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Local structure of Fatou mappings at an indeterminate point with
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Tomoko Shinohara (IR #1F)
Graduate School of Natural Science and Technology
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Abstract

In this notes, we show that some Fatou mapping has an indeterminate point
with homoclinic points. In particular, using the structure of horseshoe mappings,
we show that if the homoclinic point satisfies the transversality éondition, then
periodic points of Fatou mapping accumulate at its indeterminate point.

1 Introduction

In this notes, we focus our study on a mapping as follows:
Filt:z:yl-[aty+ay—by®:atz+2° —bzy+cy®: 7, a #£0

which is a birational mapping of the 2-dimensional complex projective space P2. A
rational mapping F' of P? is said to be a birational mapping if there exists another
rational map G of P? such that FoG =id, Go F =id, the identity mapping, on P?
except some algebraic sets, and G is called the inverse mapping. For our F, the inverse
mapping G has the following form:

G:[t:z:y]— [®+bty+cy® — zy: azy — acy? : aty], a # 0.

Here, we remark that F is conjugate to the mapping originally used by P. Fatou to
exhibit a Fatou-Bierbach domain (see [1]). Therefore, we call it a Fatou mapping in
this paper.

In order to state our Main Theorem, we introduce some notation and terminology.
Let fi(t,z,y) (¢ = 0,1,2) be homogeneous polynomials with degree d, F: [t : x : yl —
[fo : f1 : f2] a rational mapping on P% and F : (t,z, y) — (fo, f1, f2) a polynomial
mapping on C2. Then, we have 7 o F = F ox on C® except some analytic sets, where
7 : C*\ {(0,0,0)} — P? is the canonical projection. A point p € P? is said to be
an indeterminate point of F if F(p) = (0,0,0) for some point $ € 7~1(p). In general,
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if p is an indeterminate point, then Ny F(N, \ {p}) is not a single point, where the
intersection is taken over all open neighborhoods N, of p. Hence, F' is not continuous
and the dynamical structure is quite complicated at such a point p. In our case, by
a direct calculation, one can check that indeterminate points of the Fatou mapping F
above are I; = [1:0:0] and [ = [1: —a : 0] and G is continuous at I; and I>. In
particular, I, is a fixed point of G and eigenvalues of Jacobian matrix of G at I; are 0
and a. So, to see the dynamical structure near the indeterminate point I;, it suffices
to consider the behavior of G™ near the fixed point J;. We assume that |a| > 1. Then
I, is a saddle fixed point of G. By [4, Theorem 6.4.3] and a direct calculation, there
exists some injective holomorphic mapping H : A, = {z € C | |2| < p} = C*(z,v)
such that

H(0) =1, W*(I,) D H(A,) and W*(I) > {(z,y) € C* |y =0},
where

Wioh) ={g€U|G™g) > L}, Wi(l)={aeU|F*(¢) = h}u{L},

Wi (L) = U G™"(Wie(l1)) and W*(I) = U G"(Wiae(11))

n>0 n>0
are called a local stable set, a local unstable set, the stable set and the unstable set of
I, for some open neighborhood U of I, respectively. If W*(I;) and W*(I;) intersect
at some point other than I, the point is said to be a homoclinic point. Moreover,
g € We(I) N W*(I,) \ {11} is said to be a transverse homoclinic point if T,(C?) is the
direct sum of T,W*(I,) and T,W*(I;): T,(C?) = T,W*(I,) ® T,W*(I1). In general, if
G is a diffeomorphism of class C™ on a differentiable manifold which has a saddle fixed
point p with a transverse homoclinic point, then G* satisfies the horseshoe condition
for some positive integer k, and the dynamical structure near p is described by symbol
dynamics (see [7]). We remark that our G is not a local diffeomorphism at ;. However,

observing the orbits of critical points of G, we have the following results:

Main Theorem. Suppose that |a| > 1, b# c and [0:c: 1] ¢ W*(I;). Then, we have
the following:

(1) I is a homoclinic point of I.

(2) Moreover, suppose that I, is a transverse homoclinic point. Then there ezist an

integer k > 0, a set X C P? and some homeomorphism ¥ : X — {0, l}Z \ E such that
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X s invariant by G and 0 o ¥ = W o G* on X, where
E = {("'73—17301317"') € {071}Z l ("'13no—l7sno’0707"')}

and o is the shift map on {0, 1}Z \ E.
In particular, periodic points of Fatou mapping accumulate at its indeterminate point
I.

2 Fundamental Properties of Fatou mappings

In this section, we state some properties about Fatou mappings F for later use. First,
we prepare some notations and terminology. Let us fix an homogeneous coordinate
system [t : z : ] in P?. Sometimes, we identify C%(z,y) with { [t:z:y] € P? I t# 0},
and if (z, y) is clear from the context, we may write C? instead of C(z, y). Similarly we
denote the corresponding sets for {[t :x:y] € P2 | Yy # 0} and {[t cr:yle PPz #£0
by C?(t,z) and C%(t, y), respectively. Define the norm of C? by ||(z, VI = /|z]? + |y
Consider holomorphic functions f(z) and F(z,y) on C and C?, respectively. As usual,
we denote their derivatives by f'(x) = df (z)/dz, F;(z,y) = O0F (z,y)/0z and write the
Jacobian matrix of F at point p by JF(p). The iteration F™ of F is defined by setting
F'=F, F* = FoF"! for n > 2. Also, we put F° = id. Moreover, we denote the
usual projection mappings m; : C* — C (i = 1,2) by m(z,y) = z and ma(z,y) = y.
Let us set A(p,r) = {z e C l |z — p| < r}, Ap,r)* = A(p,7) \ {p}, A, = A(O,7),
A%(p, ) = A(p,r)xA(p, ) and A2 = A?(0,7). Let S be a subset of a given set X. Then
we denote by S the closure of the set in X. We define the set of indeterminate points of
F by Ir and set Sp = m We denote the corresponding sets for the inverse
mapping G of F by Ig and Sg. Set 1 =[1:0:0], L =[1: -a:0], J; =[0:1:0)
and J, = [0: c¢: 1]. Then one can see that

Ir={L, L}, Ir=Sp, Ig={h, J} and ¢ = {7, {Fr(R)}0)-
Moreover, setting
Cr={[t:z:9] € P?|y=0}, Co={[t:z:y] € P?|at+z—by=0} and
D={[t:z:y] € P? |t=0},
we have the following proposition:

Proposition 2.1.
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(1) F(C\ {1, I}) = 1, F(Co\{Lz}) = &2, G(CL\ {}) = I, G(D\{/1, ]2}) = Lo.

(2)F2P2\{01UCQ}—)P2\{01UD} andG:PZ\{CluD}—>P2\{C'1UCQ} are

biholomorphic mappings.
3 Proof of (1) of Main Theorem

In the reminder of this paper, we always assume the conditions of Main theorem.
In this section, we show that, under some conditions, J; has a homoclinic point I>.
The proof is preceded by several steps. For a saddle fixed point, the following result is

known:

Theorem 3.1 ([4, Theorem 6.4.3]). Let G be a holomorphic mapping with a fized point
p. Suppose that the eigenvalues o and B of JG(p) satisfy the inequality |8] <1 < |a].
Then there ezists a holomorphic mapping H from A, into U such that H(0) = p and
GoH(z2) = H(az) for z,az € A,, where U is an open neighborhood of p. In particular,
H(A,) C W*(p).

We apply Theorem 3.1 for our G and I;. Then it follows from the proof of [4,
Theorem 6.4.3] that JH(0) = (0,1) and H is injective on A,. Set G™™(D) = D—,, for

all positive integers n > 1. In particular, D_; has the following form:
D_, = {(x,y) € C? ' 1+by+cy’ —zy= 0}.

We rechoose p so small that H(A,) N D_; = @. On the other hand, it is clear from the
definition that W*(I;) D C; \ {J1}. Define the mapping '

 H,:Agm,— C? by z+ H,(2) =G" o H(z/a").
Then, from the definitions of G and H,,, we have the following proposition.

Proposition 3.2. If G" is a holomorphic and injective mapping on H(A,), then H, is
a well-defined holomorphic injective mapping on Agn, and has the following properties:
(1) GoH,(z) = Hp(az) for z, az € Agny,

(2) Hy(2) = Hn_1(2) for z € Agn-1,, and H(A,) C Hi(Agp) C -+ C H(Agnp),

(3) Ha(Agnp) C WH(L).

We have now two cases to consider.

Casel. There ezists some positive integer ng with D_,o N H(A,) # 0.
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Let ng be the minimum satisfying this condition. By Proposition 2.1, one knows
that G™ is a holomorphic and injective mapping on C? \ U:OZ—OI G~%(D_; U C,). Here,

we claim the following:
(3.1) G™ is a holomorphic and injective mapping on H(A,) for 1 < n < ny.

To this end, it is enough to show that 2‘52 G*(D-,uC) NH(A,) = {(0,0)}. Since
G™(C1) € DUCy\ {1, ]2}, we have UpSy> G*(D_, U C1) = Upsy” G*(D-1) UC:.
From this and the facts D_,, N H(A,) # 0 and D_, N H(A,) =@ for 1 < n < ny,
we have the assertion (3.1). Thus, by Proposition 3.2, one can define the mapping
Hy,_1 on Agno-1,. We take a point pg € D_,,, N H(A,) \ {(0,0)} and set p, = G™(py)
for all positive integers n. Then, it follows from Proposition 3.2 that p,,—; € D_; N
G™~ 1o H(A,) = D_y N Hpy—1(Aanop) € W(I1). Moreover, taking into account the
fact J, ¢ W*(I1), we have ppy = G(Pno-1) € D\ {J1, 2} and ppy 41 = G(pn,) = I €
W*(I1) \ {11}. Therefore, we conclude that I, is a homoclinic point of I; in Case 1.

Case 2. D_,NH(A,) =0 for alln.

In this case, using Proposition 3.2, we can define an injective holomorphic mapping
"H:C — C? by H(z) = Hy(z2) for all n. Set H(z) = (hi(z), h2(z)). From Proposition
3.2, (3) and the fact W*(I;) C C \ {/1}, one knows that H(C) C W*(I;) and hy(2)
is non-constant. Set D_,, = {(x,y) € C? | P,(z,y) = 0}. It should be remarked that
P,(z,y) is a polynomial which is given by the denominator of 7; o G*(z,y). Moreover,
from the assumption of Case 2, we see that H(C)N D_; = @ for i = 1,2. So, we
have holomorphic functions k;(2) = P, o H(z) on C which are non-zero constants or
transcendental entire functions with the exceptional value 0. Suppose that both k; and .
k2 are constants, say, k1 = o and k2 = § for some a, # € C*. Then, by using the

concrete forms of P, for i = 1,2, we have the following equation:
a®(c — b){h2(2)}? + a{ba + a(a — 1)} ha(2) + o2 — B = 0.

Clearly, this contradicts the facts that hs(2) is a non-constant holomorphic function and
b # c. Therefore, at least k; or k; is a non-constant transcendental entire function and
so, without loss of generality, we may assume that h, is a non-constant transcendental
holomorphic function. In the following part, we give a proof of (1) of Main theorem

which is based on an argument by Jin in [3].

Lemma 3.3. H(C) is not contained in any algebraic curve.
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Proof. Assume the contrary. Then, there exists some polynomial @(z, y) such that
r= {(33, y) € C? | Q(z,y) = 0} D H(C), that means Q(h1(2), ha(2)) =0forall z € C.
Since h, is a non-constant transcendental entire function, there exist some constant vy
and infinitely many distinct points {z,} such that hs(z,) = 7. Set 6, = hi(2,). Then,
Q(6,,7) = 0 for all v and, from the injectivity of H, {é,} is a set of infinitely many
distinct points. This contradicts the fact @ is a polynomial. 0O

To complete the proof of (1) of Main Theorem, we here recall the following result:

Theorem 3.4 ([5, Theorem 5.6]). Let H : C — C? be an entire mapping. Assume
that the set of exceptional values of H contains algebraic curves X; = {(a:, y) € C? |
P(z,y) = 0} for i =1,2,3, where P, (i = 1,2,3) are non-constant, irreducible and
relatively prime polynomials. Then there ezists some polynomial Q(z,y) such that

H(C) c {(z,v) € C* | Q(z,y) = 0}.

Let us return to the proof of (1) of Main Theorem. Here, we assert that the poly-
nomials P; defining the algebraic curves D_; (i =1,2,3) are non-constant, irreducible
and relatively prime, by rechoosing, if necessary, some irreducible components in place
of P,. To see this, it suffices to show that D_;ND_; = { for ¢ = 1,2, 3. Assume the con-
trary that there exists some point p € D_; N D_; with G*(p) € D \ (L}, G+i(p) = L
and Gi*2(p) = I;. Then, we have G’(p) ¢ D. Clearly, this is a contradiction. Now,
apply Theorem 3.5 for H and D_; (i = 1,2,3). Then H(C) is contained in some alge-
braic curve. This contradicts Lemma. 3.4. Therefore, we conclude that the Case 2 does

not occur; completing the proof of (1) of Main Theorem.
4 Proof of (2) of Main Theorem

In this section, we construct a horseshoe mapping at some neighborhood of I; and
give the proof of (2) of Main Theorem. In [4,8§7.4], one can see the construction of a
horseshoe structure for Hénon mapping. Our construction is basically parallel to that
in it. The proof is preceded by several lemmas.

First, for the proof of (2) of Main Theorem, we prove A-lemma for G at I. It
is known that similar results are very useful tools in smooth dynamical systems. In
order to state A-lemma, we need a few preparations. From now on, we fix an affine
coordinate in C?(z,y) with respect to which I; = (0,0). Recall that h3(0) # 0. Then

we can define the inverse mapping of hy on Ag for some constant R > 0, and H(A,)
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is locally described as follows:
H(A,) 3 {(z,y) € C* |z = k1o h3'(y) on Ag}.
Define the maps ¢, : A, = C and ® : A% — C? by

$u(y) = h1oh3'(y) and ®(z,y) = (z — du(y),y)-

It is clear from the definitions that ® is a biholomorphic mapping and ®~! is well-
define on A%, for some constant R' with 0 < R' < R. Set G = ®0 G o ! on A2,.
Then, we can see that local stable and unstable sets of (0,0) for G are z-axis and
y-axis, respectively. We consider an injective holomorphic mapping ¢ : A, — C? with
#(z) = (#1(2), $2(2)), #(0) = 0 and D* = ¢(A,). Then, we have the following:

Lemma 4.1 (\-Lemma for G at I,). Assume that D* N {(.’L’, y) € C? | y= 0} =
{(0,0)} and ¢5(0) # 0. Then, there ezists a positive integer ny satisfying the following:
For any n > ny, there exist holomorphic functions ¢, : Ar — C such that d.(0) =0
and G*(D*)N A%, D {(x, y) € A%, I z = ¢n(y) on AR'}. In particular, {¢,} converges

locally uniformly to the constant function x =0 on Ap.

The lemma is proved by similar discussion in [7, Lemma 7.1] and we omit it.

In the following part of this section, we always assume that A%, is given in Lemma
4.1. From a direct calculation, we see that @~ has the form ®~1(z,y) = (z+ ¢.(v), y).
Now, we define the set ixo and the mapping (®7'),, : Apr — A% for all 2 € Ap by

by = {(x, y) € A%, | T= xo} and (®71)z, 1 y > (371)4, (¥) = @ (0, 9).

It is clear that ($7!);, is an injective holomorphic mapping on A and (®~!)o(Ag:)
C W¥(I). Set Iy, = ®'(iz,) and U = ®1(AZ,). Then, one can see that U is foliated
by the leaves {lz,}zca, - Here, we can take the point § € Ag such that (0, §) = po,
where po is the point appearing in the proof of (1) of Main Theorem and it satisfies
the conditions po € H(A,) and pn,—1 = G™~1(py) € W¥(I;) N D_,. By the identity

theorem, we have the following lemma:
Lemma 4.2. There exists some positive constant ro > 0 such that
G™ 1o (@7 )o(A(F,2)) N Dy = {Pny—1}-

Set K(y) = G™~ o ®;'(y) and K (y) = (k1(y), k2(y)). It follows from the previous
lemma that § is a unique zero for P o K(y) on A(#,r2). Therefore, there exist some
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holomorphic function K (y) on A(§,72) and a positive integer m such that K(§) # 0
and P o K(y) = K(y)(y — §)-

Lemma 4.3. If m =1, then I is a transverse homoclinic point.

Proof. From the condition [0 : ¢ : 1] ¢ W*(I,), there is some constant zo # ¢ with
Pno = [0: xo : 1] and ppy41 = [1 : —a : 0]. Here, we recall that G has the following form

in the specific local charts:

. N
41)  G:Cay) - CAt,a), (w,y)a(””y”y ‘”y,x—cy),

ay

(4.2) G: C%(t,z) = C¥(z,y), (t,z)~— (

axr — ac at )
4+bt+c—z' t24+bt+c—zx

Write G in (4.1) and (4.2) by G, and G, respectively. Then, one obtains that

(y— ) K (y)

Po kW) ) - ckg(y)) - (W,kl(y) ~ Ckz(y)),

ak(y)

J(Gy o K)(§) =* (K (§)/(ak2()), K (§) — cky(@)) ,

Grok) =

J(G? o K)(§) = JG5(0,20)J(Gy 0 K)(§) = % ( —ib ) '

This implies the assertion of Lemma. (]

From now on, we only consider the case m = 1, that is, I5 is a transverse homoclinic
point.

For some positive constant r; with 0 < r; < R, we set Vj = A,, X A,, and V} =
A, X A(#,72). Then V; is foliated by the leaves {I;, N Vi}zoea,, for i = 0,1. Moreover,
set (I}, )n = G"o®~(I,,NV;). Since the family of mappings { PoG™ o (@7 )20 }aoea,,
locally uniformly converge to the mapping P o G™ 1o (®71)y on A(f,13) as |zo| = 0,

Hurwitz’s theorem implies the following claim:

(43) There is a positive constant r; > 0 such that for all 5 € A,,
' PoG™ 1o (®71),,(y) has a unique zero point §z, in A(F,rs).

Similar calculation in the proof of Lemma 4.3 implies that (I )n,+1 is a 1-dimensional
submanifold for each zo € A,, and i = 0,1. Set (I )ng41 = ®((I )no+1). From Lemma

4.1, we have the following lemma:
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Lemma 4.4. There is an integer my such that, for all xy € A,, and i =0,1,
T 0®0G™ 0 @ (I3, )no+2) C Aryjz and M0 @0 G™ 0 &7 (& )ngs2) D Ap.

In the following, unless specified otherwise, ¢ (and %;) will usually denote i = 0
or 1. To simplify the discussion, we write G in place of ® o G™+™ o =1 and set
G"(2,y) = (9}(2,9),95(2,9)), F = & 0 F*™ 0 &1, F(z,y) = (f(z,y), f3(3,))
and I, = {(x, y) € A%, I z= xo} for all zg € A,,. Let U}, be the subset of i,,NV; with
T 0 G(U;,) = Ap for all g € A,,. Moreover, using U},
W; = G(V;) and L, = G(V;Nl,) for every zo € A,,. From the Lemma 4.1, there
exists some holomorphic function ¢% (y) on Ag such that L, = {(:z:, y) € W; l T =

s, (y) on AR:} and
G: VUV \{GT'(0,0)} = Wo UW1\ {(0,0)}

we reset V; = Uggea,, U,

is a biholomorphic mapping. So,this implies that W; \ {(0, 0)} is foliated by the leaves
{1, \ {(0,0)}}z4¢a,,. Similarly, set Iy, = {(:z:,y) € A% | y = yo} for all yo € Ap,
I = F(I,,nW;,) for yo € A and Ii! = G~1([,NW;,)NV,,. Then we have the following

lemma.:

Lemma 4.5. For all yo € A there erist some holomorphic functions ;;(:1:) on A,,
such that It = {(x,y) € A% | y = ¥ii () on A,l}.

Proof. It should be remarked here that since F(I,, N W;,) = G~(I,, N W;,) for
Yo € A, I is given by the inverse image of G of Useea,, lyo N 1. From the previous
discussion, Iy, N i = {(¢i (%), %)} for (zo,%0) € A, X A}. Moreover, from the
injectivity of G, G~1( 2 (o), Yo) is given by a single point contained in I;,NV;,. So, we
set G~1(¢% (%0), %o) = (2o, u (z0)). Repeating this process for all o € A,,, we have

=G e N Wa) = {(@9) € Vi |y = ¥3(=) on A, }.

On the other hand, G"l(iyo NW;,) is an analytic subset of pure dimension 1. By using

this fact, it follows from [6, Theorem 4.4.1] that y = ;}) (z) is a holomorphic function
on A,,. In case of yo = 0, we define ¥} by 9i(z) = §, which is appeared in (4.3) and
¥ = 0. Then we see that [} = G-1(l,nW;,)NV;, = {(:L', y) €V;, |y =1 () on A,l},
and [6, Theorem 4.4.1] implies that 1y is a holomorphic function. O

Inductively, we define the set V;__ i...i, by Vi,,, N C?‘l(V,-"_,,,-l) for n > 1 and the

holomorphic mapping

G" :Vin.iy = Ay X Ap by (z,y) = (z,95(z,y)) forn > 1.
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The map G™ is said to satisfy the horseshoe condition (HC,) if G" is biholomorphic.
Lemma 4.6. G" satisfies the horseshoe condition (HC,) for all positive integers n.

Proof. From Lemma 4.5 and the fact that W;, is foliated by the leaves {I%} }sea,,
we see that G satisfies (HC1).
Assume that G satisfies the (HC,). Then, since G" is a biholomorphic mapping,

there exists some holomorphic function ;;"'il (z) on A,, for each yp € Ap such that

{(735 y) € Vin.iy y = ¢l (z) on Arl}.

g (@,y) =w} = {(=y) € Vi

Denoting this set by l};'""l, we see that V;__;, is foliated by the leaves {l};'""l }ooctp -

Define the holomorphic mapping
g"n : V;n---’il N G(‘/in-i-l) \ Z‘f)”mil - An X A*I‘Z’ by (x,y) > (fll(xay)ag‘;(m’ y))

Then, we have the following assertion:

(4.0 For all (zo,y0) € Ay, X A}, there exists a unique point
' (,y) € Vin.u N G(Vi,,,) \ I~ such that G™(z,y) = (<o, Yo)-

To show (4.4), it is enough to see that the holomorphic function ¢i»+! ot~ (z) on A,,
has a unique fixed point £ with w;'(;""'l(i) # 0. Indeed, by Lemma 4.4, one knows that
gintt o hin-i1(A,,) C A, ,. Hence, it follows from [4, Theorem 6.3.5] that there exists
a unique fixed point Z € A, of ¢in+t o 1/;;'5"-"1. So, (%, zb;'(;""'l (Z)) is the required point
satisfying (4.4). In particular, we see that G™ is biholomorphic. Moreover, consider the

following mapping:
g~n © é : é—l (I/;n---":l m C‘:j(‘/"in+1) \ iz]ﬂ"'il) ﬂ ‘/in+1 — A"'1 X A*R"

It is clear from the definition that G o G = G"*1. Set [+t = G~ Yl NV, 4 N

G(Vi.,,))- Then, there exists some holomorphic function Yirt1-M (1) on A,, such that

ws) { ot = {(2,9) € Vi N F (Vi) | y =96 () on A, } and
T Ve NG Vi NG Vi) \ ) = Vi N G (Vi) \ T

n<4+1

Indeed, by the same argument as in the proof of (4.4), one can see that li’;ﬂ and l?,""""
have a unique intersection point for any fixed o € A,,, and we denote it by (¢i+ (o),
) € Vin..iy NG(Vi,,,). In case of yo # 0, G~ (#in+ (%), o) is given by a single point

contained in G~1(V;,. ;) NVi.,,, S0 we write it by (zo, it (20). In case of yp = 0,
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from the fact li»+1 N I+ = {(0,0)} and the argument in the proof of Lemma 4.5, we

set (o, %5 (z0)) = (o, Yir* (z0)). Since I+ is described as
[ttt = {(a:,y) € Vinn , y =gt (z) on An} and
i(i,"“'"il = é_l(iz"'"il N V;,.“ N é(‘/in—{—l)) n Viu+17

I+ s an analytic set of pure dimension 1, and hence [6, Theorem 4.4.1] implies
that 1/)8"“'""‘ is a holomorphic function on A,,. Thus, we have the assertion (4.5).

Now, one knows that
G G (Vi) N Vi \Ig™ ™ = A, x ARy

is a biholomorphic mapping. Moreover, it is clear that G"*(z,y) = (z,0) for (z,y) =
(z, Y5+ (z)) € Ig**", and this shows that the mapping Gn*! : G Y(V;..i) N
Vins1 = Ar, X Ap is a biholomorphic mapping, proving Lemma 4.6. 0

Now, we classify the points p of N3, G’""(Vb U V}) by using the fact that the k-th
orbit of p is contained in V; or V;. To this end, we introduce some notation from
symbolic dynamics. A sequence (So,...,S,—1) With terms s; = 0,1 is said to be a
symbol sequence of length n. The set of all symbol sequences of length n is denoted by
{0,1}". For a symbol sequence (so, -, 5,_1) € {0,1}", we define the set Vso...5._, @S

follows:
Vio...sn_l = {(xa y) € Arl X AR’ | éj(z) y) € VSJ" .7 = 0" --n— 1}'
Then, from the previous discussion, we have the following results.

Lemma 4.7. V.5, = Upea, i52-*" and G(Viy..s,) C Viy.s. for all symbol

sequences (So, . ..,S,) € {0,1}"*1,
As in [4, § 7.4], we define the space {0, 1}NU{%} of symbol sequneces as follows:
{0, 1NV} = £5. = (50, 51,...) |si=0, 1}.

By setting ['(s4) = N3 Vso...s, for all s, € {0, I}NU{°} , we have the following lemma.

Lemma 4.8. For all s, € {0, I}NU{O} there ezist some holomorphic functions v, :
A,, = C such that

(s4) = {(z,9) € A, x Ap |y =4.,(z) on A}
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Proof. First, we claim that I, N ['(s;) consists of a single point for all zo € A,,.

Indeed, taking into account the fact I,y N T'(s+) = Naeo Vso...sn N lzo, We define the
holomorphic function '

(02 V)20 : T2(lzp N Vig..sn) = Arr by y > (651 )20 (y) = g5 (0, y)-

Then, it is univalnet; so that there exists its inverse function (g5+');} : Ap — ma(lz N

Vso..sns1)- From the facts that G(Vio...sns1) C Viy.snys and G (Vig.sms1) C Vinars

there exists some constant R” with 0 < R” < R' such that (g5™")z,0m2(lseNVsg...5041) C

A,, UA(g,73) C Agr. Therefore, we have the following inclusions:
m2(lzo N Vao.sn) = (951)z0 (Ar) D (95+)z0 (Arv) D malleg N Vsg.504a)-

It follows from [4, Lemma 6.3.7] that N5, 72(lz, N Vi,...s,) consists of a unique point,
and we denote it by 9, (zo). Then, l; NT'(s;) = (2o, ¥s, (T0)) and

[(sy) = {(:I:,y) €A, X Ap l y =1, () on Arl}.
Finally, we show that 9, (<) is a holomorphic function. To see this, set
l~3°"'3" = {(x,y) € Ay, X Agr | y = Y (z) on Arl}.

Then, {15°*"(z0)} converges to s, (zo) as n — oo for every fixed point zo € A,,.
On the other hand, since the family of functions {¢§°°"(z)}n>0 is uniformly bounded
on A,,, it is normal. So, {13°*"(z)}n>0 converges locally uniformly to a holomorphic

function v¥,, on A,,. This completes the proof of the lemma. O

PutV=U I'(s4+) and define the mappings

s+e{o,1}Nuio)
¥tV = {0, 1}NU{°} by (z,y) > s4, where y = 9, (),
TtV o Ay, x {0,131 by (z,9) > (2,97 (z,y)) and
o : {0, I}NU{O} — {0, l}NU{O} by sy = (s0,81,---) —> o(sy) = (s1,82,...).
By Lemmas 4.7 and 4.8, we have the following:

Lemma 4.9. U™ is homeomorphism and oo™ (x,y) = ¥+ oG(z,y) for all (z,y) € V.

Now, we repeat the same process as above for F. Inductively, we define the set
by

W-

Tn41..81

ﬁfil =W, \ {(07 0)} and mn+1---'il‘ = VV, a1 F—I(W 11) forn > 1,
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and define the holomorphic mapping

F*: Wipiy = Ar, x Ap by (2,9) = (f1(2,9),y) for n>1.
The map F™ is said to satisfy the horseshoe condition (HC,,) if F" is biholomorphic.
Lemma 4.10. F" satisfies (HC,) for any positive integer n.

Proof. From the fact that V;, is foliated by the leaves {l L }yo € Apr, we see that F
satisfies (HC;). Assume that F™ satisfies (HC,,). Then, since F™ is a biholomorphic

mapping, there exists a holomorhic function ¢i’;""1 (y) on A}, for all zy € A,, such that

{@.y) € Wios, | f1(3,9) =20} = {(2,9) € Wisi, | 2 = ¢l (3) on AR }.

Denoting this set by =%, we see that Wi;, s, is foliated by the leaves {Lr Y soetrn, -
Define the holomorphic mapping

Fr Wi, .o NF(Wi,,,) = Ar, x AR by (z,9) = (f1(2,9), 9 (2, 1))

From a similar discussion in the case of G, one obtains that ™ is a biholomorphic

mapping. Together with the fact that
l(mn 41 N F(VV'n+1)) - F_ ( in.. '1) n mn+l

we see that F*+tl = Fro F : W,

ing1..i1 —> Ar, X A% is a biholomorphic mapping. O

Define a set for a symbol sequence having a form (s_;,...,s_,) of length n

Wiy.oon = {(@.9) e oUW\ {(0,0)} | Fi(z,9) €V, j=1,...,n}.

Then, from the definitions of W,_l__,s_n and F, we have easily the following lemma:

- W,_,.,_,_ﬂ and F’(W,_l,,.,_") C W,_,_",_" for all symbol

sequences (S_1, ..., 5-(n+1)) € {0, 1}

Lemma 4.11. W,

81 ...s_("+1)

Put I'(s.) = ﬂ;'f:oW_l...s_,. for all s_ € {O,I}N with s_ = (s_1,8-2,...)- In

exactly the same way as in the proof of Lemma 4.8, we have the following lemma.

Lemma 4.12. For all s_ € {0, 1}N there exist some holomorphic functions ¢,_
7 — C such that

M(s-) = {(@9) € WaU Wi \ {(0,0)} | 2 = 4,_(3) on AR }.
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Put W = Us_e{O,l}N I'(s_) and define the mappings
v~ W = {0,3N by (2,y) — s, where y = ¢,_(2),
v~ W - {0, 1}N X Ay by (z,y) = (¥ (z,9),y)
By a similar disscussion in the proof of Lemma 4.9, we have the following lemma.

Lemma 4.13. U~ is a homeomorphism and o o ¥~ (z,y) = ¥~ o F(z,y) for all
(z,y) eW.

Put X = VnW\Us, G~"(0,0). Then, the following lemma holds from the
definitions of V, W, @ and F.

Lemma 4.14. F: X > X isa bijective mapping with F(X) = X and G(X) = X.

We define the space of bi-infinite symbol sequence

(0,132 ={s=(s_,51) € {0,1}% | s = (-, 51,50, 51,--) },
and define a subset E of {0, l}Z by
E = {s € {0, l}Z l there is an ng such that s, = 0 for all n > no}.

Moreover, define the mappings:

VX = {0, 5\ B by (z,9) = (07 (@,9), %7 (@) = (51,50, 51,°+") and

o : {0, 1}Z — {0, l}Z by (---s_1,80,81,""-) > (-+-5_1,50,51,82 ")

Then, the follbwing lemma holds.

Lemma 4.15. ¥ : X — {0, 1}Z \ E is a homeomorphism such that o o ¥(z,y) =
Vo G(z,y) and 0~ 0 ¥(z,y) = Vo F(z,y) for all (z,y) € X.

To complete the proof of (2) of Main Theorem, we only need to show its last
statement. By Lemma 4.15, the periodic points of G and those of o are in one to one
corresspondence. Since the set of periodic points of ¢ is dense in {0, 1}Z, we complete
the proof of (2) of Main Theorem.
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