}(\tilde{l}_{y0}\cap W_{1}\dot{.})$ is an analytic subset of pure dimension 1. By using
this fact, it follows from [6, Theorem 4.4.1] that $y=\psi_{y\mathrm{o}}^{1}.\cdot(x)$ is aholomorphic function
on $\triangle_{f}1^{\cdot}$ In case of $y_{0}=0$ , we define $\psi_{0}^{\dot{1}}$ by $\psi_{0}^{1}(x)=\tilde{y}_{x}$ which is appeared in (4.3) and
$\psi_{0}^{0}\equiv 0$ . Then we $\mathrm{s}\mathrm{e}\mathrm{e}$

.
that

$l_{0_{\mathrm{i}}^{1}}\tilde{.}=\tilde{G}^{-1}(\tilde{l}_{0}\cap W_{\dot{l}_{1}})\cap V_{1}.\cdot=\{(xy)\mathrm{r}\mathrm{c}\in V_{\dot{l}_{\mathrm{l}}}y\mathrm{c}\mathrm{n}.=\psi_{y_{0}^{1}}^{\dot{l}}(x)$

on
$\triangle_{r_{1}}\}\square$

’

and [6, Theorem 4.4.1] implies that $\psi_{0^{1}}.\cdot$ is aholomorphic function.

Inductively, we define the set $V_{\dot{l}_{n+1\mathfrak{n}\cdots 1}}:$: by $V_{\dot{1}_{n+1}}\cap\tilde{G}^{-1}(V_{n\cdots 1}\dot{.}:)$ for n $\geq 1$ and the
holomorphic mapping

$\mathcal{G}^{n}$ : $V_{\dot{1}n\cdots 1}:arrow\Delta_{r_{1}}\cross\Delta_{R’}$ by (x,$y)\vdasharrow(x,g_{2}^{n}(x, y))$ for n $\geq 1$ .
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The map $\tilde{G}^{n}$ is said to satisfy the horseshoe condition $(HC_{n})$ if $\mathcal{G}^{n}$ is biholomorphic.

Lemma 4.6. $\tilde{G}^{n}$ satisfies the horseshoe condition $(HC_{n})$ for all positive integers $n$ .

Proof. From Lemma 4.5 and the fact that $W_{i_{1}}$ is foliated by the leaves $\{l_{x_{0}^{1}}^{i}\}_{x\mathrm{o}\in\Delta_{r_{1}}}$ ,

we see that $\tilde{G}$ satisfies $(HC_{1})$ .
Assume that $\tilde{G}^{n}$ satisfies the $(HC_{n})$ . Then, since $\mathcal{G}^{n}$ is abiholomorphic mapping,

there exists some holomorphic function $\psi_{y0}^{i_{n}\ldots i_{1}}(x)$ on $\Delta_{r_{1}}$ for each $y_{0}\in\triangle_{R’}$ such that

$\{(x, y)\in V_{i_{n}\ldots i_{1}}|g_{2}^{n}(x, y)=y_{0}\}=\{(x, y)\in V_{i_{n}\ldots i_{1}}|y=\psi_{y0}^{i_{n}\ldots\dot{*}_{1}}(x)$ on $\triangle_{r_{1}}\}$ .

Denoting this set by $l_{y0}^{\tilde{i}_{n}\ldots i_{1}}$ , we see that $V_{i_{n}\ldots i_{1}}$ is foliated by the leaves $\{\tilde{l}_{y0}^{\iota_{n}\ldots i_{1}}\}_{y\mathrm{o}\in\Delta_{R}},$ .
Define the holomorphic mapping

$\tilde{\mathcal{G}}^{n}$ : $V_{i_{n}\ldots i_{1}}\cap\tilde{G}(V_{i_{n+1}})\backslash l_{0}^{\tilde{i}_{n}\ldots i_{1}}arrow\triangle_{r_{1}}\cross\triangle_{R’}*$ by $(x, y)-r(f_{1}^{1}(x, y),$ $g_{2}^{n}(x, y))$ .

Then, we have the following assertion:

(4.4) $\{$

For all $(x_{0}, y_{0})\in\triangle_{r_{1}}\cross\triangle_{R}*,$ , there exists aunique point

$(x, y)\in V_{i_{n}\ldots i_{1}}\cap$ $\tilde{G}(V_{i_{n+1}})\backslash l_{0}^{\tilde{i}_{n}\ldots i_{1}}$ such that $\tilde{\mathcal{G}}^{n}(x, y)=(x_{0}, y_{0})$ .

To show (4.4), it is enough to see that the holomorphic function $\phi_{x0}^{i_{n+1}}\circ\psi_{y0}^{i_{n}\ldots i_{1}}(x)$ on $\triangle_{r_{1}}$

has aunique fixed point $\tilde{x}$ with $\psi_{y0}^{i_{n}\ldots i_{1}}(\tilde{x})\neq 0$. Indeed, by Lemma 4.4, one knows that
$\phi_{x_{0}}^{i_{n+1}}\circ\psi_{y0}^{i_{n}\ldots i_{1}}(\Delta_{r_{1}})\subset\triangle_{r_{1/2}}$ . Hence, it follows from [4, Theorem 6.3.5] that there exists

aunique fixed point $\tilde{x}\in\triangle_{r_{1}}$ of $\phi_{x_{0}^{n+1}}^{i}\circ\psi_{y0}^{i_{n}\ldots i_{1}}$ . So, $(\tilde{x}, \psi_{y0}^{i_{n}\ldots i_{1}}(\tilde{x}))$ is the required point

satisfying (4.4). In particular, we see that $\tilde{\mathcal{G}}^{n}$ is biholomorphic. Moreover, consider the

following mapping:

$\tilde{\mathcal{G}}^{n}\circ\tilde{G}$ : $\tilde{G}^{-1}(V_{i_{n}\ldots i_{1}}\cap\tilde{G}(V_{i_{n+1}})\backslash l_{0}^{\tilde{i}_{n}\ldots i_{1}})\cap V_{i_{n+1}}arrow\triangle_{r_{1}}\cross\triangle_{R}*,$ .

It is clear from the definition that $\tilde{\mathcal{G}}^{n}\circ\tilde{G}=\mathcal{G}^{n+1}$ . Set $\tilde{l}_{0}^{i_{n+1}\ldots i_{1}}=\tilde{G}^{-1}(\tilde{l}_{0}^{i_{n}\ldots i_{1}}\cap V_{i_{n}\ldots i_{1}}\cap$

$\tilde{G}(V_{i_{n+1}}))$ . Then, there exists some holomorphic function $\psi_{0}^{i_{n+1}\ldots i_{1}}(x)$ on $\Delta_{r_{1}}$ such that

(4.5) $\{$

$\tilde{l}_{0}^{i_{n+1}\ldots i_{1}}=\{(x, y)\in V_{i_{n+1}}\cap\tilde{F}^{-1}(V_{i_{n}\ldots i_{1}})|y=\psi_{0}^{i_{n+1\ldots:_{1}}}(x)$ on $\triangle_{r_{1}}\}$ and

$V_{i_{n+1}}\cap\tilde{G}^{-1}(V_{i_{n}\ldots i_{1}}\cap\tilde{G}(V_{i_{n+1}})\backslash l_{0}^{\tilde{i}_{n}\ldots i_{1}})=V_{i_{n+1}}\cap\tilde{G}^{-1}(V_{i_{n}\ldots i_{1}})\backslash \tilde{l}_{0}^{i_{n+1}\ldots i_{1}}$.

Indeed, by the same argument as in the proof of (4.4), one can see that $l_{x_{0}^{n+1}}^{i}$ and $\tilde{l}_{0}^{i_{n}\ldots:_{1}}$

have aunique intersection point for any fixed $x_{0}\in\triangle_{r_{1}}$ , and we denote it by $(\phi_{x_{0}^{n+1}}^{\dot{l}}(y_{0})$ ,
$y_{0})\in V_{i_{n}\ldots i_{1}}\cap\tilde{G}(V_{i_{n+1}})$ . In case of $y_{0}\neq 0,\tilde{G}^{-1}(\phi_{x_{0}}^{i_{n+1}}(y_{0}), y_{0})$ is given by asingle point

contained in $\tilde{G}^{-1}(V_{i_{n}\ldots i_{1}})\cap V_{i_{n+1}}$ , so we write it by $(x_{0}, \psi_{0}^{1_{n+1}}\ldots i_{1}(x_{0}))$ . In case of $y_{0}=0$ ,
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from the fact $l_{x_{0}^{n+1}}^{i}\cap l_{0}^{\tilde{i}_{n}}\ldots"=\{(0,0)\}$ and the argument in the proof of Lemma 4.5, we
set $(x_{0}, \psi_{0}^{i_{n+1}\ldots:_{1}}(x_{0}))=(x_{0}, \psi_{0}^{i_{n+1}}(x_{0}))$ . Since $\tilde{l}_{0}^{i_{n+1}\ldots i_{1}}$ is described as

$l_{0}^{\tilde{l}_{n+1\cdots 1}}:=\{(x, y)\in V_{\dot{\iota}_{n+1}}|y=\psi_{0}^{\dot{1}_{n+1\cdots 1}}:(x)$ on $\Delta_{f}1\}$ and

$l_{0}^{n+1\cdots 1}\tilde{.}:=\tilde{G}^{-1}(l_{0^{n\cdots 1}}^{\tilde{l}}:\cap V_{n+1}.\cdot\cap\tilde{G}(V_{\dot{1}_{n+1}}))\cap V_{\dot{1}_{n\dagger 1}}$ ,
$l_{0}^{\tilde{l}_{n+1\cdots 1}}$

: is an analytic set of pure dimension 1, and hence [6, Theorem 4.4.1] implies
that $\psi_{0}^{1_{n+1\cdots 1}}$

: is aholomorphic function on $\Delta_{f}1^{\cdot}$ Thus, we have the assertion (4.5).
Now one knows that

$\mathcal{G}^{n+1}$ : $\tilde{G}^{-1}(V_{\dot{*}_{n}\ldots:_{1}})\cap V_{\dot{l}_{n+1}}\backslash l_{0^{n+1}}^{\tilde{|}}\ldots\dot{*}_{1}arrow\Delta_{t1}\cross\Delta_{H}^{*}$

is abiholomorphic mapping. Moreover, it is clear that $\mathcal{G}^{n+1}(x, y)=(x, 0)$ for $(x, y)=$
$(x, \psi_{0}^{l_{n+1\cdots 1}}(:x))\in l_{0}^{\tilde{\dot{l}}_{n+1}}\ldots\dot{\iota}_{1}$ , and this shows that the mapping $\mathcal{G}^{n+1}$ : $\tilde{G}^{-1}(V_{\dot{1}_{n\cdots 1}}:)\cap$

$V_{n+1}\dot{.}arrow\Delta_{r_{1}}\cross\Delta_{R’}$ is abiholomorphic mapping, proving Lemma 4.6. Cl

Now, we classify the points $p$ of $\bigcap_{n=0}^{\infty}\tilde{G}^{-n}(V_{0}\cup V_{1})$ by using the fact that the $\mathrm{A}$;-th

orbit of $p$ is contained in $V_{0}$ or $V_{1}$ . To this end, we introduce some notation from
symbolic dynamics. Asequence $(s_{0}, \ldots, s_{n-1})$ with terms $s_{k}=0,1$ is said to be a
symbol sequence of length $n$ . The set of all symbol sequences of length $n$ is denoted by
$\{0, 1\}^{n}$ . For asymbol sequence $(s_{0}, \ldots, s_{n-1})\in\{0,1\}^{n}$ , we define the set $V_{s_{0}\ldots s_{n-1}}$ as
follows:

$V_{s_{0}\ldots s_{n-1}}=\{(x, y)\in\Delta_{r_{1}}\cross\Delta_{R’}|\tilde{G}^{j}(x, y)\in V_{s_{\mathrm{j}}}$ , $j=0$, $\ldots n-1\}$ .

Then, from the previous discussion, we have the following results.

Lemma 4.7. $V_{s_{0}\ldots s_{n-1}}= \bigcup_{y\mathrm{o}\in\Delta_{R}}\tilde{l}_{y0}^{s_{0}\ldots s_{n-1}}$ and $\tilde{G}(V_{s_{0}\ldots s_{n}})\subset V_{s_{1}\ldots s_{n}}$ for all symbol
sequences $(s_{0}, \ldots, s_{n})\in\{0,1\}^{n+1}$ .

As in [4, \S 7.4], we define the space $\{0, 1\}^{\mathrm{N}_{\cup\{0\}}}$ of symbol sequneces as follows:

$\{0, 1\}^{\mathrm{N}_{\cup\{0\}}}=\{s_{+}=(s_{0}, s_{1}, \ldots)|s:=0,1\}$ .

By setting $\Gamma(s_{+})=\bigcap_{n=0}^{\infty}V_{s_{0}\ldots s_{n}}$ for all $s_{+}\in\{0,1\}^{\mathrm{N}_{\cup\{0\}}}$ , we have the following lemma.

Lemma 4.8. For all $s_{+}\in\{0,1\}^{\mathrm{N}_{\cup\{0\}}}$ there exjst some holomorphic functions $\psi_{s}+$ :
$\Delta_{f}1arrow \mathrm{C}$ such that

$\Gamma(s_{+})=\{(x,y)\in\Delta_{r_{1}}\cross\Delta_{R’}|y=\psi_{s}+(x)$ on $\Delta_{r_{1}}\}$ .
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Proof. First, we claim that $l_{x_{0}}\cap\Gamma(s_{+})$ consists of asingle point for all $x_{0}\in\triangle_{r_{1}}$ .

Indeed, taking into account the fact $l_{x0} \cap\Gamma(s_{+})=\bigcap_{n=0}^{\infty}V_{s_{0}\ldots s_{n}}\cap l_{x0}$ , we define the

holomorphic function

$(g_{2}^{n+1})_{x_{0}}$ : $\pi_{2}(l_{x0}\cap V_{s_{0}\ldots s_{n}})arrow\triangle_{R’}$ by $y\vdasharrow(g_{2}^{n+1})_{x_{0}}(y)=g_{2}^{n+1}(x_{0}, y)$ .

Then, it is univalnet; so that there exists its inverse function $(g_{2}^{n+1})_{x_{0}}^{-1}$ : $\Delta_{R’}arrow\pi_{2}(l_{x0}\cap$

$V_{s_{0}\ldots s_{n+1}})$ . From the facts that $\tilde{G}(V_{s0\cdots s_{n+1}})\subset V_{s_{1}\ldots s_{n+1}}$ and $\tilde{G}^{n+1}(V_{s0\cdots s_{n+1}})\subset V_{s_{n+1}}$ ,

there exists some constant $R’$ with $0<R’<R’$ such that $(g_{2}^{n+1})_{x_{0}}\circ\pi_{2}(l_{x_{0}}\cap V_{s_{0}\ldots s_{n+1}})\subset$

$\Delta_{\mathrm{r}2}\cup\Delta(\tilde{y}, r_{2})\subset\triangle_{R’}$ . Therefore, we have the following inclusions:

$\pi_{2}(l_{x0}\cap V_{s0\cdots s_{n}})=(g_{2}^{n+1})_{x\mathrm{o}}^{-1}(\Delta_{R’})\supset(g_{2}^{n+1})_{x_{0}}^{-1}(\Delta_{R}\prime\prime)\supset\pi_{2}(l_{x0}\cap V_{s0\cdots s_{n+1}})$ .

It follows from [4, Lemma 6.3.7] that $\bigcap_{n=1}^{\infty}\pi_{2}(l_{x_{0}}\cap V_{s_{0}\ldots s_{n}})$ consists of aunique point,

and we denote it by $\psi_{s}+(x_{0})$ . Then, $l_{x0}\cap\Gamma(s_{+})=(x_{0}, \psi_{s}+(x_{0}))$ and

$\Gamma(s_{+})=\{(x, y)\in\Delta_{r_{1}}\cross\Delta_{R’}|y=\psi_{s}+(x)$ on $\Delta_{f}1\}$ .

Finally, we show that $\psi_{s}+(x)$ is aholomorphic function. To see this, set

$\tilde{l}_{0^{0}}^{s\ldots s_{n}}=\{(x, y)\in\triangle_{r_{1}}\cross\triangle_{R}|y=\psi_{0}^{s_{0}\ldots s_{n}}(x)$ on $\triangle_{r_{1}}\}$ .

Then, $\{\psi_{0}^{s_{0}\ldots s_{n}}(x_{0})\}$ converges to $\psi_{s_{\dagger}}(x_{0})$ as $narrow \mathrm{o}\mathrm{o}$ for every fixed point $x_{0}\in\Delta_{r_{1}}$ .

On the other hand, since the family of functions $\{\psi_{0}^{s0\cdots s_{n}}(x)\}_{n\geq 0}$ is uniformly bounded

on $\triangle_{r_{1}}$ , it is normal. So, $\{\psi_{0}^{s0\cdots s_{n}}(x)\}_{n\geq 0}$ converges locally uniformly to aholomorphic

function $\psi_{s}+\mathrm{o}\mathrm{n}$ $\Delta_{r_{1}}$ . This completes the proof of the lemma. $\square$

Put $V= \bigcup_{s+\in\{0,1\}}\mathrm{N}_{\cup\{0\}}\Gamma(s_{+})$ and define the mappings

$\psi^{+}:$ $Varrow\{0,1\}^{\mathrm{N}_{\cup\{0\}}}$ by $(x, y)\mapsto+s_{+}$ , where $y=\psi_{s}+(x)$ ,

$\Psi^{+}:$ $Varrow\Delta_{r_{1}}\cross\{0,1\}^{\mathrm{N}_{\cup\{0\}}}$ by $(x, y)\vdasharrow(x, \psi^{+}(x, y))$ and

$\sigma:\{0,1\}^{\mathrm{N}_{\cup\{0\}}}arrow\{0,1\}^{\mathrm{N}_{\cup\{0\}}}$ by $s_{+}=(s_{0}, s_{1}, \ldots)\vdasharrow\sigma(s_{+})=(s_{1}, s_{2}, \ldots)$ .

By Lemmas 4.7 and 4.8, we have the following:

Lemma 4.9. $\Psi^{+}$ is homeomorphism and $\sigma\circ\psi^{+}(x, y)=\psi^{+}\circ\tilde{G}(x, y)$ for all $(x, y)\in V$ .

Now, we repeat the same process as above for $\tilde{F}$ . Inductively, we define the set
$\tilde{W}_{i_{n+1}\ldots i_{1}}$ by

$\tilde{W}_{i_{1}}=W_{i_{1}}\backslash \{(0,0)\}$ and $\tilde{W}_{i_{n+1}\ldots i_{1}}=\tilde{W}_{i_{n+1}}\cap\tilde{F}^{-1}(\tilde{W}_{i_{n}\ldots i_{1}})$ for $n\geq 1$ ,
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and define the holomorphic mapping

$\mathcal{F}^{n}$ : $\tilde{W}_{\dot{l}_{\hslash\cdots 1}}:arrow\Delta_{f}1\cross\Delta_{R}^{*}$, by (x,$y)\vdash*(f_{1}^{n}(x,y),y)$ for n $\geq 1$ .

The map $\tilde{F}^{n}$ is said to satisfy the horseshoe condition $(HC_{n})$ ifP is biholomorphic.

Lemma 4.10. $\tilde{F}^{n}$ satisfies $(HC_{n})$ for any positive integer n.

Proof Prom the fact that $V_{\dot{l}_{1}}$ is foliated by the leaves $\{\tilde{l}_{y0}^{11}\}_{y_{0}}\in\Delta_{R’}$ , we see that $\tilde{F}$

satisfies $(HC_{1})$ . Assume that $\tilde{F}^{n}$ satisfies $(HC_{n})$ . Then, since $\mathcal{F}^{\mathrm{n}}$ is abiholomorphic

mapping, there exists aholomorhic function $\phi_{x_{0}^{n\cdots 1}}^{\dot{l}}:(y)$ on $\Delta_{R’}^{*}$ for all $x_{0}\in\Delta_{t1}$ such that

$\{(x, y)\in\tilde{W}_{\dot{l}_{n\cdots 1}}:|f_{1}^{n}(x, y)=x_{0}\}=\{(x, y)\in\tilde{W}_{\dot{l}_{n\cdots 1}}|.|x=\phi i_{0}^{n\cdots 1}:(y)$ on $\Delta_{R’}^{*}\}$ .

Denoting this set by $l_{x_{0}^{n1}}.\cdot,\ldots:$ , we see that $\tilde{W}_{_{n}\ldots:_{1}}$ is foliated by the leaves $\{l_{x_{0}^{n\cdots 1}}^{\dot{*}:}\}_{x\mathrm{o}\in\Delta},1^{\cdot}$

Define the holomorphic mapping

$\tilde{\mathcal{F}}^{n}$ : $\tilde{W}_{_{n}\ldots:_{1}\cap\tilde{F}(\tilde{W}_{\dot{1}_{n+1}})}arrow\Delta_{f}1\cross\Delta_{R}^{*}$ , by $(x, y)arrow(f_{1}^{n}(x, y),$ $g_{2}^{1}(x, y))$ .

Prom asimilar discussion in the case of $\tilde{G}^{n}$ , one obtains that 7is abiholomorphic

mapping. Together with the fact that

$\tilde{F}^{-1}(\tilde{W}_{n\cdots 1}.\cdot:\cap\tilde{F}(\tilde{W}_{\dot{l}\mathfrak{n}+1}))=\tilde{F}^{-1}(\tilde{W}_{\dot{*}_{n}\ldots:_{1}})\cap\tilde{W}_{\dot{1}\mathfrak{n}+1}$

we see that $\mathcal{F}^{m+1}=\tilde{P}^{l}\circ\tilde{F}$ : $\tilde{W}_{\dot{l}_{n+1\cdots 1}}:arrow\Delta_{r_{1}}\cross\Delta_{R’}^{*}$ is abiholomorphic mapping. $\square$

Define aset for asymbol sequence having aform $(s_{-1}, \ldots, s_{-n})$ of length $n$

$\tilde{W}_{s_{-1}\ldots s-n}=\{(x, y)\in W_{0}\cup W_{1}\backslash \{(0,0)\}|\tilde{F}^{j}(x, y)\in V_{s-j}$ , $j=1$ , $\ldots$ , $n\}$ .

Then, from the definitions of $\tilde{W}_{s_{-1}\ldots s-n}$ and $\tilde{F}$ , we have easily the following lemma:

Lemma 4.11. $W\sim s_{-1}\ldots s_{-(n+1)}\subset\tilde{W}_{s_{-1}\ldots s-n}$ and $\tilde{F}(\tilde{W}_{s_{-1}\ldots s-n})\subset\tilde{W}_{s_{-2}\ldots s-n}$ for all symbol

sequences $(s_{-1}, \ldots, s_{-(n+1)})\in\{0,1\}^{n+1}$ .

Put $\mathrm{r}(\mathrm{s}-)=\bigcap_{n=0}^{\infty}\tilde{W}_{s_{-1}\ldots s-n}$ for all $s_{-}\in\{0,1\}^{\mathrm{N}}$ with $s_{-}=(s_{-1}, s_{-2}, \ldots)$ . In
exactly the same way as in the proof of Lemma 4.8, we have the following lemma.

Lemma 4.12. For all $s_{-}\in\{0,1\}^{\mathrm{N}}$ there exist some holomorphic functions $\phi_{s-}$ :
$\Delta_{R}^{*},$ $arrow \mathrm{C}$ such that

$\Gamma(s_{-})=\{(x, y)\in W_{0}\cup W_{1}\backslash \{(0,0)\}|x=\phi_{s-}(y)$ on $\Delta_{R}^{*},\}$ .
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Put $W= \bigcup_{s_{-}\in\{0,1\}}\mathrm{N}\Gamma(s_{-})$ and define the mappings

$\psi^{-}$ : $Warrow\{0,1\}^{\mathrm{N}}$ by $(x, y)\vdasharrow s_{-}$ , where $y=\phi_{s-}(x)$ ,

$\Psi^{-}$ : $Warrow\{0,1\}^{\mathrm{N}}\cross\triangle_{R}*$, by $(x, y)\vdasharrow(\psi^{-}(x, y),$ $y)$ .

By asimilar disscussion in the proof of Lemma 4.9, we have the following lemma.

Lemma 4.13. ]is a homeomorphism and $\sigma 0\psi^{-}(x, y)=\psi^{-}0\tilde{F}(x, y)$ for all

$(x, y)\in W$ .

Put $X=V \cap W\backslash \bigcup_{n\geq 0}^{\infty}\tilde{G}^{-n}(0,0)$ . Then, the following lemma holds from the

definitions of $V$ , $W,\tilde{G}$ and $\tilde{F}$ .

Lemma 4.14. $\tilde{F}$ : $Xarrow X$ is a bijective mapping with $\tilde{F}(X)=X$ and $\overline{G}(X)=X$ .

We define the space of $\mathrm{b}\mathrm{i}$-infinite symbol sequence

$\{0, 1\}^{\mathrm{Z}}=\{s=(s_{-}, s_{+})\in\{0,1\}^{\mathrm{Z}}|s=(\cdots, s_{-1}, s_{0}, s_{1}, \cdots)\}$,

and define asubset $E$ of $\{0, 1\}^{\mathrm{Z}}$ by

$E=\{s\in\{0,1\}^{\mathrm{Z}}|$ there is an $n_{0}$ such that $s_{n}=0$ for all $n\geq n_{0}\}$ .

Moreover, define the mappings:

$\Psi$ : $Xarrow\{0,1\}^{\mathrm{Z}}\backslash E$ by $(x, y)\mapsto+(\psi^{-}(x, y),$ $\psi^{+}(x, y))=(\cdots s_{-1}, s_{0}, s_{1}, \cdots)$ and

a: $\{0, 1\}^{\mathrm{Z}}arrow\{0,1\}^{\mathrm{Z}}$ by $(\cdots s_{-1},\hat{s}_{0}, s_{1}, \cdots)\mapsto+(\cdots s_{-1}, s_{0},\hat{s}_{1}, s_{2}\cdots)$ .

Then, the following lemma holds.

Lemma 4.15. $\Psi$ : $Xarrow\{0,1\}^{\mathrm{Z}}\backslash E$ is a homeomorphism such that $\sigma\circ\Psi(x, y)=$

$\Psi\circ\tilde{G}(x, y)$ and $\sigma^{-1}\circ\Psi(x, y)=\Psi\circ\tilde{F}(x, y)$ for all $(x, y)\in X$ .

To complete the proof of (2) of Main Theorem, we only need to show its last

statement. By Lemma 4.15, the periodic points of $\tilde{G}$ and those of $\sigma$ are in one to one

corresspondence. Since the set of periodic points of $\sigma$ is dense in $\{0, 1\}^{\mathrm{Z}}$ , we complete

the proof of (2) of Main Theorem.
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